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Mathematical attainment is important for both individuals and societies. Despite 
widespread understanding that this is the case, systematic reviews of the impact of 
poor numeracy on life outcomes are relatively scarce and confined to the more 
advanced economies. In 2008, the UK Government Office for Science published a 
massive, authoritative and carefully researched report, the Foresight Mental Capital 
and Wellbeing Project subtitled Making the Most of Ourselves in the 21st Century. 
It was led by a very distinguished board of scientists and the government’s Chief 
Scientific Officer, Sir John Beddington. The report summarised the consequences of 
very low numeracy, dyscalculia, which affects between 4% and 7% of children. 
Dyscalculia “has a much lower profile than dyslexia but can also have substantial 
impacts: it can reduce lifetime earnings by £114,000 and reduce the probability of 
achieving five or more GCSEs (A*-C) by 7–20 percentage points.” [GCSEs are the 
main 16-year-old exam, and a requirement for further or higher education, and most 
decent jobs.] A large cohort study by the National Research and Development 
Centre in the UK concluded that men and women with poor numeracy have poorer 
educational prospects, earn less and are more likely to be unemployed, more likely 
to be in trouble with the law and more likely to be sick physically and mentally.

The consequences for society are also dramatic. Again for the UK, the accoun-
tancy firm, KPMG, estimated the cost to the UK of poor maths in terms of lost direct 
and indirect taxes, unemployment benefits, justice costs and additional educational 
costs was £2.4 billion per year. In 2011, the OECD’s report, The High Cost of Low 
Educational Performance, demonstrated that the standard of maths drives GDP 
growth: the standard in 1960 was a good predictor of economic growth up to 2000; 
and the improvement in educational standard from 1975 to 2000 was highly corre-
lated with improvement in economic growth. In particular, the report looked at the 
potential effects of improving standards in maths.

OECD’s PISA (Programme for International Student Assessment) defines poor 
numeracy as “Level 2” and below, which means that at best children can only man-
age simple calculations with whole numbers. 11% of UK children fail to reach 400 
PISA test points, the minimum level (which is not very high) for a numerate society. 
So, for example, the economic report found that if the UK improved the perfor-
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mance of those 11% from below minimum level to minimum level, the effect on the 
gross domestic product (GDP) would be a growth of about 0.44%. Not much you 
might think, but with an average rate of GDP growth of 1.5%, this would be a mas-
sive and cumulative increase of nearly one-third. The average long-run annual 
improvement in economic growth for all OECD countries (i.e. the richest countries) 
was 0.68%.

It is clear from international comparisons that there are enormous national differ-
ences in average levels of mathematical attainment and also in the proportion of 
children who are effectively innumerate in a way that affects their life chances and 
the health of their society more generally. According to the most recent study car-
ried out by the OECD, “23% of students in OECD countries, and 32% of students 
in all participating countries and economies, did not reach the baseline Level 2 in 
the PISA mathematics assessment of 15 year olds. At that level, students can only 
extract relevant information from a single source and can use basic algorithms, for-
mulae, procedures or conventions to solve problems involving whole numbers” 
(OECD 2016, p4). This failure to reach Level 2 and be effectively innumerate varied 
from 3.8% in Shanghai China to 74.6% in Peru. In the USA, it is 25.8%, and in the 
UK it is 21.8%.

So what leads to the debilitating effects of low numeracy? There are, of course, 
many factors.

How children begin school is known to affect how they will continue. Canadian 
scientists put it like this, “Children who start school with poor knowledge and skills 
in … numeracy … are unlikely to catch up to their peers. Individual differences in 
… numeracy skills are evident at school entry—prior to formal instruction—sug-
gesting that children acquire fundamental skills at home.” All this is well-known 
and has particular relevance to mathematical development. Our study, carried out in 
Italy, revealed that the number and perhaps type of numerical activities in the home 
of the pre-schooler seems to be a key factor, and though this is related to parental 
income and education, especially maternal education, it constitutes a separate driver 
of early attainment. These factors have been systematically investigated in large-
scale international comparisons like PISA.

Valuable and important as these international comparisons are, not to mention 
their political influence, there are two critical aspects of mathematical cognition and 
mathematical education that they are not designed to investigate, and perhaps can-
not be designed to investigate:

• Explore the interaction of cognitive factors underlying mathematical attainment, 
especially in specific cultural and educational contexts

• Suggest particular methods of improving educational outcomes

Filling these important gaps makes this volume a vital and necessary comple-
ment to TIMSS and PISA.

Typical mathematical development depends on two distinct cognitive sources. 
One is domain-general capacities that affect almost all aspects of education. These 
will include reasoning and spatial abilities, long- and short-term memory, attention 
and motivation. Individual differences in these capacities can make a big difference 
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to mathematical development over and above the cultural and educational context in 
which the learner is located. However, arithmetical competence is also based on 
domain-specific innate foundations that we share with other creatures. That is, with-
out formal education, instruction of any kind, a wide range of creatures, from pri-
mates to birds to fish and even to insects, have been found to be able to extract 
information about the number of relevant objects in their environment. Lions can 
assess the number of invaders to their territory and decide whether there are enough 
of their own pride to fight them off, or whether they should retreat to fight another 
day. It is possible to train fish to swim to the larger (or smaller) of two arrays of 
abstract shapes. Bees count landmarks to estimate the distance between a food 
source and the hide.

Progress in mathematics and, especially, in numeracy depends on all these cogni-
tive capacities.

Less well studied are the innate bases of geometry, but there is good evidence 
that human groups without access to geometrical education have good Euclidean 
intuitions.

This volume is unique in being able to locate the roles of these cognitive capaci-
ties, and incapacities, in their specific national contexts. It also offers an unparal-
leled perspective of how to assess mathematical development and to identify 
learners with atypical development in a way that respects cultural differences. 
Finally, it suggests ways in which the slow developers and the maths anxious can be 
helped. It is to be hoped that practitioners and policy-makers will read these essays 
carefully and be guided by the wealth of evidence herein provided.

Brian Butterworth
Institute of Cognitive Neuroscience
University College London
London, United Kingdom

Institute of Cognitive Neuroscience 
Psychological Sciences
Melbourne University
Melbourne, Australia

Research Centre for Mind, Brain and Learning  
National Chengchi University
Taipei, Taiwan
e-mail: b.butterworth@ucl.ac.uk
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Chapter 1
Introduction

Annemarie Fritz, Vitor Geraldi Haase, and Pekka Räsänen

Twenty years ago, the main global educational issue was how to arrange schooling 
for all children in the world (Dakar, 2000; World Conference on Education for all, 
Jomtien, 1990). Still, in 1997, more than 100 million children did not have access to 
education (Roser & Ortiz-Ospina, 2017). The recent UNESCO report (2017) states 
that we have managed to half that figure, but at the same time a new issue has been 
raised: even though children would go to school, over 600 million (56%) do not 
reach even the basic level of skills in reading and mathematics. Globally, six out of 
ten children and adolescents are not able to read or handle mathematics with profi-
ciency by the time they are in the age to complete primary education (UNESCO 
Institute for Statistics, 2017).

The aim of our book is to offer a global view of mathematical learning difficul-
ties and their different causes, whether they are connected to quality of education or 
other reasons. In this book, these difficulties are covered from genetic as well as 
cognitive, neuroscientific and pedagogical perspectives. We also describe the cur-
rent situation of mathematical learning difficulties in different parts of the world. 
This trip around the world provides the reader with a unique insight in how difficul-
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ties in mathematics are approached in different cultural settings. The amount of 
research on mathematical learning difficulties has doubled every decade, but the 
question of how the lessons learned from research and laboratories can be applied 
to everyday practice at schools still remains. Many teachers struggle with the ques-
tion of how to identify those children who face problems in learning, how to support 
them and how to select the best methods to intervene.

In the current information society, machines can do calculations faster and more 
accurately than humans. Thus, does it appear necessary for each and every one to 
learn the basics of mathematics? The answer can be found all around us. Like colour, 
quantity is in everything. Whatever we do, whatever we see, there always is a number 
of something. Being numerate means that we are able to communicate about these 
numbers. Children start this journey to numeracy by comparing “more” and “less”. 
They learn to talk about amounts, changes and differences in quantities when we 
teach them the quantitative concepts and the number system. It has taken thousands 
of years for mankind to develop the current efficient system, shared by the whole 
world. It was developed to describe the exact number of something with words and 
symbols. These are tools that we can use in almost any kind of context: to inform 
others about amounts or a change in an amount; to build different kinds of scales and 
measurement systems like time, length, weight or money; to describe amounts or 
ratios; and to share, multiply or divide. Acquiring basic mathematical knowledge 
means to acquire basic competencies for participating in our human culture.

Worldwide the number of children who do not learn these basic competencies 
during the primary education varies from 15% in North America and Europe to 
about 85% in sub-Saharan Africa (UNESCO, 2017). These are clearly higher fig-
ures than usually described in studies on developmental dyscalculia, a persistent 
difficulty in learning arithmetic, where the prevalence estimates vary from 2% to 
7% (Devine, Soltész, Nobes, Goswami, & Szűcs, 2013; Rapin, 2016). While in 
dyscalculia the difficulties in learning are considered to stem from more or less 
specific neurocognitive factors of the child’s brain, the high number of low- 
performing children tells us that the majority of the difficulties are related to an 
interplay of environmental factors like quality of education and opportunities to 
learn, not to forget the early development and home learning environment. Children 
in different parts of the world have very unequal opportunities to learn 
mathematics.

However, we can also find a strong heterogeneity among the children even within 
developmental dyscalculia (Fias, Menon, & Szucs, 2013; Rubinsten & Henik, 2009; 
Rykhlevskaia, Uddin, Kondos, & Menon, 2009), and researchers continue the quest 
of depicting the key variables behind the individual variation in numerical abilities 
and difficulties. Large steps in understanding this variation have been taken recently. 
This book gives an overview of the current state of the art about the mechanisms 
behind the difficulties, about recognition and diagnostics at school or in clinical 
practice as well as about the effectiveness of different types of interventions.

The book has been divided into five parts. Each part provides multiple perspec-
tives to the topic area with a summarising discussion chapter for four sections at the 
end. The first part (Part I: Development of Number Understanding: Different 
Theoretical Perspectives) covers the different theoretical perspectives on the devel-
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opmental issues. In the last three decades, research on mathematical difficulties and 
developmental dyscalculia has boomed. Difficulties in mathematical learning have 
been approached from different theoretical perspectives. Research has been carried 
out most actively in neuropsychology and cognitive neurosciences. The rapid devel-
opment in technology and the drop of price in using these technologies have surged 
the amount of research using brain imaging or genetic analyses. After the initial 
excitement, the discussion turned to the applicability of neuroscientific findings to 
educational practice (Ansari & Coch, 2006; De Smedt & Grabner, 2016; Goswami, 
2006; Howard-Jones, 2014).

At the same time, developmental psychologists conducted pioneering research 
with infants and toddlers to understand the development of the complex construct of 
number.

Learning difficulties cannot be traced back to a monocausal explanatory model. 
Such models have proven to be generally insufficient for the conception of learning 
difficulties. Instead, complex interaction models are to be favoured. Among the 
multitude of influencing factors, socioeconomic factors have to be emphasised. Also 
important to consider are the complex interactions between individual differences 
and contextual factors, such as public policies, poverty, culture, school as well as 
classroom effects and, of course, the quality of the pedagogy in the classroom. 
Pedagogical models have also seen many revisions. The goal of learning is not any-
more considered to be studying specific subjects in order to reach curricular goals, 
but education is seen via broader concepts of acquiring competencies like “thinking 
skills” (Marope, Griffin, & Gallagher, 2017).

In the second part (Part II: Mathematical Learning and Its Difficulties Around 
the World), we focus on learning difficulties around the world. The authors draw a 
picture of the similarities and differences in research, education and public policies. 
Progress and obstacles in translating basic cognitive research to the classroom are 
discussed from the perspectives of different countries and areas. The quality of 
available diagnostic instruments and intervention programmes is evaluated.

Based on the international comparison, the levels of learning even the basic skills 
vary extensively in different parts of the world. This variation shapes the topics 
discussed at the local level. When in the welfare societies, learning motivation has 
risen to be one of the topics of discussion, in developing countries, the questions of 
social factors causing low performance are urgent problems. The chapters offer us 
the view of scientific definitions of learning disabilities being universal but at the 
same time point out how the school systems react, recognise and support those who 
struggle with learning that varies from one country to another. Likewise, there are 
large differences in how much evidence-based tools, like assessment materials stan-
dardised and normed in the country or field-tested intervention programmes, are 
available for practice. We would be glad if these chapters would encourage research-
ers in different countries to engage cross-country collaborations in these efforts.

Part III discusses the cognitive, motivational and emotional underpinnings of 
mathematical learning difficulties. The development of arithmetic can be approached 
from different perspectives: the neurobiological, the cognitive and the behavioural 
level. The development of arithmetic skills is based on the complex interplay of 
these different levels, which are dependent on each other. In this part, authors 
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 present the recent development in research, trying to uncover the relationship 
between neurocognitive, motivational and emotional variables and learning or 
learning difficulties in mathematics.

Part III starts with a chapter about genetics, which is one of the most rapidly 
developing research fields. From the perspective of genetics, developmental dyscal-
culia is a heterogeneous phenotype. There are multiple methods to evaluate the 
effects of genetic factors. Different methods show varying levels of genetic impact 
on learning mathematics, especially about the role of genetics in developmental 
dyscalculia and comorbid disorders like the common overlap between dyscalculia 
and dyslexia. The interplay of genetic and environmental factors is an important 
issue. One way to analyse the role of genetics to dyscalculia has been to focus on 
specific syndromes where mathematical learning difficulties have been found fre-
quently. The cognitive disorders within these syndromes illustrate the different 
sources of dyscalculia, most typically difficulties in language, working memory and 
spatial skills. The following chapters deepen our understanding about these rela-
tionships between cognition and mathematical learning. To get a full picture, sepa-
rate chapters are dedicated to describing how the motivational and emotional factors 
are tied to learning and learning disabilities.

A considerable body of fMRI studies with healthy adults has increased our knowl-
edge about the brain networks which are relevant for mathematical performance. 
However, there is less information on how this network develops during learning and 
on how the findings of the differences between the dyscalculic and typically develop-
ing brain could inform us about the interventions needed. Children with dyscalculia 
show functional as well as structural abnormalities in this network. However, this 
information only gives us very little knowledge to guide education. As described in 
the chapter about the comorbid disorders, a detailed analysis at cognitive and behav-
ioural levels is needed for designing the support at individual level.

The multilingual classroom is an understudied topic, considering that the major-
ity of countries in the world are multilingual by nature and that immigration has 
increased, reaching almost 250 million persons (United Nations, 2016). Migratory 
movements on a mass scale have brought various new languages to other countries 
and continents; the Internet has dramatically affected the way in which language 
and languages are used for communication and indeed for learning (Education in a 
Multilingual World, 2003). One of the key ideas of this international handbook was 
to make this diversity in the classrooms visible, whether we are talking about the 
teaching and learning languages of mathematics in the classroom or of how educa-
tional policies take diversity into account.

Part IV turns the discussion to development, learning and teaching (Part IV: 
Understanding the Basics: Building Conceptual Knowledge and Characterising 
Obstacles to the Development of Arithmetic Skills). High-quality education requires 
our understanding of the basic steps children take in learning and of how the educa-
tion should be designed to support them in their progress to more advanced and 
complex representations. Likewise in this part, we ask for the specific mathematical 
obstacles which make learning and understanding mathematics so difficult. 
Implications for teaching and learning will be discussed in all papers.

A. Fritz et al.
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One of the main problems of students with mathematical difficulties is that most 
of them have not been able to develop more advanced calculation strategies than 
counting by one. This is disadvantageous in many ways: counting takes a long time, 
is error prone and burdens the working memory. But worst of all is that these chil-
dren do not represent numbers as sets (cardinal aspect) but only as a single number 
on the mental number line (ordinal aspect). For the understanding of effective addi-
tion and subtraction strategies as well as multiplication and division, it is imperative 
to understand numbers as sets which can be decomposed.

While the very basics of the number system can also be learnt outside of school, 
more advanced skills require explicit education starting from calculating with multi- 
digit or decimal numbers and especially grasping the idea of the rational number 
system. In mathematics, a rational number is any number that can be represented as 
a fraction. As most of the research has focused on fractions in typically achieving 
students, the specific challenges that fractions pose to learners with mathematical 
difficulties are less well understood. Learning to solve problems using calculation 
skills adds one more demand for pedagogy.

The definitions of dyscalculia usually do not even mention geometry. However, 
geometrical knowledge has extensive practical implications and creates the basis for 
understanding more advanced mathematics.

Part V describes different approaches to recognition and intervention, elaborat-
ing ways of how to assess mathematical learning difficulties and focusing on differ-
ent types of interventions and how the research on learning difficulties could guide 
education.

Research has opened our eyes to multidimensional diversity of skills in the class-
room, which asks for improved methods of recognising the individual differences. 
Likewise, the discussion about how to define and assess the mathematical learning 
difficulties is vivid. The old diagnostic models of discrepancy between math and 
other skills have been challenged with new ideas, ideas that try to connect educa-
tion, remediation and interventions more tightly to assessments. In this last part, we 
hence want to give an overview about the range of diagnostic procedures as well as 
intervention approaches and their theoretical bases.

All around the world, countries have plans on how to digitalise education. In a very 
near future, the access to technologies like the Internet will revolutionise assessment, 
e.g. national assessments which are carried out more and more often with computer-
assisted tests. Likewise, there are increasingly more electronic educational and inter-
vention materials available. Technology will provide teachers and practitioners with 
new tools for different ways to assess skills and progress of learning.

Research has demonstrated that children from low-resource communities who 
experience gaps in opportunities for learning may also have lower executive func-
tioning (EF), and this risk is exacerbated for children who are second-language learn-
ers. Differences in EF between groups raise important equity issues that we must 
address to meet the needs of all children and thus the entire community of learners in 
a fair way. As such, children with special needs likely require special interventions. 
The authors introduce what we know about group-based interventions as well as 
about how the rapidly increasing technology changes the  educational world. 
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This last chapter also focuses on the title of the book by elaborating on how the 
findings from the labs turn into effective practice.

With this book, we would like to help in bridging the research on numerical 
cognition and learning to practical applications in the classrooms, schools and clinics. 
There are a lot of national and international initiatives and actions underway on 
improving learning and teaching numeracy globally. We, together with our almost 
100 authors, hope that this book will encourage you to walk over that bridge.
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Chapter 2
Neurocognitive Perspective on Numerical 
Development

Karin Landerl

 Introduction

Numbers are an integral part of our everyday life, not only as the basic elements of 
arithmetic (2 + 4, 247 × 39) but also as lexical numbers (e.g., 7Eleven, 9/11) or 
ordinal numbers (e.g., 7.2. – the seventh day of the second month of the year). How 
does our cognitive system process all this valuable information? How do children 
develop efficient numerical processing skills? And why is it that in a considerable 
number of individuals, the cognitive system does not tune into processing numbers 
efficiently during development, inducing the neurodevelopmental disorder of 
dyscalculia? Numerical processing and the cognitive representation of numbers in 
different formats have been demonstrated to constitute a central core mechanism 
underlying arithmetic development in typically developing children and a core defi-
cit strongly associated with developmental dyscalculia (e.g., Butterworth, 2005). 
The present chapter aims to give a short overview of current research on the devel-
opment of this core mechanism during early childhood.

 The Triple-Code Model of Numerical Processing 
and the Mental Number Line

Numbers appear in three different formats: (1) as analog magnitude information (4 
candles on the birthday cake, about 700 people at the concert, more apples than pears 
on the fruit stand), which is also referred to as “number sense,” (2) in the form of spo-
ken or written number words (three, fourteen), or (3) as Arabic numerals and 
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multi-digit numbers (7, 423). The triple-code model (Dehaene, 1992; Dehaene & 
Cohen, 2007) postulates that in competent adults, these three numerical representations 
are strongly interconnected, so that, for example, we cannot suppress activation of the 
analog magnitude representation when we see an Arabic number: In the numerical 
Stroop paradigm, participants are asked to select the physically larger of two digits. 
The numerical value of the presented number clearly interferes with the nonnumerical 
judgment on physical size, inducing faster response times for items in which the 
numerical value is congruent with the physical size (e.g., 2 8) than in incongruent items 
(e.g., 2 8, Henik & Tzelgov, 1982). However, our knowledge on how these highly effi-
cient neural networks develop during infancy and childhood is still limited.

In adults, numbers are typically conceived as falling along a mental number line 
(Dehaene, 1997), which is spatially oriented with smaller numbers on the left and 
larger numbers on the right. This mental number line is logarithmically condensed 
thus that the space between pairs of numbers becomes smaller as numerical magni-
tude increases. Another important question then is when and how children develop 
such a spatially oriented mental number line.

 The Approximate Number System

Processing of analog magnitudes via the so-called approximate number system 
(ANS) or “number sense” is assumed to be inborn: It has been studied in different 
kinds of animals (e.g., Agrillo, 2015; Beran, Perdue, & Evans, 2015). Preverbal 
numerical processing skills have also been demonstrated in newborns and infants 
(Libertus & Brannon, 2010; Lipton & Spelke, 2004; Schleger et  al., 2014), who 
have the basic ability to differentiate between two numerical set sizes. If the numeri-
cal difference is sufficiently clear, infants show significant effects of dishabituation 
(usually measured as an increase in visual inspection time) when set size changes. 
Some studies provide evidence that two systems of numerical processing can be 
differentiated even in infancy (e.g., Feigenson, Dehaene, & Spelke, 2004). Hyde 
and Spelke (2011) suggest that a “parallel individuation” system underlies infants’ 
ability to enumerate small item sets up to four, while a ratio-dependent numerical 
magnitude system is involved in processing larger numerical sets. Interestingly, 
Hyde and Spelke (2011) also found evidence for distinct neural pathways in 
6–7.5 months old infants: Processing of small numerical sets evoked a positivity 
about 400 ms after stimulus presentation (P400) in an ERP analysis, while for larger 
set sizes the positivity appeared somewhat later (P500) and was ratio-dependent.

 Number Words and Verbal Counting

While the non-symbolic number sense is biologically driven, symbolic representa-
tions like number words and Arabic numbers are clearly culturally transmitted. As 
part of their language acquisition, children learn simple number words and acquire the 
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skill of verbal counting. This process entails the one-to-one principle, meaning that 
each counted object corresponds to one specific number in the ordinal counting 
sequence. Importantly, it also entails the cardinality principle, that the last number in 
the ordinal counting sequence represents the set size, prompting children to match 
distinct set sizes with their corresponding symbolic number representation (Gallistel 
& Gelman, 2000). However, there is an ongoing debate whether these skills, which 
require an exact representation of distinct numerical sets, are rooted in the approxi-
mate number system or whether the two systems develop independently (Izard & 
Dehaene, 2008; Karolis & Butterworth, 2016; Leslie, Gelman, & Gallistel, 2008; 
Mussolin, Nys, Leybaert, & Content, 2016; Odic, Le Corre, & Halberda, 2015).

Interestingly, the acquisition of the verbal representation of number in terms of 
number words is surprisingly slow. Between 2 and 3 years of age, most children 
learn to recite number words in (roughly) correct order. However, usually no spe-
cific numerical meaning is attached to these number words; they are rather recited 
like the ABC or a nursery rhyme. The first number word that is usually associated 
with a numerical meaning is “one”: Children can correctly report that a set contains 
one item, and they will give correctly one item when asked to do so (Le Corre & 
Carey, 2007; Le Corre, Van de Walle, Brannon, & Carey, 2006). At this early stage, 
higher number words are not differentiated at first. So when these children are asked 
to give a distinct number of items higher than one (e.g., three), they will grab a ran-
dom set of items, without considering their exact numerosity (Le Corre et al., 2006). 
Only over a relatively extended period of 6–12 months, children will associate a 
numerical meaning to the number words “two,” then “three,” and then “four,” before 
they fully understand the cardinality principle. Note that during this period, children 
are usually already able to carry out Verbal Counting procedures by correctly apply-
ing the one-to-one principle and assigning number words in the correct order to 
each item that they are serially pointing at (Gelman & Gallistel, 1978; Le Corre & 
Carey, 2007).

Odic et al. (2015) recently reported that during this intermediate period, the map-
ping between ANS and verbal number representations may not be bidirectional: 
While children showed some competence to generate an approximate response to a 
verbal number (producing finger taps), the reverse ability to respond with a corre-
sponding number word to an analog magnitude (watching a rapid sequence of dots 
or finger taps) seemed to require full understanding of the cardinality principle. 
Thus, mapping from precise number words to approximate numerosities may help 
children to calibrate between the two systems. Furthermore, it is possible that the 
acquisition of exact number skills may in turn help children to further refine their 
approximate number system (Mussolin et al., 2016).

 Visual-Arabic Code

There is still a lot to learn about the early acquisition of Arabic numerals and on how 
they are integrated with the two other numerical codes, ANS and number words. 
These mappings are usually acquired between the ages of 3 and 5 years (Benoit, 
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Lehalle, Molina, Tijus, & Jouen, 2013; Hurst, Anderson, & Cordes, 2016), and most 
children will be familiar with basic number words when they acquire their first 
Arabic numerals. So the important question arises whether Arabic numerals are 
directly mapped with the ANS like number words or whether the mapping is indi-
rect via an association with the corresponding number word which in turn is mapped 
with the ANS.

Empirical findings on this issue are scarce and as yet contradictory. Benoit et al. 
(2013) found that four-year-olds were better in matching Arabic numerals with non- 
symbolic numerosities than in matching them with their corresponding number 
words, suggesting a direct mapping between numerosities and Arabic numerals. 
However, their displays of non-symbolic numerosities presented dots as canonical 
dice patterns, which perhaps provided children with an advantage on enumerating 
the non-symbolic displays. In contrast to this study, Hurst et al. (2016) reported that 
three-to-four-year-olds found it clearly harder to map numerosities with Arabic 
numerals than with number words and that performance on Arabic numeral-number 
word mapping tasks was better than on Arabic numeral-non-symbolic numerosities 
mapping. Furthermore, while matching non-symbolic sets to symbolic representa-
tions was easier for small compared to larger set sizes, such a set-size effect was 
lacking for the Arabic numerals-number word mapping. This lack of a set-size 
effect for matching of the two symbolic codes indicates that it does not depend on 
the magnitude of the numerosities represented. In summary, these findings rather 
support the view that children first map Arabic numerals to number words.

While the basic associations between (small) non-symbolic numerosities, num-
ber words, and Arabic numerals are established during the preschool years, we do 
not know much about how long it takes until children have them sufficiently autom-
atized. Such automatization probably entails a neural integration process based on 
comprehensive experience and practice. That such processes of neural integration 
take longer than might be expected becomes clear from research on another domain 
of symbolic learning, development of letter-sound associations. Even 11-year-old 
children, who were advanced readers and showed highly automatized letter process-
ing on the behavioral level, did not yet show adult-like brain responses in an audio- 
visual ERP paradigm (Froyen, Van Atteveldt, Bonte, & Blomert, 2008). The 
corresponding research on the developmental integration of the three numerical 
codes needs as yet to be done. The lack of this research is even more surprising as 
current evidence suggests that the quality and precision of the mappings between 
ANS and symbolic presentations of number are a specific predictor of arithmetic 
skills even after controlling for age, vocabulary, and precision of the ANS (Libertus, 
Odic, Feigenson, & Halberda, 2016).

 Place Value and Number Syntax

Another challenge of the symbolic numerical codes is that they represent place- 
value systems. This is particularly tricky in the Arabic notation as the very same 
numeral has completely different numerical meanings depending on its position in 
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multi-digit numbers (e.g., 503, 35, 305). Transcoding between Arabic numbers and 
number words as well as deriving the numerical value of multi-digit numbers 
requires the competent application of a number of rules (Barouillet, Camos, 
Perruchet, & Seron, 2004), some of which are additive (25 = 20 + 5), while others 
are multiplicative (700 = 7 × 100), and children are not always aware which one is 
correct (e.g., writing 7000 as 71,000 by adding the 7 to the numeral for 1000). In 
order to adequately comprehend the Arabic notation system, children need to under-
stand that the zero does not equal “nothing,” but plays an important role as a place-
holder. On the other hand, children do not always understand that zeros must be 
overwritten in multi-digit numbers and combine Arabic numbers like other com-
pound words (e.g., writing 700,050,042 for 7542). The ability to transcode multi- 
digit numbers is significantly associated with children’s arithmetic skills in 
elementary school (e.g., Moura et al., 2013).

Understanding of the place-value system depends on how transparent place value 
is represented in the particular language. In some languages, like Japanese, number 
words provide a one-to-one translation of the corresponding Arabic number (e.g., 
7546 corresponds to “seven thousands, five hundreds, four tens, six units”), so all 
children need to learn is the number words from zero to nine and the words for unit, 
ten, hundred, and thousand, and once they have worked out the place-value system, 
they can transcode any particular number. This is of course very different in English 
and many other languages. Note that European languages typically are particularly 
intransparent for numbers of the second decade: “Eleven” and “Twelve” do not 
provide any information that they correspond to 10 + 1 and 10 + 2. The other “teens” 
in the English number word system (“thirteen” to “nineteen”) are composed differ-
ently from number words higher than 20, as the unit is named before the ten. In 
English number words higher than 20 are largely consistent to the corresponding 
Arabic number, but still, children need to acquire the decade names (twenty, thirty, 
forty,…).

Many languages like German or Dutch consistently inverse the ten and the unit 
of their two-digit numbers (e.g., “one-and-twenty”). In children’s performance on 
number reading and number writing, inversion errors (reversing the ten and the unit) 
constitute a major error source in languages with inversion like German or Dutch, 
while such errors are (obviously) rather exceptional in languages without inversion 
like Japanese or French (Imbo, Vanden Bulcke, De Brauwer, & Fias, 2014; Moeller, 
Zuber, Olsen, Nuerk, & Willmes, 2015). In a longitudinal study in German, the 
number of inversion errors in Grade 1 predicted children’s math grades two years 
later (Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011). In this study, the number 
of inversion errors was specifically related to children’s later performance in carry 
problems. While arithmetic problems involving carry are always more difficult than 
problems without carry due to heavier working memory load, the carry effect seems 
to be larger in languages with inverted verbal mapping of the place-value structure, 
like German, than in Italian, where number words are consistent with the Arabic 
notation (Göbel, Moeller, Pixner, Kaufmann, & Nuerk, 2014). Thus, the transpar-
ency of the mappings between the different numerical codes appears to directly 
influence children’s arithmetic development.
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 Experimental Effects of Numerical Processing

A number of numerical processing paradigms have been used to explore, how num-
bers and numerosities are represented in the cognitive system. As these paradigms 
are relatively simple and can be used with young children, they have also been 
highly useful to examine the development of numerical processing skills.

 Subitizing vs. Counting in Dot Enumeration

In the dot enumeration paradigm, participants have to count a limited number of 
dots (usually no more than ten) as quickly as possible. Such enumeration tasks 
induce a characteristic pattern of performance, indicating two distinct enumeration 
systems (Vetter, Butterworth, & Bahrami, 2011): Small numerosities up to three or 
four are typically responded to with high accuracy and speed. This process of rapid 
identification of small dot numbers is called subitizing. For numerosities higher than 
four, reaction times and error rates rise systematically with increasing numerosity, 
indicating the execution of a sequential counting procedure. While sequential pro-
cessing of higher numerosities is likely to involve verbal counting, the subitizing 
process seems to be more visually based and is sometimes interpreted as a reflection 
of the preverbal enumeration skills evident in infants (Libertus & Brannon, 2010). 
In a cross-sectional study, Schleifer and Landerl (2011) found adult-like subitizing 
performance in 11-year-olds, but not younger children. Full competence in sequen-
tial counting of larger dot arrays was only evident in 14-year-olds, while younger 
age groups performed at less proficient levels. Interestingly, a number of studies 
(Landerl, 2013; Moeller, Neuburger, Kaufmann, Landerl, & Nuerk, 2009; Reeve, 
Reynolds, Humberstone, & Butterworth, 2012; Schleifer & Landerl, 2011) found 
specific subitizing problems in poor math achievers, while in the counting range, 
responses were generally slower, but the gradients of response time slopes were 
similar to typically developing control groups. Of particular interest are two longi-
tudinal studies: Landerl (2013) followed a sample of 41 children with dyscalculia 
from Grade 2 to Grade 4 and observed an atypically large increase in response times 
in the subitizing range (enumeration of one to three dots) across five assessment 
points. Reeve et al. (2012) could show that children who were particularly slow at 
dot enumeration at the age of six also had a significantly reduced subitizing range 
(two dots at 6 years, three dots at 8.5 years, and four dots at 9 years). These children 
also had relatively poor arithmetic skills at the ages of 9.5 and 11  years. Thus, 
although most children with arithmetic deficits also show the typical discontinuity 
of counting performance between lower and higher numerosities (but see an indi-
vidual case described by Moeller et al., 2009), their subitizing mechanism seems to 
be impaired (Butterworth, 1999), and their sequential counting is overall slower.
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 Ratio Effect in Non-symbolic Number Comparison

Another simple experimental paradigm that is highly informative with respect to the 
cognitive representation of number is the magnitude comparison task (also called 
non-symbolic number comparison). Individuals are asked to select the numerically 
larger of two non-symbolic magnitudes (e.g., dots). The accuracy and speed with 
which this decision is made depend on the numerical distance between the two 
numerosities. The larger this distance, the faster and more accurately the decision is 
made due to a smaller internal overlap between the two magnitude representations. 
The acuity of analog magnitude processing is usually specified as Weber fraction 
which is the smallest ratio of two numerosities that a person can reliably judge as 
larger or smaller (Halberda, Mazzocco, & Feigenson, 2008). The Weber fraction 
increases during development, allowing children to discriminate similar numerical 
sets more precisely. Acuity of non-symbolic magnitude processing in kindergarten 
was found to predict arithmetic competence at age six (Mazzocco, Feigenson, & 
Halberda, 2011), and interindividual differences in the acuity of magnitude process-
ing were found to be directly related to arithmetic competence (Libertus et  al., 
2016). However, findings on children with mathematical learning difficulties are 
inconclusive. While virtually all studies report deficient performance in dyscalculia 
samples for symbolic comparison tasks presenting Arabic numbers (see 7.3.), 
results on non-symbolic comparison paradigms are mixed. In their review, De 
Smedt, Noël, Gilmore, and Ansari (2013) point out that age might be a critical fac-
tor: Weaker performance compared to typically developing children was mainly 
found in samples older than 9 years, while samples aged 6 to 9 years did not show 
significant deficits. This pattern suggests that poor non-symbolic processing might 
be a consequence rather than a cause of mathematical development, which helps to 
refine the acuity of the ANS (Noël & Rousselle, 2011).

 Distance Effect in Symbolic Number Comparison

In the symbolic number comparison paradigm, participants are typically asked to 
select the numerically larger of two Arabic digits. Note that this task requires par-
ticipants to efficiently access the analog magnitude representations that correspond 
to the Arabic symbols, which then constitute the basis of the decision. A recent 
meta-analysis of 45 studies with more than 17,000 participants (Schneider et al., 
2016) indicated that mathematical competence (particularly mental arithmetic) is 
more closely associated with symbolic than with non-symbolic number compari-
son. Again, a typical and highly robust pattern of performance arises from this task: 
The decision is more efficient in terms of accuracy and speed for large than for 
small numerical distances between the two presented numbers (Moyer & Landauer, 
1967). This distance effect is interpreted as evidence for the access of the analog 
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magnitude representations corresponding to the numbers. The more overlap between 
these magnitudes, the harder it is to make the decision.

A distance effect in symbolic comparison tasks has been demonstrated even 
among preschoolers (Sekuler & Mierkiewicz, 1977). Some studies suggested that 
the symbolic distance effect might decrease during development (Holloway & 
Ansari, 2008), indicating a continuing specification of the cognitive representation 
of number, and that the size of the distance effect might therefore be related to arith-
metic skills (De Smedt, Verschaffel, & Ghesquière, 2009). However, other studies 
found a rather stable influence of numerical distance on symbolic number compari-
son across different age or achievement groups, accompanied by a general decrease 
in response times (Girelli, Lucangeli, & Butterworth, 2000; Landerl, 2013; Landerl 
& Kölle, 2009; Reeve et al., 2012). Thus, it seems that the distance effect may not 
be directly related to children’s math achievement (Gibson & Maurer, 2016). 
However, significantly increased overall response times in comparison of simple 
one digit numbers seems to be a persistent and specific deficit in children with 
dyscalculia (De Smedt et al., 2013; Landerl, 2013; Reeve et al., 2012; Rousselle & 
Noël, 2007) as well as adults (Rubinsten & Henik, 2006).

 Size-Congruity Effect in Symbolic Comparison

The number comparison paradigm has also been applied to investigate the automa-
ticity of numerical processing. When individuals are asked to decide which of two 
digits is physically larger, numerical value interferes with their physical judgments. 
Generally, incongruent items (e.g., 4 9) are responded to more slowly than congru-
ent items (e.g., 4 9; Bugden & Ansari, 2011; Girelli et al., 2000; Landerl & Kölle, 
2009). This Size-Congruity Effect indicates automatic activation of numbers and 
requires a certain amount of experience. Some studies show interference between 
physical and numerical size even in first grade (Landerl, 2013; Rubinsten, Henik, 
Berger, & Shahar-Shalev, 2002), while in others it was not even found in fourth 
graders (Landerl, Bevan, & Butterworth, 2004). Interindividual differences in the 
degree of automatization and differences in task format make it difficult to compare 
findings across studies. Bugden and Ansari (2011) as well as Landerl (2013) did not 
find a direct relationship of the size-congruity effect with children’s arithmetic skills 
and concluded that automatic processing of numbers is not related to mathematical 
competence.

 Compatibility Effect in Comparison of Two-Digit Numbers

The number comparison paradigm has also been used with two-digit numbers, 
where it also induces a robust distance effect. More interestingly, though, it is also 
informative in as to how children learn to integrate the ten and unit position into one 

K. Landerl



17

numerical value. This is evident from the development of the compatibility effect 
(Nuerk, Kaufmann, Zoppoth, & Willmes, 2004): Response accuracy is generally 
higher and response time lower when both tens and units are higher in one number 
(e.g., 83_62, 8 > 6, and 3 > 2) than when tens and units of the two numbers are 
incompatible (e.g., 82_63, 8 > 6, but 2 < 3). The compatibility effect indicates that 
multi-digit numbers are not processed holistically, but require adequate integration 
of the composite numerals and their place value. The compatibility effect is espe-
cially marked in young and unexperienced children (Landerl, 2013; Landerl & 
Kölle, 2009; Pixner, Moeller, Zuber, & Nuerk, 2009) and predicts later arithmetic 
skills (Moeller et al., 2011). Although verbal skills are not directly required in the 
number comparison paradigm, the size of the compatibility effect seems to be influ-
enced by language properties: The difference between compatible and incompatible 
number pairs was found to be larger in German, a language that inverts the tens and 
units in number words, than in Italian and Czech (Pixner, Moeller, Hermanova, 
Nuerk, & Kaufmann, 2011). Quite impressively, Landerl (2013) found that German 
children with persistent arithmetic deficits performed on chance level for incompat-
ible items at the beginning of second grade, suggesting that these children have not 
yet worked out the place-value system, although according to the math curriculum, 
they are already expected to learn their times tables.

 SNARC Effect

Convincing evidence for a spatially oriented mental number line in adults comes 
from the so-called SNARC effect (Dehaene, Bossini, & Giraux, 1993). SNARC is 
an acronym for “spatial-numerical association of response code,” and the SNARC 
effect denotes the finding that during nonnumerical decisions like parity judgment, 
decisions are made systematically faster with the left hand for small numbers and 
faster with the right hand for large numbers. A SNARC effect was reported from 
about seven years of age on, while for children younger than seven years, evidence 
is mixed and seems to strongly depend on the experimental paradigm applied. One 
limitation is that young children may not always automatically activate the analog 
magnitude representation when presented with Arabic numbers. Interestingly, Chan 
and Wong (2016) recently reported evidence that the SNARC effect in Chinese 
preschoolers might be related to their understanding of ordinality and not (yet) to 
magnitude processing. Thus, the left-to-right orientation of number representation 
might be based on children’s experience with counting in that direction. This find-
ing may explain why in children the SNARC effect seems to be unrelated to early 
numerical abilities (Chan & Wong, 2016) and to mathematical skills (Gibson & 
Maurer, 2016).

To sum up, a variation of different paradigms has been used to investigate the 
development of the cognitive representation of number. The general pattern is that 
the representational system of numbers and numerosities becomes more precise and 
more efficient during typical development, while this is not the case (at least not to 
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the same extent) in individuals with dyscalculia. Interestingly, very few studies 
examined the development of numerical processing itself in a longitudinal design. 
So we do not have sufficient knowledge about the stability of the effects described 
above across time. Note that the longitudinal study by Landerl (2013) suggests high 
stability for overall task performance, but stability of the within-task effects 
described above was quite low until Grade 3. Continuing research efforts focusing 
on the development of numerical processing is even more important as an increas-
ing number of cross-sectional as well as longitudinal studies clearly show that these 
skills, particularly the early understanding of symbolic representations of number, 
are related to children’s arithmetic development.

 Numbers in the Brain

While numerous studies have investigated brain structures and activation patterns 
underlying numerical processing in adults, our knowledge of how the developing 
brain deals with numerical information is still limited. According to the triple-code 
model (Dehaene & Cohen, 1995; Dehaene, Molko, Cohen, & Wilson, 2004), com-
petent adults process numerical codes in distinct brain areas: While the analog mag-
nitude representation is associated with bilateral parietal brain areas, the verbal code 
is linked with left perisylvian language regions (and subcortical structures, like 
basal ganglia and thalamus) and the visual-Arabic code with bihemispheric inferior 
ventral occipitotemporal regions. In addition, prefrontal areas are activated during 
more complex arithmetic problem solving. Within the parietal lobe, Dehaene, 
Piazza, Pinel, and Cohen (2003) specified three distinct neural circuits: the intrapa-
rietal sulcus (IPS) is assumed to be involved in analog magnitude processing, while 
adjacent regions, particularly the posterior superior parietal sulcus (PSPL) and the 
angular gyrus, are associated with spatial orienting on the mental number line and 
verbal number fact knowledge. However, it takes many years of experience and 
interactions with different number formats and number tasks in order to develop 
these differentiated neuronal networks.

Interestingly, a recent meta-analysis (Kaufmann, Wood, Rubinsten, & Henik, 
2011) revealed an age-dependent activation shift from anterior to more posterior 
brain regions within the parietal cortex for non-symbolic numerical processing. The 
authors interpreted this shift as stronger reliance on finger-based calculation strate-
gies among children compared to adults. This interpretation is plausible, as observed 
activations in the anterior IPS among children are relatively close to the finger areas 
in the sensory homunculus on the postcentral gyrus. However, it may also be 
 associated with the fact that non-symbolic number comparison in young children is 
sometimes presented via finger patterns (Kaufmann et al., 2011).

For symbolic number processing, findings indicate a decrease in frontal and an 
increase in parietal brain areas (see Kaufmann et al., 2011 for a review). This fron-
toparietal shift indicates an increasing functional specialization of (intra)parietal 
areas. This interpretation is supported by findings on individuals with arithmetic 
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deficits, who have been found to show reduced activation during non-symbolic 
comparison of numerosities (Mussolin et  al., 2009; Price, Holloway, Räsänen, 
Vesterinen, & Ansari, 2007), symbolic comparison (Mussolin et  al., 2009), and 
arithmetic (Kucian et al., 2006).

Even more impressively, a number of studies also reported structural brain differ-
ences in terms of reduced gray matter in individuals with arithmetic deficits in areas 
known to be involved in basic numerical processing, including the IPS (Isaacs, 
Edmonds, Lucas, & Gadian, 2001; Rotzer et  al., 2008; Rykhlevskaia, Uddin, 
Kondos, & Menon, 2009).

It should be noted that so far findings are mostly based on cross-sectional com-
parisons of different age groups, while longitudinal studies are largely lacking. Of 
particular interest are longitudinal studies that follow specific changes in brain acti-
vation, structure, and connectivity during the preschool period, when the basic asso-
ciations between numerical codes are developed. Admittedly, the current brain 
imaging methodologies are not always very well equipped to study this young age 
group.

 Implications for Instruction and Intervention

Arithmetic is a complex, multi-componential skill that depends on numerous cog-
nitive mechanisms (Dowker, 2005). Children who are attentive toward the task to 
be solved and who have available sufficient working memory capacity and execu-
tive control show better arithmetic skills than those who have problems in these 
domains (e.g., Clark, Sheffield, Wiebe, & Espy, 2013; De Smedt et  al., 2009). 
Children also need to have sufficient verbal skills in order to cope with the verbal 
components of arithmetic (e.g., Donlan, Cowan, Newton, & Lloyd, 2007). 
Arithmetic development also depends on more general factors like motivation 
(Moore, Rudig, & Ashcraft, 2015), instruction (Hattie, 2008), parental support 
(e.g., Benavides-Varela et al., 2016), and socioeconomic background (e.g., Jordan 
& Levine, 2009). Importantly, comprehensive research of the last decade clearly 
shows that the neurocognitive representation of number and numerical processing 
constitute a core mechanism that is pivotal to arithmetic Development. During 
typical development, a genetically based ability to differentiate numerosities pro-
vides the basis for understanding the meaning of culturally transmitted symbolic 
representations of number in terms of number words and Arabic numbers. The map-
ping between these numerical codes is complex and takes years in order to develop 
neuronal networks that enable the highly efficient numerical processing that is 
typical among adults. Children who are able to develop efficient numerical pro-
cessing skills early on can use these skills to acquire increasing competence in 
doing arithmetic, which includes understanding the underlying concepts, develop-
ing adequate procedures, and building up comprehensive knowledge of number 
facts (e.g., Barrouillet & Fayol, 1998). These competences in turn will provide an 
important basis for mathematical problem solving.
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Children with dyscalculia, however, seem to have a hard time to develop their 
numerical processing skills and to map the different forms of numerical representa-
tions on each other. Thus, at the start of formal math instruction, these children lack 
the foundational ability to understand number (Butterworth, 2005), and their mental 
number line is perhaps still rather imprecise and underspecified (Landerl, 2013). 
Without sufficiently efficient numerical processing skills, their acquisition of arith-
metic concepts and procedures will be slow and compensatory, and the buildup of 
number fact knowledge will be seriously impaired. Indeed, deficient number fact 
knowledge is one of the main symptoms of dyscalculia (e.g., Jordan, Hanich, & 
Kaplan, 2003).

For typically developing children, experience with number words, counting 
games, and Arabic numerals is usually sufficient to trigger associations with chil-
dren’s analog magnitude representations. In case of dyscalculia, however, the ana-
log magnitude representations are either themselves underspecified or they are not 
readily accessible in order to form efficient connections. Thus, teaching numbers 
and calculation skills is not sufficient for these children; instead, they need support 
in establishing and specifying their cognitive representation of number as well as 
efficient interconnections between the numerical codes. An increasing number of 
evidence-based intervention programs, many of them computerized, provide excel-
lent and engaging means to train children in these basic skills (see Chodura, Kuhn, 
& Holling, 2015, for a recent meta-analysis). Importantly, intervention programs 
should focus on symbolic number processing skills and arithmetic, as currently 
there is no conclusive evidence that training the non-symbolic ANS alone transfers 
to symbolic arithmetic (Szűcs & Myers, 2017).
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Chapter 3
Everyday Context and Mathematical 
Learning: On the Role of Spontaneous 
Mathematical Focusing Tendencies in the 
Development of Numeracy

Minna M. Hannula-Sormunen, Jake McMullen, and Erno Lehtinen

 Introduction

In the past 30 years, researchers have increasingly paid attention to not only math-
ematical learning in the classroom and formal contexts but also to how informal 
learning outside of the classroom impacts children’s mathematical development, 
especially in developing conceptually rich mathematical knowledge and skills 
(e.g., Resnick, 1987). Differences in young students’ mathematical learning and 
learning difficulties cannot be explained only by the experiences students have dur-
ing the deliberately organized teaching and training situations. However, it is only 
fairly recently that mathematics education and developmental psychology research 
have also begun to examine the role of children’s spontaneous, self-initiated math-
ematical activities in this development (Hannula & Lehtinen, 2005; McMullen, 
Hannula- Sormunen, & Lehtinen, 2011). In this chapter, we summarize classical 
studies on major milestones of numeracy development and furthermore discuss the 
impact of children’s and students’ own activities in informal everyday situations on 
learning trajectories leading to an advanced number sense, which optimally supports 
their future mathematical learning.

 Early Development of Numeracy

Preschool mathematical development forms the necessary basis for later mathe-
matical skills learnt in school (Clements & Sarama, 2014; Fuson, 1988; Gelman 
& Gallistel, 1978; Mix, Huttenlocher, & Levine, 2002; Nunes & Bryant, 1996). 
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Children’s mathematical skills and concepts develop highly individually, both in 
the rate at which children attain essential mathematical skills and in substance 
within mathematical concepts and skills, as well as in relations among different 
aspects of numbers (Fuson, 1988; Sophian, 2007).

 Early Approximate and Exact Number Recognition

Two separate representational systems allow dealing with small numerosities in 
infants and toddlers: a fast but relatively imprecise discrimination of numerical 
magnitudes, which is affected by set size ratio limit, and an exact object tracking 
system functioning in the small number range (Feigenson & Carey, 2003). These 
early systems for representing objects and approximate quantities can also be 
found in other animal species, like in primates and birds (for reviews, see, e.g., 
Dehaene, 1997).

In addition to these mechanisms forming the basis for magnitude representa-
tions, the concept of a “set of individuals” is central for natural number concept 
including counting and simple arithmetical operations (Spelke, 2003). The toddler 
learns to connect pre-attentional basic-level perceptual information about the exact 
values of small numerosities with the socioculturally supported nonverbal and ver-
bal expressions of small cardinal values. First, exact nonverbal number representa-
tions allow the child to represent, identify, categorize, and compare sets of objects 
within a very small range of numbers. These first pre-numeric skills are gradually 
integrated into cultural enumeration practices with verbal number words (Hannula, 
Räsänen & Lehtinen, 2007; Mattinen, 2006; Mix et al., 2002; Wynn, 1990). Children 
know that number words refer to specific, unique numerosities before they know 
exactly to which numerosity each number word refers (Sarnecka & Gelman, 2004; 
Wynn, 1992b). Children seem to develop piecemeal in acquiring cardinal meanings 
of “one, two, and three.” After this, understanding of cardinality of set results in the 
cardinality meanings for all number words within the child’s number sequence.

 Subitizing and Counting

Two processes are used for recognition of exact numbers of items (Sathian et al., 
1999), and they can be distinguished from approximate number recognition (Lemer, 
Dehaene, Spelke, & Cohen, 2003). These are a highly accurate, very fast, parallel 
apprehending of items up to around three or four, often called as subitizing, and 
verbal counting, which is much slower, requires coordination of several attentional 
sub-processes, and works also for the enumeration of larger numbers (e.g., Jevons, 
1871; Trick, Enns, & Brodeur, 1996). Children’s subitizing-based enumeration 
skills develop during childhood (Starkey & Cooper, 1995). Subitizing-based enu-
meration of children is slower than that of adults, and the subitizing range is smaller 
(Chi & Klahr, 1975; Trick et al., 1996).
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Counting involves reciting the list of number words one by one, synchronizing 
number words with individuating acts including planning the moves of attention, 
keeping track of counted targets and inhibition of previously counted targets, and 
finally activating the cardinal value of the last recited number word as the result 
of the counting (e.g., Fuson, 1988; Trick & Pylyshyn, 1994). Five how-to-count 
principles need to be respected when items are counted (Gelman & Gallistel, 
1978). These are (a) one-to-one correspondence (all the objects in the target set 
must be counted and each of them only once), (b) constant order (number words 
need to be listed in the same order), (c) order irrelevance and (d) abstraction (dur-
ing counting it does not matter in which order the items are counted or what kind 
of things are counted), and (e) the cardinality principle (referring to the last num-
ber tag used as the cardinal value of the whole set) (Gelman & Gallistel, 1978).

Counting skills develop slowly, which could be explained by several issues: 
differences in nonverbal and verbal number recognition systems, the demanding 
integration of different representations and procedures, and the need for lots of 
practice in acquiring accuracy in counting procedures (e.g., Fuson, 1988; Wynn, 
1990). Counting practice with number words provides a child with the basis for 
constructing the hows and whys of counting, as well as the essential features of 
correct counting (Briars & Siegler, 1984; Cowan, Dowker, Christakis, & Bailey, 
1996). Once the basic skills of counting items in lines are achieved, children 
move on to learning the marking strategies necessary in counting random arrange-
ments of objects (Fuson, 1988). According to the reciprocal developmental views 
of Saxe, Guberman, and Gearhart (1987) and Sophian (1998, 2007), children’s 
goal-based numerical activities are related to their conceptual knowledge about 
numbers and social goals of enumeration change along with the development of 
skills, and they direct children’s attention to different aspects and uses of num-
bers and counting.

The number sequence production indicates the child’s participation in socio-
cultural numerical activities. Learning the first number words has been described 
as a serial recall task, in which the cardinal and ordinal aspects, numerical rela-
tions as well as the base-ten structure of number words, are only later integrated 
in the number sequence (Fuson, Richards, & Briars, 1982). Eventually, after dif-
ferent developmental phases, the number sequence becomes a mental construc-
tion of the number line, including exact cardinal meanings and ordinal relations 
between numbers. Later on number words become countable objects themselves 
(Fuson et al., 1982).

 Basic Arithmetic Skills

The basic arithmetic skills that enable verbal adding and subtracting develop 
together with enumeration, number sequence skills, and separate schemes of quan-
titative increasing and decreasing. Similar to the early basis for exact number recog-
nition, procedures for numerical operations are also constructed in infancy on object 
files individuating small exact numbers of items and an analogical magnitude-based 
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estimation for representing numerosities (e.g. McCrink & Wynn, 2004; Wynn, 
1992a) and in toddlerhood, on experiences with combining and separating sets of 
objects. These nonverbal skills form the basis for the development of conventional 
verbal arithmetic methods (Levine, Jordan, & Huttenlocher, 1992). The physical 
and social world of young children provides plenty of opportunities for them to 
develop concepts about amounts of material, their comparisons, and the different 
effects of actions on these amounts. Resnick and Greeno (1990) propose that chil-
dren can perceive and reason about aggregations of amounts and objects before they 
represent them systematically. Their knowledge of arithmetic number facts and 
their methods of counting to find answers to addition and subtraction tasks are grad-
ually integrated into a unified set of numerical relations, which form the natural 
number system. Thus the number facts are based on counting methods for arithmeti-
cal operations, and the numbers represent members of sets with true cardinal values 
(see also Fuson, 1988; Sophian, 2007).

The development of natural and later rational number concept and arithmetic 
skills is a gradual and long-lasting process, which is supported and constrained by 
different experiences during childhood and adolescence. In the second part of this 
chapter we deal with some of the experiences and present a novel approach for 
understanding the role of children’s own activity in this development.

 Children’s Mathematical Activities in School and Home

Individual differences in young children’s early mathematical skills have been 
explained by the amount of deliberate mathematically related activities in homes 
(e.g., Skwarchuk, Sowinski, & LeFevre, 2014). However, Lefevre, Clarke, and 
Stringer, (2002) focused on parents’ direct teaching of early number skills and 
showed that the frequency of this kind of home teaching was positively related to 
children’s school-based mathematical achievement. However in many other studies 
parent’s self-reported engaging in numeracy activities was not related to children’s 
number skills development (e.g., Blevins-Knabe, Austin, Musun, Eddy, & Jones, 
2000; Missall, Hojnoski, Caskie, & Repasky, 2015).

The nature of mathematical learning environments at home has been analyzed in 
many studies, but still little is known about the specific types of home numeracy 
activities in which children are engaged with their parents (Cahoon, Cassidy, & 
Simms, 2017). Ginsburg and his colleagues (Ginsburg, Duch, Ertle, & Noble, 2012) 
concluded that still parents do relatively little to encourage their children’s numer-
acy learning and instead focus on teaching literacy (Ginsburg et al., 2012). Skwarchuk 
et al. (2014) made a distinction between formal and informal mathematical activities 
in parent-child interaction. LeFevre et al. (2009) found that children’s mathematical 
skills were related to the indirect numeracy activities in which learning was incidental 
and embedded in regular family life.

These results suggest that there are potentially more subtle connections between 
numerical activities at home and success in mathematics. While examinations of 
the mathematical home environment provide some hints as the potential causes of 
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 individual differences in mathematical development, it is also possible that less 
explicit mathematical behaviors and activities play a role in mathematical 
success.

 Role of Children’s Own Practice in Numeracy Development

Our previous studies have focused on the development of exact number recognition 
skills and children’s early mathematical development (e.g., Hannula & Lehtinen, 
2005; a review Hannula-Sormunen, 2014). This work suggests that young children’s 
early development and especially their developmental individual differences in 
exact number recognition and utilization cannot be adequately described in terms of 
earlier theories and methods capturing only the processes and skills which are used 
after a child has already focused attention on the numerical aspect of the task. This 
work shows that young 3–7-year-old children have substantial individual differ-
ences in their self-initiated, spontaneous focusing on numerosity (SFON) in tasks in 
which their possible failure to regard exact numerosity is not entirely explained by 
their inability to deal with the cognitive requirements of the tasks. It seems that 
individual differences in this self-initiated numerosity focusing explain some of the 
individual differences in children’s numerical development, i.e., why some children 
develop better than others in numeracy during their childhood years. Exact number 
recognition and utilization are not totally automatic processes; instead, they need to 
be triggered in natural surroundings. When a child’s tendency to spontaneously 
focus his or her attention on the aspect of number is very strong, this produces lots 
of practice in number recognition and utilization and thus enhances the child’s 
understanding of numerical aspects as affordances of sets (Hannula & Lehtinen, 
2005). By using the term “spontaneous,” we do not refer to the innate origins of the 
tendency, but the self-initiated nature of focusing in a particular situation. Focusing 
on the aspect of exact numerosity requires determination of the set being perceived 
on some basis (e.g., shall I count the blue, red, big, small, or all flowers?), and this 
is needed in exact cardinality determination based on both subitizing and counting 
in a natural environment. Not all possible subitizable or countable numbers of items 
in a natural setting can be brought to the conceptual, conscious levels of processing. 
Mechanisms of object individuation are mid-level processes (Trick & Pylyshyn, 
1994). They produce only pre-numeric individuation information on the objects. 
Thus, Hannula and Lehtinen (2005) proposed that an attentional process of focusing 
attention on the aspect of exact number in the set of items or incidents is needed for 
recognition of number on a conceptual level. It triggers exact number recognition 
processes and utilization of the recognized exact number in action.

Focusing on numerical changes while sets of objects are manipulated could be a 
crucial part of understanding the meaning for numerical operations, which could 
explain significant predictive relations between SFON and arithmetical skills 
(Hannula, Lepola, & Lehtinen, 2010; Nanu, McMullen, Munck, Pipari Study 
Group, & Hannula-Sormunen, 2018).
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 How to Measure SFON?

In their early studies, Hannula and Lehtinen (2005) found that there were inter- 
individual differences in young children’s tendency to focus spontaneously on the 
number of objects or events. They organized play-like situations where it was pos-
sible to observe if, without explicit guidance to do so, children focused on the 
number of objects or events and used this number in their actions. The tasks and 
activities were created in a way that would remind children of the games and other 
daily activities they do at home, in preschool, and day care. In the tasks there were 
many features on which it was possible to focus attention and children were not 
told that the activities in the tasks were related to numbers. For example, in the 
feeding games (e.g., imitation task), there was a plate of glass berries and a toy 
parrot with a big mouth into which it was possible to put berries. The researcher 
started the game by explaining that the idea is to feed the parrot. They then intro-
duced the materials and said: “Watch carefully what I do, and then you do just like 
I did.” After that the researcher put two berries, one at a time, into the parrot’s 
mouth, and they disappeared with a bumping sound into the parrot’s stomach. The 
child was then told: “Now you do exactly like I did.” These activities were repeated 
with different numbers of berries. A parallel game-like task was, for example, put-
ting envelopes into a postbox. For older children, both imitation tasks were used 
with two sets of different colored items. Overall, there now exist more than 20 dif-
ferent SFON task versions suitable for children and adults (for a review, see 
Hannula- Sormunen, 2014). These measures are based on activities which are close 
to children’s familiar play situations but which, at the same time, make it possible 
to measure the strength of children’s tendencies to spontaneously focus on numer-
osity by using well-defined standard procedures. Even in using these procedures, 
measuring spontaneous focusing tendencies is challenging.

Studies using the original SFON measures have shown that it is possible to mea-
sure the strength of children’s SFON tendency in a rather reliable way (Hannula & 
Lehtinen, 2005; Hannula-Sormunen, Lehtinen, & Räsänen, 2015; Nanu et  al., 
2018). Recently, several other measures have been developed by various research-
ers, which highlight different aspects of spontaneous focusing (see Rathé, Torbeyns, 
Hannula-Sormunen, De Smedt, & Verschaffel, 2016 for an extensive review). The 
design principles for SFON assessments include the following aspects: (1) mathe-
matically unspecified settings, (2) multiple (mathematical and non-mathematical) 
interpretations possible, (3) fully engaging for all, and (4) within competence range 
(Hannula, 2005). Nothing in the task situation gives any hints to the participants that 
the SFON tasks would be in any way numerical in nature. The experimenter gives 
no feedback. The child’s attention and interest are carefully captured in the begin-
ning of the task by the experimenter. It is important to carefully make sure that tasks 
involve only numbers so small that every child is capable of enumerating them. 
Similarly, all other cognitive requirements of the SFON tasks need to be at manage-
able level for all participants, so that participants’ insufficient motor skills, inhibi-
tion, verbal production, and working memory do not explain individual differences 
in the SFON tasks (Hannula, 2005; Nanu et al., 2018).
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Guided focusing on numerosity (GFON) task versions have demonstrated that 
the children who had zero SFON responses were able to deal with the cognitive task 
requirements after their focus was explicitly guided toward the numerical aspects of 
the SFON task (Hannula et al., 2010; Hannula & Lehtinen, 2005). Children’s per-
formance on the guided tasks supports the hypotheses that SFON is a dissociable 
part of utilizing exact number recognition in action in (mathematically) non-guided 
settings. The analyses of video-recorded performance in the SFON tasks allow all 
quantification acts or indications of child’s understanding of the quantitative goal of 
the task to be acknowledged as SFON. It is notable that by using a number range 
beyond participating children’s capabilities, children’s failure in producing equal 
sets could be caused by their inability to enumerate the sets, their lack of focus on 
numerosity, or even both of these reasons.

The use of the above described methods made it possible for Hannula and 
Lehtinen (2005) to separate attentional process SFON which is defined as a pro-
cess of spontaneously focusing attention on the exact number of a set of items or 
incidents. This attentional process triggers exact number recognition and using the 
recognized exact number in action, particularly in natural situations where the 
numerical magnitudes are not artificially made evident, which is typical for most 
educational materials. It appears that even though there are task-individual interac-
tion effects that may cause differences in SFON tendency across, for example, 
action and verbally based tasks, a confirmatory factor analysis revealed a second-
order latent variable referring to underlying general SFON tendency (Hannula-
Sormunen et al., in preparation).

 Findings of SFON Studies

Since the initial study of Hannula and Lehtinen (2005), cross-sectional and longitu-
dinal studies on SFON have been conducted by many research groups in several 
countries (Hannula-Sormunen, 2014; Rathé et al., 2016). SFON tendency is posi-
tively related to the development of cardinality recognition, subitizing-based enu-
meration, object counting, and number sequence skills before school age (Batchelor, 
Inglis, & Gilmore, 2015; Bojorque, Torbeyns, Hannula-Sormunen, Van Nijlen, & 
Verschaffel, 2016; Edens & Potter, 2013; Hannula, 2005; Hannula & Lehtinen, 
2001, 2005; Hannula, Räsänen, & Lehtinen, 2007; Potter, 2009). SFON tendency 
can be enhanced through guided focusing activities in preschool at the age of 3 years 
(Hannula, Mattinen, & Lehtinen, 2005; Mattinen, 2006). Path models of the devel-
opment of SFON and counting skills from 3 to 6 years of age indicate a reciprocal 
relationship between SFON and counting skills before school age (Hannula & 
Lehtinen, 2005). SFON tendency in kindergarten is a significant, domain-specific 
predictor of arithmetical, but not reading, skills assessed at the end of second grade 
(Hannula et al., 2010). At primary school age, dyscalculic students have a lower 
SFON tendency than their normally developing peers (Kucian et  al., 2012). 
Spontaneous focusing on mathematically meaningful aspects seems to be one of the 
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specific forms of mathematical behavior in children whose mathematical skills 
develop optimally during childhood years, and the lack of which is associated with 
mathematical learning difficulties. Individual differences in children’s SFON are 
not explained by children’s lack of enumeration skills or other cognitive skills 
needed for SFON tasks (Hannula & Lehtinen, 2005), and focusing on other aspects, 
such as spatial locations, is a separate process which does not explain away the cor-
relation between SFON and counting skills (Hannula et al., 2010).

The theoretical explanation for the strong predictive role of SFON tendency is 
based on the hypothesis that SFON is an indicator of the amount of self-initiated 
practice in using exact enumeration that a child gets in her or his natural surround-
ings (Hannula & Lehtinen, 2005). High SFON tendency would result in much 
higher amounts of practice with enumeration than what those children get who only 
deal with numbers when they are guided by adults (Hannula et al., 2010; Lehtinen, 
Hannula-Sormunen, McMullen, & Gruber, 2017). So far this theoretical hypothesis 
has been supported by a few studies. First, as part of a SFON enhancement study of 
3-year-olds (Hannula, Mattinen, & Lehtinen (2005)), the analyses showed a positive 
correlation (r  =  0.55) between children’s scores in SFON tasks and their SFON 
tendency, observed by the personnel in all day care settings. Similar results were 
presented by Batchelor (2014) who found a positive association between children’s 
task-based SFON measures and their spontaneous focusing on numbers in play- 
based behavior as observed during parent-child play interactions.

There have been a few intervention studies in which SFON has been trained. In 
the first intervention study by Hannula et al. (2005), SFON training was conducted 
by using only small exact numbers up to three. Early educators guided children’s 
attention to small exact numbers both in everyday situations and also in structured 
numerical games. Guided focusing on numerosities was done by talking about, 
showing, and manipulating small numbers of, e.g., toys, snacks, socks, or other 
things during everyday interaction. Structural games involved variations with the 
numbers of objects of a set (Marton & Booth, 1997). The number of the fishes was 
first changed and observed together with the children in a cartoon aquarium, and 
then after adults kept secretly changing the numbers of fishes, which made the 
aquarium an exciting numerical focusing target. The aim of guiding children to 
focus on numerosities within daily routines and games was to enhance children’s 
spontaneous focusing on numerosities. Children who participated in the SFON 
enhancement program outperformed the control group in SFON tendency on a 
delayed posttest, which was conducted half a year after the pretest (Hannula et al., 
2005; Mattinen, 2006).

 Beyond Mere Numerosity: The Development of Relational 
Reasoning as the Foundation for Rational Number Knowledge

Exact numerical and whole number reasoning is only part of numerical develop-
ment that is relevant for mathematics. Already young infants have been shown to 
recognize the halfway point in objects (McCrink & Wynn, 2007). The system of 
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approximate number found in infants and even nonhuman animals has features of 
relational reasoning (e.g., Dehaene, Izard, Spelke, & Pica, 2008). Beyond these 
innate capacities, young children can also solve tasks using mathematical relations 
(e.g., Boyer, Levine, & Huttenlocher, 2008). Early primary school-age children 
are able to match proportional quantities, especially those represented by continu-
ous quantities (Boyer et al., 2008; Spinillo & Bryant, 1999). Four-year-olds have 
also been found to be able to reason with proportional quantities (Sophian, Harley, 
& Martin, 1995). Mix, Levine, and Huttenlocher (1999) found that 4- and 5-year-
olds were able to calculate simple fraction arithmetic problems with pieces of 
foam. Finally, Frydman and Bryant (1988) found that 5-year-old children could 
reason about fair sharing even with different sizes of candy.

Resnick (1992) described the development of mathematical reasoning by 
focusing on the nature of the objectified mathematical reasoning. Figure  3.1 
applies this model to the development of relational reasoning in mathematics in 
the development of rational number knowledge. At the most basic level in 
Resnick’s model is the mathematics of protoquantities, which have no explicit 
quantitative value. The nonverbal notion of half may be used in reasoning at this 
level, as has been found in infant habituation studies (e.g., McCrink & Wynn, 
2007), although the explicit identification of these mathematical features by chil-
dren is not possible (cf. Spinillo & Bryant, 1999). The next level of reasoning in 
Resnick’s model is the mathematics of quantities, which involves reasoning about 
physical material with explicit quantities. In the case of relational development, 
this level may describe young children’s reasoning about proportional relations 
(e.g., Boyer & Levine, 2012).

The level of the mathematics of numbers is where numbers begin to act as 
“nouns” or “conceptual entities that can be manipulated and acted upon” (Resnick, 
1992, p. 414). This level would include the first skills and processes with symbolic 

Fig. 3.1 The development of quantitative relations and rational number knowledge. (Based on 
model from Resnick (1992): From protoquantities to operators: Building mathematical compe-
tence on a foundation of everyday knowledge (McMullen, 2014))
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fractions and decimals, where fractions and decimals are symbolic entities that can 
be acted upon and reasoned about independent of physical material. At this level, ½ 
is not the relationship of 1 part to 2, but may merely represent the magnitude of one- 
half of 1 (halfway between 0 and 1 on the number line), a notion supported by the 
continuity in the development of magnitude estimation skills from natural to ratio-
nal numbers (e.g., Siegler, 2016). While many features of natural numbers can be 
attached to fractions and decimals, often in a supportive manner (Nunes & Bryant, 
2008), it is also at this level that the natural number bias would cause problems with 
reasoning about fractions and decimals (Ni & Zhou, 2005).

It is only in moving into the mathematics of operations level that mathematically 
correct concepts of rational numbers appear. At this level, it is possible to reason 
about rational numbers as a concept, independent of specific numbers (Resnick, 
1992, p. 414) representing the mathematical relations inherent in fractions (the rela-
tion between numerator and denominator) and decimals (the relation between place 
value and terms). Thus, at this level, rational numbers become mathematical objects 
that have specific features that are partially distinct from natural numbers (e.g., 
Vamvakoussi & Vosniadou, 2004). However, reaching this level is not a simple pro-
gression as described by Resnick, but instead may require radical change in the 
conception of the nature of number (Merenluoto & Lehtinen, 2004; Vamvakoussi & 
Vosniadou, 2004).

 Spontaneous Focusing on Quantitative Relations

The quantitative relations that children experience in everyday situations are often 
approximate and dynamically changing. For example: “… a 7-year-old child trav-
eling with her mother to visit their grandparents in the countryside. During the 
boring car drive the child starts spontaneously to think about the trip in terms of 
quantitative relations, asking ‘Are we halfway there yet?’” (McMullen, Hannula- 
Sormunen, Laakkonen, & Lehtinen, 2016). In these situations the distances are 
often approximated, and, as well, the car can be approaching halfway, and after 
that it can be considered approaching halfway of the remaining distance to be trav-
eled (i.e., 3/4) (McMullen et al., 2016). If children are involved in thinking about 
these kinds of “messy” quantitative relations of everyday contexts, it could have 
important effects on the way they think about the nature of numbers and how they 
can reason in novel situations with complex mathematical concepts. Based on a 
series of studies, McMullen and colleagues (McMullen, 2014; McMullen, 
Hannula- Sormunen, & Lehtinen, 2013, 2014) proposed that there is a tendency 
similar to SFON which indicates that children and school pupils can also focus 
spontaneously on the relation between two or more quantities in non-explicitly 
mathematical settings. Crucially, analogous to SFON tendency, individual differ-
ences in the tendency of spontaneous focusing on quantitative relations (SFOR) 
have been found to predict mathematical development in late primary school and 
lower secondary school (e.g., McMullen et al., 2016).

M. M. Hannula-Sormunen et al.



35

Studies with younger children conducted in Finland and the USA show that chil-
dren begin to focus spontaneously on quantitative relations at the age from 6 to 7, 
but there are substantial inter-individual differences in the strength of the tendency 
still during the early school years (McMullen et al., 2013, 2014). Likewise, even 
after controlling for the ability to solve the tasks when explicitly guided to do so, 
there remain substantial inter-individual differences, even within grade levels, in 
SFOR tendency in studies of late primary school in Finland (McMullen et al., 2016) 
and Belgium (Van Hoof et  al., 2016) and lower secondary school in the USA 
(McMullen, Hannula-Sormunen, Lehtinen, & Siegler, submitted).

A 4-year follow-up from the age of 7 to fourth grade reveals that individual dif-
ferences in SFOR tendency may be related to later fraction knowledge (McMullen 
et al., 2014). As well, SFOR tendency was found to be a unique predictor of rational 
number conceptual development in late primary school students in Finland 
(McMullen et al., 2016) and Belgium (Van Hoof et al., 2016). In these studies the 
SFOR tendency was particularly related to the development of conceptual under-
standing of rational numbers, which has been difficult to support by traditional 
mathematics teaching and practice. A later study (McMullen, Hannula-Sormunen, 
& Lehtinen, 2017) showed that SFOR tendency is in a reciprocal relationship with 
rational number knowledge, similar to that which has been found between SFON 
and natural number knowledge (see Hannula & Lehtinen, 2005). The most recent 
findings indicate that besides rational number conceptual knowledge, SFOR ten-
dency also predicts lower secondary school students’ algebra knowledge (McMullen, 
et al., in press) and their flexible and adaptive use of rational number knowledge in 
novel tasks (McMullen et al., submitted).

There has yet to be established a causal relation between SFOR tendency and 
mathematical development; however, this relation has not been completely explained 
by a myriad of potential mediators, including nonverbal intelligence, arithmetic flu-
ency, grade level, or prior knowledge (McMullen et al., 2016, submitted; Van Hoof 
et al., 2016) nor mathematical achievement (McMullen et al., submitted; Van Hoof 
et al., 2016), spatial reasoning, or mathematical motivation (McMullen et al., sub-
mitted). While SFOR tendency was relatively consistent, in terms of rank-order sta-
bility, over a 1-year period in late primary school, this does not suggest that it is 
impossible to enhance students’ SFOR tendency. In fact, preliminary evidence sug-
gests that by using innovative out-of-classroom activities, it is possible to increase 
students’ tendency to focus on quantitative relations in SFOR tasks (McMullen 
et al., 2017). Thus, SFOR tendency is more likely a product of environmental factors 
rather than a static personal trait and may be malleable to explicit intervention.

 Self-Initiated Practice and Number Sense

Not only is it expected that children would gain more practice with their numerical 
or mathematical skills and knowledge, but given the nature of the mathematical 
aspects embedded in everyday life, it may be that they also gain qualitatively 
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better practice with mathematics than their peers that mostly encounter mathe-
matics only in formal classroom situations. When children focus on number or 
quantitative relations in their natural environment, they are confronted with a 
higher variation of cognitive challenges than in dealing with deliberately planned 
school tasks. From a mathematical point of view, natural situations are “messy” 
in many ways. For example, the objects to be enumerated are seldom clear-cut 
objects clearly delineated from a monochromatic background, and it is often not 
completely clear what to include in the set that is to be enumerated. The number 
of objects and the observed quantitative relations are often changing dynamically 
in regular or irregular ways. Dealing with these situations requires flexible think-
ing about numbers and relations (Baroody, 2003). Dealing with numbers and rela-
tions in informal contexts makes it more difficult to rely on written procedures or 
algorithms but instead mental and oral processes (Schliemann & Nunes, 1990) 
that are often approximate and constrained by external factors (Lave, 1988). Self-
initiated practice is often based on the inherent need to use the developing skills 
in novel situation (Piaget, 1955), which may result in strong personal involve-
ment. In an everyday context, the feedback and practical consequences of enu-
meration or mathematical operations require a different control of correctness 
than in formal educational contexts. For example, Carraher, Schliemann, and 
Brizuela (2001) presented that in a formal school contexts, students “would 
sometimes claim that the amount of change to be returned to a customer after a 
purchase would be greater than the amount of money originally handed to the 
seller.” In fact, even formal instruction often does not lead to coherent conclu-
sions in formal mathematical settings, as a similar finding has been shown with 
students’ estimations of positive fraction addition problems often being less than 
both addends (Braithwaite, Tian, & Siegler, 2017).

 Discussion

Studies on spontaneous mathematical focusing tendencies (SFON and SFOR) 
suggest that theories of early development and later extensions of the number 
concept should also take into account the role of attentional processes and chil-
dren’s self- initiated practice. These studies highlight the role that mathematical 
practice in informal everyday contexts may play in mathematical development. 
Research on spontaneous mathematical focusing tendencies makes an important 
contribution by providing a novel explanation for the learning trajectories leading 
to differences in students’ mathematical development, including their number 
sense. Mathematics curricula in many countries highlight the need to develop a 
more advanced number sense that can support the flexible and adaptive use of 
mathematical strategies (Mullis, Martin, Goh, & Cotter, 2016).

Studies on everyday mathematics are often presented as evidence for the need 
for a fundamentally different alternative approach (situated cognition) which differs 
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from the traditional mathematics learning in schools (decontextualized cognition) 
(e.g., Lave, 1988). The interpretation of spontaneous focusing tendencies and self- 
initiated practice in informal activity contexts is different from the situated cogni-
tion approach. As studies show, spontaneous focusing tendencies are in reciprocal 
development with the formal mathematics learning in formal context. Focusing on 
mathematically relevant aspects of informal context and learning mathematics in 
formal education are fundamentally different experiences. However, students’ 
own mathematical activities in informal situations do not lead to different mathe-
matical knowledge, but instead provide opportunities to strengthen and enrich 
their mathematical development (see the criticism of Lave by Greiffenhagen & 
Sharrock, 2008).

In this way, it is important that formal mathematics education in school takes 
into account children’s mathematically relevant activities in out-of-school situa-
tions and tries to better connect learning at school and learning in informal situa-
tions (Carraher et  al., 2001; Resnick, 1987; Wager, 2012). In traditional 
mathematics teaching in all levels from early education to high school, mathemat-
ical content is often learned in an isolated, piecemeal way, and teaching rarely 
aims to deliberately trigger students to use mathematical knowledge as a way to 
see the world. In contrast, we have developed specific pedagogical tools aimed at 
improving students’ and young children’s awareness of opportunities to pay 
attention to mathematical aspects of their daily lives. For example, encouraging 
young preschool-age children to search for instances of particular numerosities in 
their everyday lives, in concert with practicing enumeration skills in a tablet-
based game (Fingu; Holgersson et al., 2016), was able to improve students arith-
metic skills in comparison with a control group (Hannula-Sormunen, Alanen, 
McMullen, & Lehtinen, 2016). As well, providing students with a framework and 
opportunities to explore their everyday surroundings for examples of quantitative 
relations, which are then analyzed for their mathematical features, has been 
shown to be effective in getting students to spontaneously focus on quantitative 
relations in task contexts (McMullen et al., 2017). In general, providing students 
with more opportunities to practice everyday problem solving in which mathe-
matics are embedded may be valuable for promoting their deeper understanding 
of mathematical content (Pongsakdi, Laine, Veermans, Hannula-Sormunen, & 
Lehtinen, 2016). In the end, all of these approaches share the same aim – to break 
out of conventional preschool and school mathematics instruction and provide 
children and students with opportunities to explore mathematical phenomena in 
connection with everyday experiences.

Within this framework, also mathematical learning difficulties could be partly 
explained in novel ways. In some cases, these difficulties can be consequences of 
lacking self-initiated practice, whereas in other cases the mathematical difficulties 
appearing in school can mean that the child does not apply the mathematical think-
ing developed in out-of-school situations in formal tasks in classroom.
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Chapter 4
Competence Models as a Basis for Defining, 
Understanding, and Diagnosing Students’ 
Mathematical Competences

Kristina Reiss and Andreas Obersteiner

 Competence Models as Normative Definitions of Educational 
Goals

What students should learn in the mathematics classroom and, in particular, what 
they should understand and be able to do has been discussed intensively for many 
years. While in former years curricula focused mainly on the mathematical con-
tents as input of instruction, the attention shifted to its outcome more recently. In 
consequence, standards for school mathematics were implemented in numerous 
countries in the last years (e.g., Kultusministerkonferenz, 2003, 2004, 2012, in 
Germany; Common Core State Standards Initiative, 2012, in the USA). Standards 
are normative tools in education. They describe the aims of schooling and illustrate 
what students are supposed to understand and to achieve. Moreover, they define the 
mathematical problems students should be able to solve.

Educational standards typically address students’ competences. The concept of 
competences encompasses content-related knowledge as well as ways and means to 
apply this knowledge within a subject or in a general context. In this sense, compe-
tences have been defined by Weinert (2001, p. 27 f.; original citation in German, 
translation see Klieme et al., 2004, p. 16) as “cognitive abilities and skills possessed 
by or able to be learned by individuals that enable them to solve particular prob-
lems, as well as the motivational, volitional, and social readiness and capacity to 
utilize the solutions successfully and responsibly in variable situations.” 
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Competences are according to this definition neither personal traits nor general 
characteristics. They may be regarded as domain-specific requirements in order to 
solve a problem and may be acquired by an individual via learning. Standards thus 
also reflect mathematical literacy as defined in PISA, the Programme for International 
Student Assessment that emphasizes “an individual’s capacity to formulate, employ, 
and interpret mathematics in a variety of contexts” (OECD, 2013, p. 25). In PISA, 
as in most other contexts where applicable knowledge is addressed, motivation, 
volition, and social readiness do not play a prominent role. In the following we will 
therefore concentrate on the cognitive aspects of competences.

To define what competence means in a particular domain, standards rely on com-
petence models. In the case of mathematical competence, these models include 
descriptions of mathematical contents like numbers and operations, algebraic think-
ing, functions, geometry, statistics, and probability as well as mathematical activi-
ties like problem-solving, reasoning and argumentation, modeling, use of tools, 
communication, and identification of mathematical structures. For example, the 
German standards for school mathematics at the primary level 
(Kultusministerkonferenz, 2004) state that with respect to numbers, students should 
acquire a variety of abilities: An important aspect is to understand place value and 
numbers up to 1,000,000 and their properties. Students should also be able to add, 
subtract, multiply, and divide whole numbers both mentally and in written form and 
recognize the relations between these basic arithmetic operations. They should 
develop different solutions to arithmetic problems, identify errors, control results, 
and use arithmetic rules. In addition, students are supposed to apply their knowl-
edge in different contexts. They should be able to solve real-world problems using 
exact or approximate calculation and verify the results.

With such definitions, educational standards can provide guidance concerning 
the goals of learning. However, intending to define mathematical competence from 
a normative perspective, standards often seem to presuppose that teaching and 
learning take place under good or even optimal conditions, for example, in well- 
appointed rooms, with well-educated teachers, and in front of attentive students 
(e.g., National Council of Teachers of Mathematics, 2000; cf. Reiss, 2009). Thus, 
standards do not provide information about results of less successful learning and 
especially not about the knowledge acquisition of students with learning difficul-
ties. Furthermore, educational standards specify the goals of classroom instruction 
but usually do not give recommendations or show ways how teachers should actu-
ally reach the goals in the classroom (Klieme et al., 2004). Accordingly, standards 
lack information about concrete steps leading to students’ competences. For doing 
so, more fine-grained models would be necessary that describe mathematical com-
petence on various levels and provide information on possible learning gains and 
learning gaps. Such models may also be used for empirical evaluations of students’ 
competences and should be apt for understanding successful as well as ineffective 
learning processes.
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 Competence Models to Understand and Evaluate Students’ 
Learning

In order to evaluate to what extent students meet the goals described in educational 
standards, the introduction of standards has often been accompanied by the imple-
mentation of testing procedures. Assessment instruments were based on models of 
mathematical competence that describe this competence in a hierarchical manner. 
Competence models that have been used for international comparison studies such 
as TIMSS (the Trends in International Mathematics and Science Study) for primary 
school students (e.g., Mullis, Martin, Foy, & Hooper, 2016; described as “interna-
tional benchmarks”) or PISA for secondary students (e.g., OECD, 2016; described 
as “levels of proficiency”; see also Reiss, Sälzer, Schiepe-Tiska, Klieme, & Köller, 
2016, p. 226, for a more detailed report on competence levels in PISA) characterize 
mathematical competence based on empirical data. Accordingly, they do not aim at 
describing desirable knowledge as educational standards do but realistic and mostly 
empirically confirmed knowledge. In particular they reflect the important differ-
ences in students’ performance and allow the appreciation of high-achieving stu-
dents as well as the assessment of performance at a lower level and of students with 
learning difficulties.

These descriptions of proficiency or competence levels in the large-scale studies 
mentioned above were presented first in the late 1990s. They were accompanied by 
sample tasks and turned out to be useful for getting an idea of what students’ perfor-
mance at a certain level really meant. However, the levels of proficiency within 
these models were not sufficiently “fine-grained” but lacked details of mathematical 
processes and their products. The models mentioned above provided only rough 
information and, in particular, could not be used to explain how students would 
proceed from one level of proficiency to the next.

As a consequence, Reiss and Winkelmann (2009) presented a model of compe-
tency for the primary mathematics classroom (grade 4), which took into account 
more details of the students’ actual problem-solving behavior. The model was based 
on data of a representative sample of students and of test items and was particularly 
used in the course of further test development. Moreover, it was extended and 
refined by Reiss, Roppelt, Haag, Pant, and Köller (2012) based on a larger number 
of test items and of participating students, thus using more representative data. The 
model includes descriptions of levels of competence with respect to different math-
ematical topics, such as numbers and operations or geometry or probability. The 
different levels of competence within the model were defined in a way that each 
level covered the same range of test points. In the following, the levels are described 
for competences concerning numbers and arithmetical operations.
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 Level I (Lowest Level): Basic Technical Knowledge (Routine 
Procedures Based on Elementary Conceptual Knowledge)

At this level, students know the basic structure of the decimal system such as the 
classification of numbers into ones, tens, hundreds, etc. Students are familiar with 
basic single-digit multiplication and addition problems. Subtraction and addition of 
lower numbers can be completed in partly written form. While doing this, students 
are able to check for the accuracy of their solutions. Written addition can be utilized 
correctly if two summands are involved. Written subtraction can be utilized if the 
carry is less than ten. In simple problems, students make use of the relationship 
between addition and subtraction. Strategies that students have learned during their 
first years at school – such as doubling a number – are applied to larger numbers. 
One-digit numbers or numbers below 1000 with last digits 0 or 00 can be placed on 
a number line with appropriate scale. Such numbers can be compared according to 
their size.

 Level II: Basic Use of Elementary Knowledge (Routine 
Procedures Within a Clearly Defined Context)

Students use the structure of the decimal system when dealing with various repre-
sentations of numbers. They recognize ordering principles and utilize these princi-
ples when continuing number patterns or during structural counting. Simple 
problems related to basic types of calculation are conducted mentally but also in a 
partly written or fully written form; occasionally, students find the solutions through 
systematic trial and error. During such trials, students make rough estimations and 
use them to determine the value range of their solutions. They correctly utilize fun-
damental mathematical terms (such as “sum”) as well as basic mathematical proce-
dures to solve simple word problems.

 Level III: Recognition and Utilization of Relationships Within a 
Familiar Context (Both Mathematical and Factual)

The numbers that were taught as part of the curriculum are securely read and written 
in various representations (such as in a place value panel). Also, the number zero 
can be assigned correctly. Students are proficient in every type of a partly written or 
of a fully written calculation procedure that is part of the curriculum, but division is 
limited to single-digit divisors. They can use basic procedures of mental arithmetic 
even in unfamiliar contexts. They can transfer the multiplication table to a larger 
range of numbers, perform rough estimations, and round the results meaningfully, 
even with large numbers. Students recognize the relationship between addition and 
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subtraction, as well as between multiplication and division. They can recognize and 
communicate simple structural aspects (e.g., in relation to sequences of the multi-
plication table) if the contents were practiced before. In addition, they model simple 
object matters and find solutions – as long as the numbers used are within the num-
ber range covered by the curriculum.

 Level IV: Secure and Flexible Utilization of Conceptual 
Knowledge and Procedures Within the Curricular Scope

Students solve problems securely using all types and variations of the calculations 
taught as part of the curriculum. In particular, this includes written division. During 
calculations, students systematically utilize the attributes of the decimal system and 
relations between operations. They also apply this knowledge when investigating 
number sequences, for example, when finding incorrect numbers in a sequence or 
when explaining the underlying procedures for the sequence. Different calculation 
procedures are combined flexibly, and solutions are estimated or rounded appropri-
ately. Students use solution strategies such as systematic trial and error even for 
more complex problems. Students are familiar with rules for calculation, and they 
can apply these rules meaningfully. Students are able to adequately model, and cor-
rectly  work on,  complex situations, and to present their  solutions appropriately. 
Students’ conceptual knowledge also includes special technical terms they can use 
and communicate appropriately.

 Level V: Modeling Complex Problems and Independent 
Development of Adequate Strategies

Difficult mathematical problems can be solved correctly using various strategies. 
Relations between numbers are recognized according to the situation. Mathematical 
rules, such as the factorability of natural numbers, are utilized in problem-solving 
processes. Based on basic mathematical principles, even difficult solutions can be 
worked on and are solved utilizing procedures such as systematic trial and error. 
Special aspects such as calculations with fractions or numbers in decimal notation 
do not pose any problems. Moreover, students are able to comprehend and describe 
different solution approaches.

The model covers the key topics of numbers and operations and includes compu-
tation, estimation and number sense, word problems, and the structure of the whole- 
number system, which may be regarded as important aspects of this knowledge 
domain (Verschaffel, Greer, & DeCorte, 2007). Moreover, it takes into account that 
regarding products and processes, respectively, conceptual and procedural aspects 
of knowledge interact in problem-solving processes and complement each other 
(Hiebert, 1986).
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According to Pant, Böhme, and Köller (2012), students performing at level II are 
regarded to master a minimum standard in mathematics at the end of grade 4. These 
students should be able to successfully participate in further instructions in the next 
grade. Students performing at level III and IV perform on average or slightly above; 
students at level V show outstanding mathematical competence. Thus, the model 
may help to identify the individual level of performance and may be suitable to 
describe gaps of knowledge and competence.

 Competence Models to Better Understand the Difficulty 
of Mathematical Problems: Examples

Teachers’ diagnostic proficiency encompasses knowledge about the competences 
students need to have in order to solve specific mathematical problems. The compe-
tence model presented above can be used to describe these competences. This way, 
the model may help teachers to classify the requirements of a particular task and the 
proficiency of their students in solving this task. The following examples will illus-
trate how these aspects complement one another. The items shown below were used 
in a nationwide mathematics test for German primary schools. This test was com-
pleted by nearly all students and administered by teachers. The data presented below 
come from a pilot study administered by professional test personnel. The study 
yielded data on item characteristics like difficulty and solution rates as well as writ-
ten solutions of students.

The first item presented here addressed the place value of whole numbers 
(Fig. 4.1; see also Obersteiner, Moll, Reiss, & Pant, 2015). For a correct solution, 
students were supposed to argue why the place value table did not represent the 
number 370. The item asked for a basic understanding of the place value system and 
was thus regarded at competence level II from a theoretical point of view. The 
empirical data substantiated the classification in level II as 56% of the children gave 
a correct solution. The information that theoretical and empirical difficulty were 
identical does not only verify the model but may also help teachers in understanding 
what low performance means with respect to students’ knowledge.

Moreover, the artifacts as part of the empirical data provided information on 
students’ errors or erroneous strategies. Obviously, a dichotomous coding may cause 

Fig. 4.1 Sample problem “Place Value” (translated from the German original)
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a loss of important details about individual solution processes. It is accordingly more 
apt for evaluating the performance of groups like schools or classrooms and less apt 
for understanding the individual need for support (see also Klieme et  al., 2004) 
whereas looking at the solutions in detail provides relevant information. In this spe-
cific task, as mentioned above, 56% of the students gave the correct answer, but 
23% of students did not answer at all. The remaining 21% of (wrong) solutions 
could be analyzed in depth. They showed that most of the students who did not suc-
ceed but tried a solution had at least rough ideas about the place value system but 
were not able to give a coherent argumentation. The problem lied in formulating and 
presenting the mathematical claim and not so much in understanding place values 
as such. From the mathematics education point of view, this information is helpful 
in particular for teachers. As level II is regarded the minimum standard, students’ 
wrong or missing solutions are particularly important to know. They provide evi-
dence why students fail in answering correctly and thus precisely identify their 
learning problems.

Another item aimed at the knowledge of number patterns (Fig. 4.2). In order to 
solve this item correctly, students needed to understand that all pairs but one added 
up to 100. From a theoretical point of view, the item was assigned to competence 
level III, namely, “recognize and explain the principles in number patterns if num-
bers are used that are part of the curriculum.” However, 34% correct solutions 
showed that the empirically verified difficulty was higher and placed the item at 
level IV. Children who were not able to give a correct solution often referred to 
irrelevant aspects and stated, for example, that the number 5 was missing in the pat-
tern or that the number pair given in the question was part of the set of pairs. Some 
tried to apply operations other than addition to the number pairs (e.g., multiplica-
tion: “93 is not a multiple of six.”). None of these solutions provided a consistent 
pattern and could not be rated correct from a mathematical point of view. Presumably, 
the correct solution did not only presuppose an understanding of patterns but asked 
for a specific kind of number sense (Dehaene, 1997), which was an obstacle for 
many students. As mentioned above, all ideas – whether correct or incorrect – are 
valuable information for classroom work and might particularly lead to an explicit 
understanding of deficits and errors.

Fig. 4.2 Sample problem “Number Patterns” (translated from the German original)
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Identifying students’ learning progress in detail relies on knowing when they 
succeed as well as when and where they fail. These aspects are part of a teacher’s 
knowledge on the diagnosis of learning. It is important that teachers are able to cor-
rectly interpret the test results in order to take advantage of them. This is a challenging 
task as educational standards in mathematics and mathematical competence are closely 
related concepts, but knowing one does not necessarily imply knowing the other. 
Research suggests that a profound knowledge of mathematics is the basis for teaching, 
but this content knowledge is not sufficient for being a successful teacher and should be 
accompanied by pedagogical content knowledge (Kunter et al., 2007; Shulman, 1987). 
Accordingly, teachers should not only learn whether a student’s answer is right or 
wrong but they should also be assisted in understanding these answers in more detail. 
In particular, it is not only the product that counts in the classroom but also – and 
probably much more – the process leading to a correct or erroneous product.

 Competence Models as Tools to Support Teachers’ Diagnostic 
Processes

Understanding students’ mastery of mathematical topics and evaluating their diffi-
culties with mathematical problems are most challenging for teachers (Baumert 
et al., 1997). However, diagnosing students’ learning processes is a task that teach-
ers face in their everyday classroom. It is important that they fulfill this task accord-
ing to high standards as it is the basis for adaptive teaching and thus affects the 
overall instructional quality (Helmke & Schrader, 1987). Diagnosing presupposes 
to systematically collect useful information in order to plan and initiate appropriate 
interventions (Hoge & Coladarci, 1989). Accordingly, diagnosing is based on data 
and the proper reflection of these data (Helmke, 2010; Herppich et al., 2017).

As part of their diagnostic activities, teachers should be able to evaluate students’ 
learning processes and the requirements of specific contents of teaching (Helmke, 
Hosenfeld, & Schrader, 2004; Hill, Rowan, & Ball, 2005; Lorenz, 2011; Schrader, 
2009). Diagnosing requires diverse professional competences of teachers and asks for 
content knowledge, pedagogical content knowledge, as well as for pedagogical 
knowledge (Shulman, 1987). All these components are regarded to be important in 
order to understand a students’ behavior in the mathematics classroom (Helmke, 
2010; Weinert, Schrader, & Helmke, 1990). However, some authors emphasize the 
role of pedagogical content knowledge (Brunner, Anders, Hachfeld, & Krauss, 2011) 
because a sound diagnosis will often be based on students’ solutions to mathematical 
problems. Accordingly, teachers need to choose adequate tasks, to assess their diffi-
culty, to identify errors, and to judge possible reasons for faulty solutions.

Obviously, competence models provide rather general ideas about students’ 
knowledge and skills and describe outcomes but do not include ways how to acquire 
a specific type of knowledge or how to solve a certain mathematical problem. Still, 
competence models can support teachers in diagnosing their students’ competences 
in at least three ways.
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First, competence models may support teachers in understanding the structure and 
composition of their students’ mathematical knowledge. Classroom instruction usu-
ally follows a domain-specific arrangement taking into account the organization and 
logic of a specific subject. In mathematics, for example, addition and subtraction of 
whole numbers or fractions are taught in parallel as they are regarded to be comple-
menting operations: subtraction is the inverse operation of addition. Multiplication is 
taught at a later point in time as the definition of multiplication asks for the definition 
of addition: multiplication is regarded to be repeated addition (e.g., Common Core 
State Standards Initiative, 2012). The way in which these arithmetic operations are 
seen from the mathematics point of view and accordingly instructed in school does 
not necessarily reflect the views of children on the subject. Many children perceive 
addition and subtraction as different operations with different degrees of difficulty or 
miss the linking of addition and multiplication. This means that their knowledge 
structure does not necessarily correspond to the structure of the curriculum or of the 
subject as a scientific discipline. Moreover, children might have prior knowledge on 
a specific topic from everyday experiences, making a seemingly more difficult topic 
easier for them to understand. For example, children might encounter fractions much 
earlier than fractions are introduced at school (in German classrooms, for example, 
fractions are mostly part of the grade 6 curriculum). These views are reflected in 
competence models for the early grades (cf. Reiss, Heinze, & Pekrun, 2007). They 
provide evidence that the structure and composition of mathematics cannot be easily 
transformed into the structure and composition of students’ mathematical knowl-
edge. Teachers’ understanding of their children’s views may be enhanced by a com-
parative analysis of competence levels.

A second way in which competence models may support teachers’ diagnostic pro-
cesses is through their functioning as tools for classifying, evaluating, and interpreting 
empirical results. Understanding children’s mathematical competences is not only 
important with respect to an individual but also with respect to schools, school dis-
tricts, or even countries. Teachers as well as the general public are therefore con-
fronted with empirical studies describing the results of tests and give evaluations and 
interpretations. Competence models can help interpret results from empirical studies. 
For example, the German national assessment of mathematical competence in third 
grades (VERA; https://www.iqb.hu-berlin.de/vera) is based on the competence model 
suggested by Reiss et al. (2012). The results of this assessment are reported back to 
the teachers. These test results are not sufficiently  elaborated for diagnosing individual 
students, but they will give an overview on the level of classrooms.

Third, competence models can support teachers’ diagnostic processes by provid-
ing detailed information about students’ competences based on theoretical consid-
erations and empirical data. Competence models can thus serve as a reference point 
to which a specific students’ performance can be compared. The reference point 
provides more information than teachers usually receive when taking the average 
performance of their classroom as benchmark for individual achievement. This way, 
models may help to initiate more accurate and theoretically as well as empirically 
substantiated judgments of students’ competence and will thus support a general 
comparison of students with their peers. The absence of reference points has often 
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been an issue in research on teachers’ judgments of their students’ competences 
(Südkamp, Kaiser, & Möller, 2012).

Diagnosing is a process that encompasses a number of steps with varying demands 
(Fischer et al., 2014). When teachers diagnose their students’ mathematical compe-
tence based on students’ written work to a specific problem, competence models can 
be beneficial at several steps of the diagnostic process. At first, the teacher has to 
understand the affordances of the particular problem. This includes knowledge of the 
mathematical content but also knowledge about whether and why a problem is gen-
erally difficult for students. As described above, competence models can provide 
guidance for this judgment. As a second step, the teacher needs to identify possible 
mistakes in the students’ work. Doing so is a more challenging task than it may seem 
at first sight. As we will discuss in more detail in the next section, whether a student’s 
solution to a problem should be considered correct or incorrect is not only a matter 
of the content itself. Rather, this judgment depends on many other factors, particu-
larly at the primary school level. Once the teacher has identified faulty solutions, he 
or she needs to be able to understand the nature of the mistakes and hypothesize 
about potential reasons. In particular, it is of interest whether student errors are of a 
systematic nature. To examine whether a student consistently shows a specific error 
pattern, the teacher should ask the student to solve another problem. The proper 
selection of this problem is critical in order to be able to actually capture a hypoth-
esized error pattern. At this stage, a competence model can be useful because it 
helps selecting a problem at a competence level that is just suitable for the particular 
student. Eventually, this iterative process may end when the teacher is convinced of 
the student’s error pattern that may correspond to a certain level of competence 
according to the model. Suitable interventions should follow this process with the 
aim of helping the student reach the next level of competence.

This detailed description of a diagnostic process has revealed where competence 
models can be useful. However, our description also points to limitations of current 
competence models: They describe what students know at certain levels, but they do 
not describe what students do not yet know or what typical mistakes at a certain 
level might look like. Integrating this information may, however, improve teachers’ 
understanding of their students’ learning.

 Advancing Mathematical Competence Models: The Role 
of Student Errors

As already mentioned, diagnostic processes require an understanding of what students 
know but also what they do not know at a specific level of competence. This infor-
mation is relevant to identify error patterns that students might have with regard to 
a certain problem. More fundamentally, as errors are an essential part of learning, 
understanding student errors and misconceptions is required in order to describe 
their learning progress and development.

Errors are sometimes regarded as interference of a learning process that should 
be avoided if possible. However, constructivist theories of learning suggest that 
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errors should be regarded as fruitful learning opportunities (Bodemer & Ruggeri, 
2015; Oser, Hascher, & Spychiger, 1999). This view is particularly important 
because it is not always feasible to precisely define what an error is. Even in math-
ematics and above all in primary school mathematics, it may depend on the context 
whether a student’s answer is rated as correct or incorrect (Beitlich, Moll, Nagel, & 
Reiss, 2015). In general, the answer to an arithmetic problem will be true or false, 
but if a solution requires reasoning, it is not always self-evident which argument is 
acceptable at a certain stage of learning and which is not. Likewise, depending on 
the specific problem and its requirements, the mathematical language in general 
may be rated as correct or incorrect. For example, if a problem primarily asks for a 
numerical result, faulty argumentation or an inaccurate use of the terminology may 
play a minor role. As a consequence, regarding an error as divergence from a given 
norm (Oser et al., 1999) is a useful approach also in mathematics.

When teachers diagnose student’s mathematical competences, they need to be 
able to identify whether a student’s response deviates from the norm given by aca-
demic mathematics. However, they also need to consider whether it fits into norms 
developed in the classroom, and these norms are difficult to define and to evaluate. 
Accordingly, if competence models would include information about which sort of 
mistakes are to be expected on the various competence levels, it would be easier for 
teachers to define the norm.

There is a further facet of knowledge, which has been introduced by the group of 
Oser (e.g., Oser et al., 1999). They defined the concept of negative knowledge: in 
order to solve a mathematical problem correctly, students need specific knowledge, 
such as the rules of mental and written calculation or properties of the decimal sys-
tem. However, in many situations, it is also useful to know which methods or con-
tents will not help solving the problem. An example is knowing that specific 
operations like ignoring brackets or mixing up addition and multiplication will gen-
erally lead to a wrong result. This knowledge may come from experiences when 
application led to a wrong solution or no solution at all. As acquiring negative 
knowledge can support conceptual learning (Heemsoth & Heinze, 2016), teachers 
should not only know about the facets of (positive) knowledge that constitute math-
ematical competence but also about the negative knowledge that may support stu-
dents’ development. Although it is probably a challenge to integrate negative 
knowledge into competence models, an explicit knowledge of what does not work 
should be helpful for students. There are typical errors in mathematics that could be 
part of competence models. Moreover, a better understanding of this view on knowl-
edge might be enriching for teachers’ diagnostic competence.

 Desiderata

Mathematical competence is a complex construct, and diagnosing students’ 
mathematical competence is a complex task of teachers. Models of mathematical 
competence that are based on theories and empirical evidence can provide guidance 
because they help in understanding what mathematical competence means and how 
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it develops. Moreover, models that include fine-grained descriptions of competence 
levels can be used as reference points and thus support teachers in diagnosing stu-
dents. Empirical research is needed to evaluate the effectiveness of using compe-
tence models during diagnostic processes.

Research into teachers’ diagnostic processes should also assess the role of differ-
ent types of knowledge that are most relevant to support these processes. Although 
research has identified gaps in teachers’ diagnostic competences (Heinrichs, 2014; 
Ostermann, Leuders, & Nückles, 2015), it is to date unclear which knowledge com-
ponents teachers actually rely on and should rely on when diagnosing students. 
Knowledge about students’ errors and misconceptions might be just one facet that 
has as of yet received little attention.

Research suggests that errors play an important role for successful learning. 
Accordingly, models of competence should be accompanied by information about 
typical errors and misconceptions students might have. Such information may help 
teachers in getting a clearer picture of their students’ potentials and limitations. This 
information might also help in recognizing developmental steps and in defining sup-
porting steps. In particular, models that describe the development of competences 
(e.g., Fritz, Ehlert, & Balzer, 2013; Reiss et al., 2007) might benefit from such a 
broader perspective.
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Chapter 5
Mathematical Performance among  
the Poor: Comparative Performance across 
Developing Countries

Janeli Kotzé and Servaas van der Berg

 Introduction

Education is widely regarded as an important policy lever for providing poor 
 children with an escape route out of poverty. However, the strong positive relation-
ship between economic status and educational outcomes, often referred to as the 
social gradient, has become one of the great regularities of our time, with the 
inequalities in educational outcomes mirroring inequalities in social status. The 
steeper a country’s social gradient, the larger the achievement gap between the 
affluent and the poor. If a steep social gradient is combined with convex returns to 
education, as found in many middle-income countries, and with low economic 
growth, social mobility will inevitably stagnate (Van der Berg, 2015).

Steep social gradients are common in most developing countries (Cruces, 
Domenech, & Gasparini, 2014; Gregorio & Lee, 2002; Rolleston, James, & Aurino, 
2013). Comparing social gradients across countries is therefore useful for provid-
ing a framework for reviewing countries’ experiences. Accurate intercountry com-
parisons require a comparable measure of both socio-economic status and 
educational outcomes. With the burgeoning of international educational assess-
ments, comparative measures of educational outcomes have become readily avail-
able. However, very little work has been done on developing a comparative measure 
of economic status across different contexts and datasets (Chudgar, Luschei, 
Fagiolo, & Lee, 2012).

Asset indices have become the generally accepted measure of socio-economic 
status (SES) in the absence of household income or expenditure data (Filmer & 
Pritchett, 2001). Asset indices have proven very useful in determining a student’s 
socio-economic conditions, as it is more infomative to ask children what items their 
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household possess rather than what the monthly household income or expenditure 
is. Such information has commonly been used to derive socio-economic gradients 
and to compare these gradients across countries. Although the large body of litera-
ture on asset indices has contributed to more accurate measurement of SES, some 
potential biases still exist due to differences in asset prices and the utility of assets 
in different contexts. Does ownership of a bicycle convey the same information on 
underlying wealth of a household in Mozambique as it does in the United States? 
Or a radio?

Given the comparability constraints, this chapter makes use of a new, more com-
parable measure of SES as put forward by Kotzé & Van der Berg (in press). This 
method uses consumption per capita, denoted in international dollars, as a common 
yardstick for comparing economic status across countries and datasets. This allows 
the comparison of educational outcomes in education systems in sub-Saharan 
African countries and Latin-American countries that participated in two separate 
international educational evaluations, by looking at the quality of educational out-
comes for children living under the $3.10-a-day poverty line, for instance. In this 
report, this yardstick of $3.10 in per capita income per month will be used to distin-
guish children in poverty from other children.

 Background

The strong positive relationship between poverty and education documented by the 
Coleman Report (1966) has become a stylised fact in both the fields of economics 
and education. There is evidence of this relationship both within countries and 
between countries. There are still large achievement gaps between poorer and richer 
individuals even within rich countries such as the United States and England, despite 
half a century of research and also policy that has often been dedicated to reducing 
such gaps (Coleman, 1966; OECD, 2001; Reardon, 2011). The achievement dif-
ferentials between higher income and lower income countries further confirm that 
this trend also applies at a global level, as the latest TIMSS 2015 results confirm. 
Figure 5.1 illustrates the relationship between the average Grade 4 TIMSS mathe-
matics score for each country and the country’s GDP per capita converted to US$ 
using purchasing power parity.

Within countries, and especially developing countries, the relationship between 
economic status and educational outcomes is often positive and convex, with the afflu-
ent gaining much higher returns from education than the poor. This relationship is 
portrayed through a social gradient that potentially provides a framework with which 
to compare the inequality of education within various counties. For such a comparison, 
two standard measures are required: (1) a comparable measure of learning outcomes 
and (2) a comparable measure of learner socio-economic status. The comparable mea-
sure of learning outcomes has become relatively easily accessible with the availability 
of large-scale international assessments such as TIMSS, PIRLS and PISA, although it 
is more difficult to compare across different assessments. However, very little has been 
done with regard to creating a comparable measure of learner SES.
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Since the landmark paper by Filmer and Pritchett (2001), asset indices have 
become a popular proxy for income or expenditure measures in the economic, 
demographic and sociological literature. Conceptually, the appropriateness of an 
asset index as a proxy for socio-economic status or wealth is based on two assump-
tions. The first assumption is that the latent trait underlying the possession of a 
range of assets, along with a set of housing characteristics and household education 
levels, is a good approximation of a household’s economic status. The second 
assumption is that the ranking of households on this index is relatively strongly cor-
related to the ranking of households when using the household-size-adjusted expen-
ditures, in this way making it an accurate proxy for SES. Since the advent of the 
asset index approach, a large body of literature has developed around the appropri-
ateness of this proxy, the construction of such an index, and the application of the 
index in a vast array of empirical studies.

Although there are important issues that still need greater attention when mea-
suring educational outcomes across international assessments, this issue will not be 
dealt with in this chapter. Rather, the comparison that was made by Gustafsson 
(2012) will be used for this purpose, as explained later.

In the decade and a half that they have been in use, asset indices as a proxy for 
SES have been applied in a wide variety of fields. Filmer and Pritchett (2001) origi-
nally applied an asset index to inequality in schooling outcomes, but since then the 
tool has been applied to health outcomes (Bollen, Glanville, & Stecklov, 2002; 
Chuma & Molyneux, 2009; Filmer, 2005; Gwatkon et al., 2000; Lindelow, 2006; 
Njau et al., 2006; Schellenberg et al., 2003), child health outcomes (Fay, Leipziger, 
Wodon, & Yepes, 2005; Montgomery, Gragnolati, Burke, & Paredes, 2000; Sahn & 
Stifel, 2003; Sastry, 2004; Tarozzi & Mahajan, 2005; Wagstaff & Watanabe, 2003), 
early childhood development (Ghuman, Behrman, Borja, Gultiano, & King, 2005; 
Paxson & Schady, 2005), and further studies of educational inequalities (Caro & 
Cortes, 2012; Case, Paxson, & Ableidinger, 2004; Das, Habyarimana, & Krishnan, 
2004; Taylor & Yu, 2009).

 Methodology and Data

Most internationally standardised assessments include the administration of a 
learner background questionnaire to capture information on learners’ home back-
ground. These questionnaires often include questions on the assets available at the 
learners’ house, parental education and, in developing country contexts, the infra-
structure available at a learners’ house. Using this information, an asset index is 
constructed as a unidimensional composite indicator of a set of assets that reflects 
the underlying wealth of a household. To gain the most accurate asset index using 
the available information, each item included in the index is assigned a weight on the 
basis of the variance and covariance of the items included, using methods such as factor 
analysis (FA), principal component analysis (PCA) or multiple correspondence 
analysis (MCA). Regardless of the method used, the construction of an asset index 
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involves attributing unique weights to each of the various possessions on the basis 
of the amount of common information the asset contributes in relation to the latent 
variable (in this case wealth).

When constructing an asset index across various countries, the same process is 
followed, given the common information across all these countries participating in 
the same assessment and administering the same household background question-
naire. By construction, these weights will only vary by country if an asset index is 
constructed for each country individually. If an asset index is constructed for a com-
bined sample of countries, the implicit assumption is that the same possessions will 
carry the same weights in different countries, regardless of the different contexts. 
While this assumption may be plausible for countries at roughly similar economic 
development levels, it may not be as accurate for countries with greatly varying 
economic structures (Filmer & Pritchett, 2001; Harttgen & Vollmer, 2011). For 
instance, ownership of a radio in Malawi is associated with a completely different 
percentile in the expenditure distribution than ownership of a radio in Finland but 
may also convey very different information about the underlying wealth of the 
household concerned.

In order to circumvent this problem and have an asset index which is both an 
accurate reflection of within country socio-economic status and a comparable mea-
sure between countries, this chapter applies a method proposed by Kotzé and Van 
der Berg (in press). The method uses asset indices that have been constructed using 
country-specific weights, and to address the problem of comparability, the method 
links the asset index distribution to the national consumption distribution in order to 
simulate household consumption for each wealth percentile. Consumption per cap-
ita, denoted in international dollars (converted at purchasing power parity (PPP) 
rates), then serves as a common yardstick with which to compare country-specific 
asset indices across different countries.

The resultant measure is a single, internationally comparable measure of SES 
and can be applied to every international evaluation for which an asset index can be 
derived and for which a household survey containing per capita consumption is 
available. Moreover, this new indicator of socio-economic status will enable the 
comparison of equally poor students under different education systems. For exam-
ple, the level of numeracy of a child in a household that earns less than $3.10 per 
capita per day in Malawi can be compared with the level of numeracy of a child who 
is equally poor in Peru.

To increase the accuracy of a comparable SES measure, the social gradients are 
also adjusted to account for children who are out of school. Although access to 
schooling has increased significantly, it is evident from Fig. 5.2 that a 100% atten-
dance rate is not yet a reality for the poorest households in most sub-Saharan African 
countries. Figure 5.2 also shows that there is very little difference between countries 
with regard to attendance rates in primary schooling. However, gradients probably 
will be much steeper and differentiated for higher school grades. Furthermore, to 
make the consumption distributions comparable across the countries, household 
consumption is shown in purchasing power parity terms (PPP $) using the World 
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Bank indicators gross domestic product deflator (GDP deflator) and 2007 purchasing 
power parity (PPP) values.

This method will be used to compare the SACMEQ III (sub-Saharan Africa) and 
SERCE (Latin America) datasets, as both evaluated sixth grade students in mathe-
matics and were conducted quite soon after each other. SACMEQ is a consortium 
of education ministries, policymakers and researchers that aims to improve educa-
tional planning in participating countries in Southern and Eastern Africa by measur-
ing educational quality (Moloi & Strauss, 2005:12). SACMEQ III was administered 
in 2007 and collected data from about 61,000 learners, 8000 teachers and 2800 
school principals (SACMEQ, 2014).

SERCE (Segundo Estudio Regional Comparativo y Explicativo) was conducted 
by LLECE (the Laboratorio Latinoamericano de Evaluacion de la Calidad de la 
Education) among 16 Latin-American countries. Both third grade and sixth grade 
students were assessed in mathematics, reading, writing and natural sciences. 
SERCE was conducted in 2006, and 95,288 sixth grade students were assessed 
(UNESCO, 2008). These surveys collect extensive background information on the 
schooling and home environments of students and, in addition, test students and 
teachers in both numeracy and literacy (Hungi et al., 2010; Ross et al., 2005).

International student assessments are generally constructed to discriminate 
between performances around an international mean. The performance of sub- 
Saharan and some Latin-American countries on these achievement tests, however, 
is so far below the mean performance of OECD countries that their scores cease to 
be meaningful if they are tested on some of the other international test programmes. 
For this reason, tests such as SACMEQ and SERCE are very useful, as they are 
constructed to match the context and standards of the region. Furthermore, both 

Fig. 5.2 Percentage of 11- to 15-year-olds currently in school by consumption per capita quintile
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assessments assessed Grade 6 learners in mathematics and language at around the 
same time period (2006/2007), which makes them highly comparable. Both these 
datasets also contain information on home possessions, thus allowing country- 
specific asset indices to be constructed.

There is still an issue of comparing achievement scores across tests. In 2001, Barro 
and Lee compared the achievement scores of TIMSS and IALS in their groundbreak-
ing paper. They did not, however, specifically adjust these scores for differences 
between the scores. Since this pioneering paper, various researchers have adapted this 
method. Currently there are at least four different methods used for compiling a global 
dataset of educational quality that calibrate achievement scores across international 
student achievement tests (Angrist, Patrinos, & Schlotter, 2013; Barro & Lee, 2001; 
Gustafsson, 2012; Hanushek & Woessman, 2012). Hanushek and Woessman (2009) 
put forward a method for transforming country test scores to a single comparable 
scale using the standardised National Assessment of Educational Progress (NEAP) in 
the United States as the anchor assessments that joins the various different assess-
ments. Their method, however, does not allow the inclusion of test programmes in 
which the United States did not participate. The approach taken by Gustafsson (2012) 
is similar to theirs but also includes achievement scores from two major regional test-
ing programmes in Africa and Latin America, SACMEQ and SERCE. This is done by 
using at least two bridging countries between any two assessment programmes to link 
the assessments across the programmes and to transform countries’ average achieve-
ment scores in international testing programmes to a single normalised scale. Using 
this dataset and linking it to available household surveys make it possible to analyse 
socio-economic gradients for cognitive outcomes for 7 African countries and 14 
Latin-American countries.

 Comparing Social Gradients Across Contexts

Figure 5.3 illustrates the socio-economic gradients of seven of the sub-Saharan 
countries that participated in SACMEQ III as well as an indication of the $1.90 and 
$3.10 international poverty lines, which reveal the failure of these education sys-
tems for many of the world’s poorest. Interestingly, Kenya and Tanzania outperform 
the other countries at all levels of SES. At the poverty lines, Kenya and Tanzania 
perform equally well, but wealthier Kenyan learners outperform wealthier Tanzanian 
learners. Malawi, on the other hand, consistently performs the worst and shows little 
difference in test scores between the poorest and wealthiest students in the country. 
Both South Africa and Namibia have steep socio-economic gradients, with a rela-
tively well-performing upper class. Poor students in Mozambique and Uganda that 
fall under the $3.10-a-day poverty line far outperformed equally poor children in 
South Africa and Namibia, who performed at about the same very low level as chil-
dren from Malawi. This is quite striking since South Africa has a GDP per capita 
that is twenty-five times that of Malawi, sixteen times that of Mozambique and one- 
and- a-half times that of Namibia.
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Socio-economic gradients can also be derived for different subsamples within a 
country. Asset prices and asset availability often differ among urban and rural set-
tings, which implies that different assets should carry different weights in an asset 
index. Figure  5.4 illustrates the separate socio-economic gradients for education 

Fig. 5.4 Comparable measure of SES across urban and rural subsamples within South Africa

Fig. 5.3 Mathematics performance and SES in SACMEQ III
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Fig. 5.5 Proportion of poor students (living under $3.10 per day) per competency level, by urban/
rural location in different SACMEQ countries

outcomes in South Africa’s urban and rural areas when separate urban and rural 
weights are used. As expected, urban students have, on average, better educational 
outcomes than their equally poor rural counterparts. Interestingly though, the poor-
est rural children do not perform much worse than their urban peers, but a signifi-
cant difference emerges as per capita consumption increases.

It is possible to gain a deeper understanding of the heterogeneity in the quality 
of schooling in different contexts by categorising student achievement scores into 
skill levels. SACMEQ distinguishes eight competency levels on the basis of the 
difficulty of the questions and the skills required to give correct responses. These 
competency levels provide a more concrete understanding of student capabilities. 
Figure 5.5 shows what proportion of students in SACMEQ countries in both urban 
and rural settings are in households above the $3.10-a-day poverty line (the white 
parts of the bars) and then classifies the performance of those in poverty by compe-
tency level. The stark difference in performance between Kenya and the rest of the 
SACMEQ countries is once again apparent. Even though Kenya is a low-income 
country and has a poverty headcount rate of one-and-a-half times that of a middle-
income country such as South Africa, it still manages to provide a much larger 
proportion of these students with sufficient mathematical skills. This means that the 
most marginalised students in Kenya are better prepared for participation in a mod-
ern labour market than marginalised students in South Africa. Furthermore, the 
difference in the quality of educational outcomes between Mozambique and Malawi 
is quite remarkable. Mozambique has one-and-a-half times the poverty headcount 
rate of Malawi, but half of Mozambique’s poor students are proficient in numeracy, 
whereas only a small number of students in Malawi function at the same level, 
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despite the fact that the Malawian government has supplied free primary education 
for the past 20 years.

Using Gustafsson’s (2012) recalibrated 2007 SACMEQ and 2006 SERCE 
achievement scores and the comparable measure of SES, Fig. 5.6 portrays the rela-
tionship between the transformed numeracy scores and SES for the six weakest 
performing countries in SACMEQ and SERCE combined. The Latin-American 
countries in this group outperformed the sub-Saharan countries at given levels of 
poverty, and as they contain more middle-income countries, there are far fewer chil-
dren that live under the $3.10-a-day poverty line in the Latin-American region. The 
Dominican Republic was the only Latin-American country among the poorest- 
performing countries. It is striking that at equal income levels Mozambique and 
Uganda seem to be much more effective at producing educational outcomes than 
middle-income countries such as South Africa and the Dominican Republic. 
Children in households that live in poverty receive an education of a much higher 
quality in Mozambique and Uganda than in South Africa.

Figure 5.7 shows the relationship between the numeracy scores and SES for the 
six best-performing countries in the Latin-American and sub-Saharan regions. 
Kenya is the only sub-Saharan country that managed to make it to the top six coun-
tries and, remarkably, outperforms much wealthier countries such as Uruguay and 
Costa Rica for given levels of SES. This graph, however, does not take into account 
the total number of students in these countries.

Figure 5.8 shows the proportion of students living under the $3.10-a-day poverty 
line, per competency level for eight Latin-American and sub-Saharan countries. 

Fig. 5.6 Socio-economic gradient for the six poorest-performing countries across Latin America 
and sub-Saharan Africa
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Fig. 5.7 Socio-economic gradient for the six best-performing countries across Latin America and 
sub-Saharan Africa

Fig. 5.8 Proportion of students living under $3.10 per day, per competency level
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Among these countries, Brazil, Mexico and South Africa have the smallest proportion 
of learners living under the poverty line. South Africa has the highest proportion of 
students who are functioning at below-acceptable levels of numeracy (pre-numer-
acy and emergent numeracy). Kenya and Tanzania both have a much higher propor-
tion of students living in poverty but also have a much higher proportion of these 
students performing at acceptable (basic numeracy) to above-average levels (begin-
ning numeracy, competent numeracy and mathematically skilled). In Kenya, spe-
cifically, 30% of poor students (below the $3.10-a-day poverty line) perform at 
acceptable levels, and 56% perform at above-average levels of numerical skills. 
This is quite remarkable when taking into account that Brazil has a GDP per capita 
that is ten times that of Kenya and South Africa has a GDP per capita that is four 
times larger than Kenya.

 Conclusion

The interplay between learner SES and learner outcomes is an important indica-
tor of the ability of a country’s education system to provide the most marginal 
learners with a level of education similar to that of wealthier learners. This rela-
tionship is often portrayed through a social gradient, but since no credible method 
has previously existed for comparing social gradients across different contexts, 
comparisons made were often inaccurate as researchers have had to choose 
between either the accuracy of a measure within countries or the comparability of 
the measures across countries.

Using a new method, a comparable measure of SES was applied to the 2007 
SACMEQ and 2006 SERCE datasets and enabled the comparison of educational 
outcomes for 7 sub-Saharan and 14 Latin-American countries. This measure has 
allowed a comparison of the direction and strength of the association between SES 
and educational outcomes in different countries and settings. From these compari-
sons it has become clear that, in certain wealthier but more unequal countries, such 
as South Africa and Brazil, the poorest children are much worse off in terms of the 
quality of education as reflected in cognitive scores on international tests than the 
poorest children in some much poorer countries. This signifies that some countries 
are managing to provide their poor learners with a much higher quality of educa-
tion than other wealthier countries. The differences in the mathematics perfor-
mance most likely stem from various institutional and contextual differences. 
Teacher content knowledge and pedagogical skill as well as teacher motivation 
undoubtedly are strong predictors of learner performance. Finally, administrative 
institutions and accountability mechanisms are often thought to have the ability to 
influence overall learner performance. However, little research has been done in 
this regard in developing country contexts.
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 Appendix

Fig. 5.9 Socio-economic gradients for urban and rural samples

References

Angrist, N., Patrinos, H. A., & Schlotter, M. (2013). An expansion of a global data set on educa-
tional quality: A focus on achievement in developing countries. Policy Research Working Paper 
6536. The World Bank.

Barro, R., & Lee, J. (2001). International data on educational attainment: Updates and implica-
tions. Center for International Development Working Paper no. 45. Harvard University.

Bollen, K., Glanville, J., & Stecklov, G. (2002). Economic status proxies in studies of fertility in 
developing countries: Does the measure matter? Population Studies, 56(1), 81–96.

Caro, D., & Cortes, D. (2012). Measuring family socioeconomic status: An illustation using 
data from PIRLS 2006. IERI Monograph Series: Issues and Methodologies in Large-Scale 
Assessments, 5, 9–33.

Case, A., Paxson, C., & Ableidinger, J.  (2004). Orphans in Africa: Parental death, poverty, and 
school enrollment. Demography, 41(3), 483–508.

Chudgar, A., Luschei, T. F., Fagioli, L. P., & Lee, C. (2012). Socio-economic status (SES) mea-
sures using the Trends in International Mathematics and Science Study data. In annual meeting 
of the American Educational Research Association, Vancouver, Canada.

Chuma, J., & Molyneux, C. (2009). Estimating inequalities in ownership of insecticide treated 
nets: Dose the choice of socio-economic status measure matter? Health Polocy and Planning, 
24, 83–93.

Coleman, J.  (1966). Equality of Educational Opportunities. Washington, DC: U.S.  Office of 
Education.

5 Mathematical Performance among the Poor: Comparative Performance across…



70

Cruces, G., Domenech, C., & Gasparini, L. (2014). Inequality in education: Evidence for Latin 
America. In Falling inequality in Latin America: Policy changes and lessons (pp. 318–339). 
Oxford University Press, Oxford

Das, J. D., Habyarimana, J., & Krishnan, P. (2004). Public and private finding of basic education 
in Zaimbia: Implications of budgetary allocations for service delivery. Washington, DC: The 
World Bank.

Fay, M., Leipziger, D., Wodon, Q., & Yepes, T. (2005). Achieving child-health-related millennium 
development goals: The role of infrastructure. World Development, 33(8), 1267–1284.

Filmer, D. (2005). Fever and its treatment among the more and less poor in suc-Saharan Africa. 
Health Policy and Planning, 20(6), 337–346.

Filmer, D., & Pritchett, L. (2001). Estimating the wealth effects without expenditure data – or tears: 
An application to educational enrollments in states of India. Demography, 38(1), 115–132.

Ghuman, S., Behrman, J. R., Borja, J. B., Gultiano, S., & King, E. M. (2005). Family background, 
service providers, and early childhood development in the Philippines: Proxies and interac-
tions. Economic Development and Cultural Change, 54(1), 129–164.

Gregorio, J., & Lee, J. (2002). Education and income inequality: New evidence from cross-country 
data. Review of Income and Wealth, 48(3), 395–416.

Gustafsson, M. (2012). More countries, similar results: A nonlinear programming approach to nor-
malising the scores needed for growth regressions. Stellenbosch Working Paper Series: 12/12.

Gwatkon, D., Rustein, S., Johnson, K., Pande, K., & Wagstaff, A. (2000). Socio-Eocnomic differ-
ences in Brazil. Washington, DC: HNP/Poverty Thematic Group of the World Bank.

Hanushek, E., & Woessman, L. (2009). Do better schools lead to more growth? Cognitive skills, 
economic outcomes and causation. Washington, DC: National Bureau of Economic Research.

Hanushek, E. A., & Woessman, L. (2012). Do better schools lead to more growth? Cognitive skills, 
economic outcomes, and causation. Journal of Economic Growth, 17(4), 267–321.

Harttgen, K., & Vollmer, S. (2011). Inequality decomposition without income or expenditure data: 
Using an asset index to simulate houehold income., s.l.: Human Development Research Paper 
2011/13. Human Development Reports. United Nations Development Programme.

Hungi, N., Makuwa, D., Ross, K., Saito, M., Dolata, S., & Cappelle, F. V. (2010). SACMEQIII 
project result: Pupil achievement levels in reading and mathematics. Working Document 
Number 1. Paris: SACMEQ.

Kotzé, J., & Van der Berg, S. (in press). A new methodology for investigating cognitive perfor-
mance differentials by socio-economic status across international assessments. Stellenbosch 
Working Paper Series.

Lindelow, M. (2006). Sometimes more equal than other: How health inequalities depend on the 
choice of welfare indicator. Health Economics, 15(3), 263–279.

Moloi, M., & Strauss, J. (2005). The SACMEQ II project in South Africa: A study of the conditions 
of schooling and the quality of education. Harare, Zimbabwe: SACMEQ Montgomery.

Montgomery, M. R., Gragnolati, M., Burke, K., & Paredes, E. (2000). Measuring living standards 
with proxy variables. Demography, 37(2), 155–174.

Njau, J., Goodman, C., Kachur, S. P., Palmer, N., Khatib, R. A., Abdulla, S., et al. (2006). Fever 
reatment and household welath: The challenve posed for rolling out combination therapy for 
malaria. Tropical Medicine & International Health., 11(3), 299–313.

OECD. (2001). Knowledge and skills for life. In First results form PISA 2000. Paris: OECD.
Paxson, C., & Schady, N. (2005). Cognitive development among young children in Ecuador: The 

roles of wealth, health and parenting. Washington, DC: The World Bank.
Reardon, S. (2011). The widening academic achievement gap between the rich and the poor: New 

evidence and possible explanations. In R. Murnane & G. Duncan (Eds.), Whither opportunity? 
Rising inequality and the uncertain life chances of low-income children. New York: Russell 
Sage Foundation Press.

Rolleston, C., James, Z., & Aurino, E. (2013). Exploring the effect of educational opportunity and 
inequality on learning outcomes in Ethiopia, Peru, India and Vietnam. Background Paper for 
the UNESCO Education for All Global Monitoring Report.

J. Kotzé and S. van der Berg



71

Ross, K., Saito, M., Dolata, S., Ikeda, M., Zuze, L., Murimba, S., et al. (2005). The conduct of the 
SACMEQ III project. In E. Onsomu, J. Nzomo, & C. Obiero (Eds.), The SACMEQ II project in 
Kenya: A study of the conditions of schooling and the quality of education. Harare, Zimbabwe: 
SACMEQ.

SACMEQ. (2014). SACMEQ [Online]. Available at: http://www.sacmeq.org. Accessed 22 Oct 
2014.

Sahn, D., & Stifel, D. (2003). Exploring alternative measures of welfare in the absence of expen-
diture data. Review of Income and Wealth, 49(4), 463–489.

Sastry, N. (2004). Trends in socioeconomic inequalities in mortality in developing countries: The 
case of child survival in Sao Paulo, Brazil. Demography, 41, 443–464.

Schellenberg, J., Victora, C. G., Mushi, A., De Savigny, D., Schellenberg, D., Mshinda, H., et al. 
(2003). Inequalities among the very poor: Health care for children in rural southern Tanzania. 
The Lancet, 361, 561–566.

SERCE. (2006). [Online]. Available at: http://www.unesco.org/new/en/santiago/education/edu-
cation-assessment-llece/second-regional-comparative-and-explanatory-study-serce/. Accessed 
22 Jan 2018.

Tarozzi, A., & Mahajan, A. (2005). Child nutrition in India in the Nineties: A story of increased 
gender inequality?. Discussion Paper No. 04-29. Stanford Institute for Economic Policy 
Research.

Taylor, S. & Yu, D., 2009. The importance of socioeconomic status in determining educational 
achievement in South Africa, Stellenbosch: Stellenbosch Economic Working Papers: 01/09.

UNESCO. (2008). Los aprendizajes de los estudiantes de América Latina y el Caribe: Resumen 
Ejecutivo del Primer Reporte de Resultados del Segundo Estudio Regional Comparativo y 
Explicativo, Santiago: la Oficina Regional de Educación de la UNESCO para América Latina 
y el Caribe OREALC/UNESCO.

Van der Berg, S. (2015). Brookings education: Future development blog [Online]. Available at: 
https://www.brookings.edu/blog/future-development/2015/03/09/how-does-the-rich-poor-
learning-gap-vary-across-countries/. Accessed 27 Aug 2016.

Wagstaff, A., & Watanabe, N. (2003). What difference does the choice of SES make in health 
Inquality measurement. Health Economics, 12(10), 885–890.

5 Mathematical Performance among the Poor: Comparative Performance across…

http://www.sacmeq.org
http://www.unesco.org/new/en/santiago/education/education-assessment-llece/second-regional-comparative-and-explanatory-study-serce
http://www.unesco.org/new/en/santiago/education/education-assessment-llece/second-regional-comparative-and-explanatory-study-serce
https://www.brookings.edu/blog/future-development/2015/03/09/how-does-the-rich-poor-learning-gap-vary-across-countries/
https://www.brookings.edu/blog/future-development/2015/03/09/how-does-the-rich-poor-learning-gap-vary-across-countries/


73© Springer International Publishing AG, part of Springer Nature 2019 
A. Fritz et al. (eds.), International Handbook of Mathematical Learning 
Difficulties, https://doi.org/10.1007/978-3-319-97148-3_6

Chapter 6
Didactics as a Source and Remedy 
of Mathematical Learning Difficulties

Michael Gaidoschik

 A Lack of Certain Arithmetical Abilities or a Certain Way 
of Doing Arithmetic?

Persisting deficits in the field of basic addition and subtraction are widely held as a 
main characteristic of mathematics learning difficulties (MLD) by scholars in the 
field of mathematics education (e.g., Baroody, Bajwa, & Eiland, 2009; Schipper, 
2009), as well as in the field of (neuro)psychology (e.g., Boets & De Smedt, 2010; 
Geary, 2004). However, there are quite different ways to review what is characteris-
tic for many children. Whereas some researchers stress the lack of automaticity 
(e.g., Landerl & Kaufmann, 2013), others emphasize that children with MLD tend 
to rely heavily on counting for solving addition and subtraction tasks even in higher 
classes (e.g., Cumming & Elkins, 1999; Dowker, 2009; Gray, 2005; Moser Opitz, 
2013; Ostad, 1998).

This is not only talking about two sides of the same coin. Of course, children 
who have not yet automated a basic fact have to find another way to solve it. Yet, it 
makes a difference whether research sets out to explain an absence (that of fact 
retrieval) or a presence (that of counting as the predominant computing strategy).

When you set out to explain why an ability is missing, a consistent next step is to 
look at prerequisites that might underlie that ability. Thus, there is a body of research 
on how basic fact fluency statistically relates to deficits with regard to various cog-
nitive measures. Such are, inter alia, working memory (cf. Alloway & Passolunghi, 
2011), speed of processing (Willcutt et al., 2013), and the ability to quickly compare 
numerosities (cf. Vanbinst, Ceulemans, Ghesquière, & De Smedt, 2015).

From a mathematics education viewpoint, the results of this kind of research are 
unsatisfactory on both the practical and theoretical levels.
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To start with the latter: Doing mathematics is not simply putting together the 
prerequisites of doing mathematics. In order to understand what learning mathe-
matics is about, as well as what hinders a child from learning successfully, we have 
to explore what children do and think while actually performing mathematics. We 
do not characterize this performance adequately by saying what children do not do 
(retrieve facts); it is what they do that we have to understand. As is outlined in the 
following sections, educational research can show that the strategies children exhibit 
when solving basic tasks relate to what they know and think about numbers and 
arithmetical operations. This, in turn, relates to their foregoing and ongoing arith-
metic instruction.

As to the practical level, the better we understand underachieving children’s 
mathematical thinking and doing, the more we are able to design and further develop 
preventive as well as remedial measures.

This chapter will try to both elucidate why so many children stick to counting 
strategies even in higher grades and outline what arithmetic instruction can and 
should do to counteract this.

 Computing by Counting: What Else Could a Child Do 
to Solve a Basic Task?

Numerous studies have shown that children who grow up in developed countries 
usually are already able to solve verbally posed addition and subtraction tasks at 
least in the number range up to ten before they enter formal schooling. As a rule, 
they do so by using some sort of counting strategy to find the solution (Verschaffel, 
Greer, & De Corte, 2007).

In autonomously executing a counting strategy to solve a given problem, chil-
dren seem to demonstrate at least basic understanding of the underlying arithmetic 
operation: addition as “putting together” or “establishing how much it is all 
together”; subtraction as “taking away” or, when using counting-up, perhaps even 
as “establishing the difference” (cf. Baroody & Tiilikainen, 2003; Fuson, 1992). 
However, we have to be aware of the possibility that a child might be quite profi-
cient in solving basic tasks without having or activating such an understanding. 
Instead, he or she might reduce addition to “going further” within the learned 
sequence of number words, and subtraction to “going back” (Gaidoschik & Beier, 
2017; Schultz, Jakob, & Gerster, 2017). These interpretations are insufficient inso-
far as they remain on a procedural level and (as discussed below) tend to impede the 
recognition of quantitative relations (Gray, 1991; Gray & Tall, 1994).

There is a similar and interconnected ambiguity regarding the way children 
understand numbers when they compute by counting. A child who solves an addi-
tion task by “counting all” using his or her fingers or some external counting mate-
rial to represent both the summands and the sum (Verschaffel et al., 2007), by doing 
so autonomously, certainly demonstrates that he or she has learned that counting is 
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a way to establish quantities (“cardinal principle”, Gelman & Gallistel, 1978). 
Compared to this rather cumbersome strategy, we may regard “counting-on” and 
especially “counting-on from larger” or “min-counting” (e.g., solving 3  +  4 by 
counting “five, six, seven”) as progress (Fuson, 1992; Verschaffel et  al., 2007). 
However, there are children who use counting-on as their main strategy and disre-
gard cardinality. Thus, they might perform 3 + 4 as “four, five, six,” stating that 
“six” is the solution. The error results from taking the larger number “four” as their 
starting point for counting-on three number words, including “four.” From a quan-
titative view, it is clear that “four” stands for the quantity of the bigger summand 
and you have to add another three. From the procedural view that is characteristic 
of some children, this might be seen as a mere rule that has to be memorized 
(Gaidoschik, 2003; Schipper, 2009).

So children who compute by using a counting strategy might have quite different 
concepts of numbers and operations. What concepts would they need to develop 
noncounting ways of computing? To answer this question, some didactically ori-
ented content analysis might be useful.

 Direct Fact Retrieval

There are essentially just three ways to solve an addition or subtraction problem 
without resorting to counting. The first one is, quite trivially, fact retrieval. You do 
not have to use counting for solving (e.g., 3 + 4) if you “just know it.” With regard 
to the conceptual basis of this knowledge, Gray (1991, p. 554) stated appropriately: 
“Such a strategy can be used without any evidence of meaning.” Of course, fact 
retrieval may go with understanding, and there is widespread agreement in the cur-
rent literature on mathematics education that children should acquire this very com-
bination of understanding and knowing by heart for all basic facts in early grades 
(cf. NCTM, n.d.; Schipper, 2009). However, this is a goal but not a starting point 
and, in any case, a child who recalls the solution of a basic task from long-term 
memory does not thereby demonstrate deeper understanding than a child who relies 
on a counting strategy.

 Deriving Unknown Facts from Known Facts

Things are different if the child avoids counting by using a second alternative 
referred to in the literature as derived facts strategies (DFS) (Dowker, 2009, 2014; 
Steinberg, 1985) or reasoning strategies (Baroody, Purpura, Eiland, Reid, & Paliwal, 
2016). Such strategies build upon relations between arithmetic facts. To stay with 
the example of 3 + 4, using a DFS, a child who has memorized 3 + 3, but not yet 
3 + 4, could derive the solution of the latter by “adding one more” to the solution of 
the former.
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DFS rest on arithmetic laws, such as:

• The commutative property of addition: a + b = b + a; therefore, e.g., 1 + 8 can be 
derived from 8 + 1.

• The associative property of addition: a + (b + c) = (a + b) + c; therefore, e.g., 
3 + 4 can be derived from 3 + 3 [3 + 4 = 3 + (3 + 1) = (3 + 3) + 1 = 6 + 1].

• The inverse relation between addition and subtraction: a + b = c ↔ c − b = a ↔ 
c − a = b; therefore, e.g., 7 − 4 = 3 can be derived from 3 + 4 = 7.

Gaidoschik (2010, 2012) found that some 20% of a random sample of 139 
Austrian first graders employed such strategies even before any formal arithmetic 
instruction had started.

Certainly, to use a certain DFS correctly and autonomously, a child needs to see 
some kind of relation between the derived fact and the fact chosen as a basis for deriv-
ing it. This is not to say that we can take any application of a DFS as proof of the 
child’s thorough understanding of the underlying arithmetic laws. For instance, when 
expanding the “number-after rule” (Baroody & Tiilikainen, 2003) from 8 + 1 to 1 + 8, 
a child may use a “commutativity permission” in terms of being confident that this 
“shortcut” is “allowed.” However, the same child may not be aware of “true commu-
tativity” as may be assessed by tasks that ask them to explain and justify that proce-
dure or to transfer it to larger numbers (Baroody, Wilkins, & Tiilikainen, 2003).

Likewise, a child who solves, e.g., 8 − 4 by inverting 4 + 4 = 8 may not be ready 
to transfer the same strategy to, e.g., 12 − 6, and may solve 12 − 6 by finger count-
ing, although he or she easily retrieves 6 + 6 = 12 from memory (Baroody, 1999; 
Gaidoschik, 2010, 2012).

Therefore, the utilization of a DFS may be based on a “weak schema—a gener-
alization narrow in scope (tied to a particular context) and, perhaps, lacking logical 
coherence” (Baroody et al., 2003, p. 145). Baroody and colleagues (2003) hypoth-
esize that such limitations are typical of an initial stage of DFS use. However, it is 
important to see that further development toward a “strong schema” is not just a 
matter of time but bears on changes in the ways a child is thinking about numbers 
and operations (Baroody et al., 2003; Gaidoschik, 2010).

 Numbers as Compositions of Other Numbers

This leads to the third and last in our list of alternatives to computing by counting: 
utilization of the concept of “numbers as compositions of other numbers” (Resnick, 
1983, p. 114), also referred to as the (numerical) “part–whole schema” (Resnick, 
1983, p. 115). Following this concept, a child in thinking and dealing with a given 
number is aware of other numbers forming parts of it. Children thus may conceive, 
e.g., the number eight as a whole that is composed of the numbers five and three as 
its parts. Drawing on this concept, they might solve at least two addition tasks 
(5 + 3, 3 + 5) as well as two subtraction tasks (8 − 5, 8 − 3) without resorting to a 
counting strategy, simply by putting the parts together into the whole or separating 
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one part of the whole (Fig. 6.1). Employing another view on the same number tri-
ple, they could also detect that each part forms the difference between the whole 
and the other part. This would enable them to determine this difference without any 
counting.

It is important to see that numerical part–whole thinking is more than cardinality. 
Understanding cardinality comprises awareness of quantity but not necessarily of 
structure within that quantity. A numerical part–whole conception, however, implies 
awareness of structure. It is this awareness that “permits forms of mathematical 
problem solving and interpretation that are not available to younger children” 
(Resnick, 1983, p. 114). More precisely, it permits strategies not available to chil-
dren of all ages who are restricted to the concept of numbers as positions within the 
number word sequence (an ordinal interpretation; see Fig. 6.1) or to an unstructured 
cardinal interpretation (Gaidoschik, 2010; Schultz et al., 2017).

Of course, when a child derives sums and differences from the interiorized part–
whole structure of a number, we could label this as just another type of DFS. From 
a didactical point of view, though, it is important to state that there are different 
levels of understanding in the use of a DFS. In this context, Baroody (2006) distin-
guishes strategies that are “highly salient” (such as using commutativity), and may 
be learned as a procedure, from strategies that children are unlikely to use if they 
have not yet developed a numerical part–whole concept (cf. Gaidoschik, 2010). To 
give an example of such a less salient strategy, children may solve 6 + 7 by using the 
“power of five” (Flexer, 1986) in decomposing 6 into 5 + 1 and 7 into 5 + 2, then 
recomposing the total as (5 + 5) + (2 + 1) = 10 + 3 = 13. It is hardly conceivable that 
a child adopts such a strategy as a mere procedure without the conceptual basis of 
numbers being composed of other numbers.

Therefore, a numerical part–whole concept not only enables direct derivation of 
addition and subtraction tasks from an interiorized number triple (e.g., 8 − 5 = 3 

Five on 
this side

Three on 
this side

Alltogether eight, therefore:

5+3=8 3+5=8

8-3=5 8-5=3

This is five. This is eight.

To get from five to 
eight, I have to 
count on three 
more!

one two three

Fig. 6.1 Numbers conceived as compositions of other numbers, or as positions within the number 
sequence
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from thinking of eight as composed of five and three); it also seems to form a 
prerequisite for conceiving arithmetic properties and relations profoundly enough 
to also adopt a less salient DFS (Baroody, 1999; Baroody et al., 2016). Accordingly, 
Canobi (2004) found significant relations between conceptual part–whole knowl-
edge of numbers and the use of fact retrieval and DFS in a sample of 90 6- to 8-year-
old British children.

Note that numerical part–whole thinking is not an “all-or-nothing phenomenon” 
(Baroody, 1999, p. 168). Schultz and colleagues (2017) distinguish “flexible” and 
“inflexible” part–whole relations and, based on case studies, report on children who 
utilize part–whole structures for some tasks but not for others, or restrict them to 
certain number triples. Similarly, Dowker found great differences in the ability of 
young British children (N = 44, mean age = 6.8 years) to utilize a given task for 
deriving another, depending on what kind of arithmetic principle connects the two 
tasks. Derivations based on the inverse relationship between addition and subtrac-
tion proved most difficult (Dowker, 2014).

 Evidence on the Impact of Instructional Efforts Focused 
on Noncounting Strategies

Empirical evidence that early arithmetic instruction, by focusing on part–whole 
thinking of numbers and elaborating and practicing a DFS on a solid conceptual 
basis, does indeed support children to overcome computing by counting comes 
from longitudinal, cross-sectional, and intervention studies, as well as from interna-
tional comparative studies.

 International Comparisons

Geary, Bow-Thomas, Fan, and Siegler (1996) studied Chinese and US children of 
different age groups (N  =  209, age 5.9–8.8  years). They found that among the 
Chinese sample, at the end of first grade, fact retrieval was by far the most predomi-
nant strategy for solving addition and subtraction tasks up to 20, with a share of 
about 91%. By contrast, their US peers used retrieval in only about 28% of their 
trials. Even at the end of third grade, the US students used retrieval in only 56% of 
their tasks. Chinese kindergarteners, as well as Chinese first graders when inter-
viewed early in the year, applied a DFS quite often (in 44% of the tasks in kinder-
garten and in 36% of tasks in the fourth month of first grade). By contrast, US 
children of all age groups hardly ever used a DFS (Table 6.1).

Without denying the influence of other factors such as language characteristics 
and sociocultural conditions, Geary and colleagues (1996) assume a substantial 
impact of instruction. Even today, in US classrooms it is common for children to be 
encouraged to solve basic tasks by counting, at least as long as till the end of first 
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grade (Henry & Brown, 2008; Van de Walle, 2004). The current US Common Core 
State Standards for Mathematics (CCSSM) are ambiguous in that respect. On the one 
hand, they clearly advocate that children in first grade should “understand and apply 
properties of operations and the relationship between addition and subtraction” and 
learn a range of DFS (NCTM, n.d., p. 15). On the other hand, the standards consider 
counting-on as an equally adequate strategy for first graders. As for kindergarten, rec-
ommended activities clearly point at reaching cardinality but not explicitly at a numeri-
cal part–whole concept. In fact, all kindergarten activities the CCSSM advocate under 
the heading “operations and algebraic thinking” invite children to solve arithmetic 
problems by counting fingers or (drawn) objects (NCTM, n.d., p. 11). It is important 
to see that such activities are not sufficient to guide children to detect, reflect, and 
utilize numerical part–whole structures (Gaidoschik, 2010; Schultz et al., 2017).

By contrast, in China (Zhou & Peverly, 2005), as well as in other East Asian 
countries (Fuson & Kwon, 1992), there is a long and widespread tradition of 
instructing first graders and even kindergarteners not to use counting but a DFS to 
solve basic tasks. These strategies draw on part–whole structures with numbers 
structured by ten (Fuson & Kwon, 1992) and five (Hatano, 1992). Geary and col-
leagues hypothesize that the high share of fact retrieval among the Chinese children 
in their study is, to a substantial extent, due to this teaching practice. By repeatedly 
using a DFS during their early formal instruction, Chinese children would develop 
powerful mental associations between tasks and solutions, as well as between 
related tasks. This would help them memorize more and more basic facts within a 
comparatively short period (Geary et al., 1996).

 Longitudinal and Cross-Sectional Data and Related Theories

The longitudinal study by Gaidoschik (2010, 2012) points in the same direction. 
The author interviewed a random sample of Austrian first graders three times: at the 
beginning of the school year, midyear and, finally, at the end of the school year 
(N = 139; average age at first interview 6.5 years). Note that the arithmetic instruc-
tion of this sample had not contained targeted measures to convey DFS, as was 
established through teacher interviews and qualitative content analyses of textbooks 

Table 6.1 Frequency of use of different strategies for basic tasks in samples of different age 
groups from China and the USA

End of 
kindergarten (%)

Fourth month of first 
grade (%)

End of first grade 
(%)

End of third 
grade (%)

China USA China USA China USA China USA

Fact retrieval 21 17 43 20 91 28 100 56
Derived facts 44  2 36  1  6  4  0  4
Counting 35 81 18 78  3 68  0 39

cf. Geary et al. (1996)
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and learning materials. During the second and third interviews, the children solved 
inter alia the same 14 addition and subtraction tasks up to ten. The interviewer pre-
sented these tasks one by one verbally and, simultaneously, as written on a flash 
card. The children had to solve each task mentally in the way they usually would, 
and state the result verbally. Immediately thereafter, they should explain or demon-
strate how they had arrived at the solution (Gaidoschik, 2010, 2012).

At the end of their first school year, only about one third of the sample used either 
fact retrieval or a DFS for at least 10 of the 14 tasks. This very subgroup had used a 
DFS already in the second or even in the first interview of the study. Conversely, the 
approximately 27% of children who at the end of first grade used counting for at 
least 10 of the 14 tasks did not use any DFS in any of the three interview sessions 
(Gaidoschik, 2010, 2012).

The author compared the frequency of strategy change for ten identical tasks 
between the second and third interviews. In the middle of the year, children in that 
sample had used a DFS for these tasks in 83 cases. In 58 of them (69.9%), the 
respective child solved the same task by fact retrieval at the end of the year (if not, 
he or she would apply a DFS again). Conversely, there had been 179 instances of 
task solving by counting-on or counting-back at midyear. At the end of the year, in 
61 cases the children had moved on to fact retrieval (34.1%), but in the majority of 
cases, a child who had used a counting strategy for a certain task at midyear would 
again use counting for that same task at the end of the year. This difference in the 
frequency with which a change toward fact retrieval occurred was highly significant 
(Gaidoschik, 2010, 2012), strengthening the assumption that the repeated use of a 
DFS subsequently contributes to the automation of basic facts (Baroody, 1999; Van 
de Walle, 2004).

This also coincides with a central finding of Gray’s (1991) cross-sectional study 
with 72 British 7- to 12-year-old students. Gray interviewed and observed the comput-
ing strategies of children who, according to their teachers, performed in mathematics 
above average, average, and below average. The below-average performers in all age 
groups, besides using more counting and less fact retrieval on basic facts up to 10 than 
average and above-average performers, characteristically did not use DFS at all. In 
contrast, the 7- and especially the 8-year-old children rated as above average regularly 
used a DFS to solve tasks they had not yet automated, whereas the older above-average 
performers solved all the basic facts up to 10 by retrieval. Based upon his findings, 
Gray suggested that “the use of derived facts for the younger children is an indispens-
able stage in developing knowledge of the number bonds” (Gray 1991, p. 571).

Findings like these cast doubt on development models according to which chil-
dren would abandon computing by counting basically by using counting-on suc-
cessfully over a sufficient time period, as such a routine would strengthen “bonds of 
association” between tasks and solutions in long-term memory (Siegler, 1996). 
Baroody and Tiilikainen (2003, p. 82) point out that this expectation rests on “over-
simplified and untested assumptions,” taking learning as a “mechanical and passive 
process.” According to them, computational practice is important as it provides “an 
opportunity to see and reflect on patterns and relations,” but it is the very reflection 
that makes the difference (Baroody & Tiilikainen, 2003, p. 83).
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If computational practice consists of repeated problem solving by counting, this 
might even prevent children from reflecting part–whole relations within numbers, as 
well as the relations between tasks that allow for DFS. Gray observed that the lower- 
achieving children in his sample, in solving a basic task on their own, typically 
focused their attention on the counting procedure. Subsequently, the operands were 
“marginalized” to such a degree that many younger children in this group, after hav-
ing stated the solution, did not “remember the problem that had triggered the solu-
tion” (Gray, 1991, p. 569). Steinberg (1985) points out another issue that might be 
important in this context: in her intervention study (see below), she observed only 
five out of the 23 students in her experimental second-grade class who did not 
respond satisfyingly to 8-week instruction on DFS. Four of these children had been 
“very good counters” when the intervention started. The author hypothesizes that 
“these children may have become so proficient in their counting that they did not see 
the need, and were unwilling to invest the effort, to learn new strategies that might 
be slower and less accurate when first used” (Steinberg, 1985, p. 351).

In line with this is what Hopkins and Russo (2017) report on case studies of six 
Australian students who participated in what the authors label “problem-based 
practice.” The students either had been rated “almost proficient” in basic addition for 
having solved through fact retrieval about two thirds of tasks in an initial assessment, 
or belonged to the “accurate min-counting” cluster who had used counting-on for 
more than 50% of the tasks. The subsequent practice consisted of 15 training sessions 
distributed over consecutive school days. In each session, the students had to solve the 
same 36 basic tasks, using whatever strategy they themselves would choose. Whereas 
two of the three “almost proficient” students increased the number of facts solved by 
retrieval, the students in the accurate min-counting group did not at all. Of course, 
Brownell (1929, p. 105) already assumed that if “a child habitually counts in using the 
number combinations, drill, far from breaking this habit or giving him a better one, 
merely affords him opportunity to increase his proficiency in counting.”

On the other hand, though, there is a caveat also against hoping that early instruc-
tion in DFS in itself would guarantee basic fact fluency in higher grades. Cumming 
and Elkins (1999) report on a high share of Australian students who heavily rely on 
counting strategies even in sixth grade, though belonging to a sample of students 
(N = 109) whose arithmetic instruction in first and second grade had stressed  “thinking 
strategies.” Only some 30% of the fifth and sixth graders had automated the basic 
addition facts. About the same proportion had a DFS as their main strategy (Cumming 
& Elkins, 1999). Of course, it might be of importance that these children’s teachers 
had treated counting-on as an explicitly welcome “thinking strategy.” As elucidated 
above, this might have been counterproductive for at least some children (cf. the 
warning from Van de Walle, 2004, p. 164). What is more, their instruction obviously 
did not include what Van de Walle (2004, p. 159) calls “drill of strategies”—that is, 
targeted effort to elicit children’s “repeated use” of a DFS.  Empirical evidence 
(Clarke & Holmes, 2011; Gaidoschik, 2017; Woodward, 2006), as well as theoretical 
considerations (Gaidoschik, 2010), indicate that, at least for some children, it might 
indeed be crucial to combine DFS instruction with some form of repetitive practice 
in order to develop basic fact fluency (cf. Gaidoschik, 2017).
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 Intervention and Field Studies

As for intervention studies, Rechtsteiner-Merz (2013) compared 12 German first 
graders (aged 6–7 years) in five experimental classes with eight students in control 
classes. All these children had shown learning difficulties in mathematics during the 
first months of first grade. Only the teachers of the experimental classes focused on 
part–whole relations within numbers and on operational relations between tasks 
throughout the year. At the beginning of second grade, six of the eight children in 
the control classes still clung to counting strategies, whereas all but one student in 
the experimental classes used either fact retrieval or a DFS as their predominant 
strategy up to 20 (Rechtsteiner-Merz, 2013).

This is in line with a range of small-scale, mainly qualitatively oriented studies, 
which suggest that children as a rule respond positively to an instruction that puts 
DFS center stage in the first school year (e.g., Buchholz, 2004; Thornton, 1978, 
1990) and in the second school year (Steinberg, 1985). More specifically, Baroody 
and colleagues (2016) recently evaluated the efficacy of computer-based fostering 
of two less salient DFS with 81 students (5.7–10.1 years of age) randomly assigned 
to intervention and control groups. The intervention groups outperformed the con-
trol groups significantly in progress toward basic fact fluency also with unpracticed 
items, indicating that the students were able to transfer the acquired strategies to 
new tasks (Baroody et al., 2016).

Evidence of the beneficial influence of targeted instruction on children’s replace-
ment of counting with noncounting strategies, but also of the great challenge such 
an approach poses to teachers, comes from a field study by Gaidoschik, Fellmann, 
Guggenbichler and Thomas (2017). The authors interviewed children in eight 
Austrian classes at the end of their first school year (N  =  117). Their teachers, 
attendees of an in-service teacher development program, had strived to work out a 
solid understanding of numbers as compositions of other numbers in the first months 
of schooling. On that basis, they took a guided discovery-learning approach, 
 complemented with direct instruction when needed by individual children, to con-
vey DFS as a convenient way to solve basic tasks (Gaidoschik et al., 2017).

Four of the eight teachers had received support from expert teachers who paid a 
visit to them once a week throughout the year, joining them for one lesson in the 
classroom for either team teaching, observing, or giving extra support to individual 
children. Additionally, the expert teacher would spend another hour per week with 
the class teacher and give feedback about what she had observed in the classroom. 
Moreover, the two would talk about problems that had occurred during the previous 
week, and discuss plans for the one to follow (Gaidoschik et al., 2017).

Interviews with all eight teachers clearly indicate that the four of them who got 
this kind of tutoring had indeed been paying considerably more attention especially 
to the consolidation of single DFS once they had introduced them in the classroom. 
On the other side, student interviews based upon the same tasks and method already 
used for the random sample by Gaidoschik (2010) (see above) revealed significant 
differences between the two groups within the eight classes regarding the frequency 
of computing by counting and, conversely, fact retrieval and DFS (Table 6.2).
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In the four classes whose teachers had been getting support (A–D), students 
resorted to counting significantly less often than those in classes E–H, whose teach-
ers had to get along without that support. In two of the supported classes, counting 
strategies virtually did not occur at all during the interviews. However, in all eight 
classes, computing by counting was significantly less frequent than it had been in 
the random sample studied by Gaidoschik (2010), which had not received targeted 
instruction in using DFS (cf. Table 6.2) (Gaidoschik et al., 2017).

 Overcoming Computing by Counting as a Didactic Challenge

Against the backdrop of the evidence and theoretical considerations outlined above, 
we may formulate some summarizing statements on the relation between instruc-
tion and the widespread phenomenon of children who compute by counting even in 
higher grades.

First of all, there is empirical evidence that it is not just a matter of time and/or 
individual disposition whether or not—and if so, at what age—children give up 
counting as their main computing strategy. On the one hand, international compara-
tive studies (e.g., Geary et al., 1996), as well as longitudinal studies (e.g., Gaidoschik, 
2010, 2012) suggest that in classes in which instruction is not clearly focused on the 
elaboration of DFS, a large share of children will cling to counting as their main 
computation strategy at least till the end of first grade. On the other hand, compara-
tive as well as intervention studies (e.g., Rechtsteiner-Merz, 2013) and field studies 
(e.g., Gaidoschik et al., 2017) allow the assumption that already by the end of first 
grade the vast majority of children will have moved on to a combination of fact 
retrieval and DFS if DFS have been worked out and consequently fostered in the 
classroom.

In a 5-year longitudinal study, Geary (2011) found that first-grade use of fact 
retrieval and DFS predicted mathematics achievement through fifth grade (N = 117). 
From a didactic point of view, this is a consequence of the “hierarchy of learning” 
that is constitutive for primary grade mathematics (Wittmann, 2015). Within this 
hierarchy, a child who relies on counting to solve single-digit tasks will hardly adopt 

Table 6.2 Percentage of use of counting strategies in samples with different forms of arithmetic 
instruction

2010 sample 
(no DFS 
instruction) 
(%)

2017 sample (DFS instruction based on elaboration of the 
numerical part–whole concept) (%)

Support from expert teachers
No support from expert 
teachers

Class 
A

Class 
B

Class 
C

Class 
D

Class 
E

Class 
F

Class 
G

Class 
H

Sums up to 10 39 1 0 5 7 17 16 9 14
Sums up to 20 52 0 0 8 11 21 16 12 22

cf. Gaidoschik (2010, 2012) and Gaidoschik et al. (2017)
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noncounting strategies for multidigit tasks, not only because of missing number 
knowledge, but also as computing by counting tends to become a habit, giving the 
child a certain sense of security (Gray, 2005).

More fundamentally, children who permanently compute by counting are at high 
risk of missing what is at the heart of mathematics: structures and patterns (Devlin, 
1994). This starts from the pivotal structure of numbers being composed of other 
numbers, creating some kind of a vicious circle: using counting to solve basic tasks 
tends to impede realizing the numerical part–whole structures that underlie these 
tasks, the awareness of which would render counting superfluous (Gaidoschik, 
2010). Consequently, computing by counting may hamper the perception of other 
important relations and structures such as the relation between doubles and halves, 
multiples, proportionality, and even the decimal structure of two-digit numbers 
(Schipper & Wartha, 2017).

It is therefore essential for a child’s further mathematical development to learn 
how to add and subtract without counting in the early primary grades, preferably in 
first grade (Schipper, 2009). Of course, this is not a matter of some weeks or months 
more or less; children learn at different paces. Nor are we talking about children 
who occasionally refer to counting as a backup strategy to play it safe. Most adults 
will do that now and then, including those who do not have any problems with ele-
mentary mathematics. What we are talking about is counting as a child’s main strat-
egy to solve addition and subtraction problems. It is this form of computing that 
Lorenz and Radatz (1993, p. 117) rate as a “dead end,” stating that children would 
hardly have a chance to get out of it once they have reached second or third grade.

The latter statement might be too pessimistic, but reliable evidence in the form of 
longitudinal studies on this issue is missing. We have plenty of evidence, though, 
from a range of countries worldwide, that a substantial proportion of children and 
adolescents use counting as their predominant if not sole computing strategy way 
beyond their third school year (e.g., Moser Opitz, 2013; Ostad, 1998). Hopkins and 
Bayliss (2017) found that about 35% of 200 randomly selected Western Australian 
seventh graders still heavily relied on—typically accurate—counting-on with 
single- digit additions (share of tasks solved by counting-on in this group: 47% on 
average). Unsurprisingly, these students showed significant lower achievement in a 
standardized test of general mathematical achievement than their peers who used 
retrieval-based strategies.

Considering this high incidence, it is obvious that common definitions of MLD 
do not apply to all children, adolescents, and adults who compute by counting 
beyond first grade. Nevertheless, all these individuals have good reason to find 
learning and performing mathematics difficult, as it is difficult without having basic 
fact fluency. Furthermore, given the hierarchy of learning outlined above, it is not at 
all surprising that those who are by definition acknowledged as “having an MLD” 
are to a large extent (but not always: cf. Dowker, 2005), persons who heavily rely on 
counting for adding and subtracting.

From a didactic viewpoint, the consequences seem rather clear. They are subject 
of the final section of this chapter.
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 Learning Difficulties, Teaching Difficulties, and the Role 
of Education Policies

In his overview of research on early arithmetic learning, Cowan (2003, p.  68) 
draws the sobering conclusion: “Mathematics education continues to be more a 
matter of faith than of fact.” While this may have been bettered in the last 15 years, 
it is quite clear that mathematics education, in any case, is a matter of culture and 
national traditions. There are substantial differences in the ways teachers teach 
mathematics in different nations, comprising curricular decisions on what content 
children should learn at what age, and the choice of methods and learning materials 
(Li & Lappan, 2015).

As has been outlined, in some countries there is a tradition of purposefully fos-
tering noncounting computation from an early age, whereas in many others it is 
common to encourage children to use counting for adding and subtracting at least 
until the end of first grade.

However, given the empirical evidence and theoretical considerations outlined in 
the preceding sections, we can assume that arithmetic instruction, for the benefit of 
children’s further development, should strive to enable children to add and subtract 
without counting as soon as possible. To reach that goal, it seems helpful to first 
concentrate on elaborating and consolidating a viable part–whole concept of num-
bers and then draw on that concept to convey conceptual understanding of DFS and 
procedural fluency in using them.

There are numerous sound and quite detailed proposals on how to implement 
these principal considerations in daily classroom work (e.g., Gaidoschik, 2007; Van 
de Walle, Karp, & Bay-Williams, 2015). We definitely need more evaluation and 
design research studies to refine these concepts and adapt them to different class-
room conditions. However, the by far greater challenge for the time being is to bring 
into classrooms what mathematics education already knows about how to overcome 
computing by counting. It takes adequately educated teachers to put that into action, 
and studies like those by Gaidoschik and colleagues (2017) and by Pfister, Moser 
Opitz and Pauli (2015) show how difficult this is even for those teachers who will-
ingly participate in in-service development programs. As long as we have not met 
that challenge, it seems like a sound hypothesis that the large number of children who 
currently do not reach basic fact fluency is due to adults’ teaching difficulties.

To avoid misunderstandings: This is not to say that whatever we may eventually 
achieve in raising the effectiveness of classroom instruction across the nations, we 
should expect to hereby eliminate differences between children regarding how eas-
ily, fast, deeply, and comprehensively they acquire arithmetic abilities. Presumably, 
there will always be children who struggle to reach a higher level. For the time 
being, though, a large number of children receive arithmetic instruction over the 
years and still leave school without even the most basic of these abilities, fluency 
with basic facts being one of them. Research of the kind reported in this chapter 
gives reason to hope that we could reduce this number drastically through changes 
in the ways we teach. This is the one essential message of this chapter.
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The other is that theoretical considerations (e.g., Van de Walle, 2004; Wittmann, 
2015), as well as empirical evidence (e.g., Gaidoschik, Deweis, & Guggenbichler, 
2018; Moser Opitz, 2001) strongly suggest that those children who presumably 
need more than state-of-the-art classroom instruction to acquire basic mathematical 
competence indeed need more, but not something substantially different from what 
is recommended for all children.

To specify this hypothesis for the subject of this article: Some children seem to 
need more thought-provoking impulses to acquire a part–whole interpretation of 
numbers and use it for problem solving (Gaidoschik & Beier, 2017). To do so, they 
need more support in how to interpret and use material (including their own fingers) 
and visual representations so they may detect the parts within the whole and reflect 
the part–whole relation comprehensively (Gaidoschik, 2010; Schultz et al., 2017). 
To autonomously apply any single DFS, they may need more guided instruction, 
always geared at understanding (Gaidoschik, 2007). In many cases, they will simply 
need more time to do so and more feedback on what they do (Lorenz, 2003)—more 
than an individual teacher is able to offer in a regular classroom.

If so, a good school system would supply, in addition to highly qualified class 
teachers, equally highly qualified supporting teachers, who work as team teachers 
or with small groups of children or foster individual children on a one-to-one basis. 
This would substantially boost the possibilities to adapt the didactical measures 
outlined in this chapter to the individual needs of these children. As has been stated, 
we need more research to refine existing concepts on how to foster basic fact flu-
ency. Yet, there is no indication that one special group of children would need 
completely different concepts. A strong argument against such an assumption 
stems from the mathematical content, which is the same for all children, and pre-
defines which steps have to be taken to make further steps possible (Wittmann, 
2015). To develop instructional designs that make this content feasible for all chil-
dren is the job of mathematics education. To install a school system that is fit to 
implement these designs—including, above all, a sufficient number of adequately 
educated teachers—is not the job of mathematics education or any other science, 
but of politics.
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Chapter 7
Development of Number Understanding: 
Different Theoretical Perspectives

Daniel Ansari

 Introduction

In this section, five different perspectives are presented on the development of 
numerical understanding and mathematical disabilities. Different groups of experts 
present neurocognitive and developmental perspectives on mathematics as a com-
petence, as well as low achievement of mathematics from sociological and didactic 
perspectives. These different perspectives and opinions about learning and not 
learning mathematics raise several questions. Using these questions as a starting 
point, I try to put these chapters into a broader perspective about the current state in 
research and practice and what challenges and unresolved issues we have in this 
field of research.

 What Kind of Perspectives on Learning Mathematics Have 
Developed Most During the Last Decade?

Research on the development of numerical and mathematical cognition continues to 
be heavily influenced by a theoretical framework that posits that humans are born 
with a sense of number and that this “number sense” is the basis upon which sym-
bolic numerical and mathematical abilities are built (Dehaene, 1997). I would say 
that a large proportion of research that approaches the development of numerical 
and mathematical competencies from psychological and neuroscientific 
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perspectives has focused on better characterizing “number sense” and studying its 
developmental trajectory and influence on the acquisition of higher-level, symbolic 
numerical and mathematical abilities (Feigenson, Dehaene, & Spelke, 2004; 
Libertus & Brannon, 2009). I think there has been a tremendous amount of develop-
ment in this field. We have learned much more about children’s numerical compe-
tency development; we have also gained tremendous insights into how nonhuman 
animals process number and what similarities there exist between humans and non-
human species. We know much more about the neural correlates of number process-
ing from large-scale brain systems that seem to be involved when we process 
numbers and engage in calculations to the sensitivity of single neurons to numerical 
quantity (Nieder & Dehaene, 2009). The behavioral and brain imaging data from 
infants, children, adults, and nonhuman primates has been taken to suggest that 
there are dedicated systems for the representation and processing of numerical 
quantity which exhibit both phylogenetic and ontogenetic continuities.

Notwithstanding, there have also been challenges to the position that humans are 
born with a sense of number which provides the ontogenetic foundation for sym-
bolic numerical and mathematical abilities (Gebuis, Cohen Kadosh, & Gevers, 
2016; Leibovich & Ansari, 2016; Reynvoet & Sasanguie, 2016). There currently 
exists a vibrant debate in the field around this question. Researchers have ques-
tioned the degree to which the purported innate sense of number scaffolds human 
symbolic numerical abilities. Moreover, research on how numerical information is 
extracted from arrays of objects has highlighted the roles played by non-numerical 
variables such as density and area in the processing of numerical information (for 
an extensive review with commentaries see: Leibovich, Katzin, Harel, & Henik, 
2016).

 Have Some Views About MLD Dominated the Discussion?

The view that we are born with an innate sense of number has dominated the 
discussion. This is, of course, not surprising because the search for what the ori-
gins of our numerical abilities are lies at the heart of research into numerical and 
mathematical cognition. Any developmental account of numerical and mathe-
matical competencies must specify the ontogenetic starting point of such abili-
ties. It is therefore important that current debates around the origins of numerical 
abilities continue. I think it is fair to say that we have yet to have any consensus 
on fundamental questions such as “how do children learn the meaning of number 
words”? We are, in my view, still far away from resolving some of the most fun-
damental questions. At the same time, there are numerous other questions in the 
field of numerical and mathematical abilities that are in sore need of attention. 
These topics have been somewhat neglected because of the preoccupation with 
the origins of numerical abilities.
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 Have Some Perspectives Got Too Little Attention in General 
Discussion?

There are a number of topics that I feel have gotten too little attention. What follows 
below is not meant to be an exhaustive list, but perspective and approaches that 
have, in my view, not received sufficient attention despite repeated calls for doing 
so:

 1. First of all, I think there needs to be more research on older children with math-
ematical difficulties. When I talk to educators about research on early number 
development and predictors of individual differences, I invariably get the ques-
tion: How should we help older children who still lack foundational skills and 
concepts? I do not have the answer to this critical question. So much research in 
our field is focused on young children and how to scaffold mathematical learning 
from a young age, but less effort has been devoted to understanding individual 
differences in higher-level numerical and mathematical learning and how cogni-
tive science, psychology, neuroscience, and educational research might help us 
to address the issues older children and younger adults clearly face.

 2. Secondly, we need to continue to move beyond models of mathematical learning 
difficulties, such as dyscalculia, that posit that such difficulties are caused by 
very specific impairments to domain-specific representational systems for num-
ber. Instead, we need to embrace the growing data that suggest that mathematical 
learning difficulties are highly heterogeneous and, importantly, very rarely occur 
in isolation of other difficulties, such as developmental dyslexia or ADHD (Fias, 
Menon, & Szucs, 2013; Kaufmann et al., 2013). Researchers, including myself, 
have viewed comorbidity of mathematical learning difficulties with learning 
challenges in other domains as a confound. This view was driven by the bias to 
find highly specific causal factors, such as specific genes, specific brain regions, 
and behavioral impairments on extremely basic (thus presumably biologically 
primary) behavioral tasks of numerical processing. Therefore, children who did 
not present with “clean” deficits were often excluded from empirical investiga-
tion since the study of these children would not inform a better understanding of 
domain-specific causal factors of mathematical learning difficulties. It is now 
clear from research in genetics (e.g., Kovas & Plomin, 2007) and neuroimaging, 
that there are many factors that are shared between different learning disorders. 
Thus, researchers need to embrace the overlap between disorders, better try to 
understand its causes and derive models for the understanding of developmental 
learning difficulties that go beyond very circumscribed, domain-specific causal 
factors.

 3. Researchers such as myself have not sufficiently included what is known about 
the cultural history and cross-cultural variability in the systems used for number 
notation, spoken number words, and the kind of artifacts used to represent num-
ber (Beller & Bender, 2008; Bender & Beller, 2013; Núñez, 2017). Given that 
numerical symbols, such as Arabic numerals, have had a relatively short history, 
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it is, in my view, important to also include anthropological data and perspective 
in the study of the cognitive and brain processes that underlie numerical and 
mathematical cognition and the associated developmental trajectory. By not only 
focusing on the possible evolutionary antecedents and through the additional 
integration of historical and anthropological data, we will gain a richer under-
standing of the diversity of human representational systems for symbolic num-
ber. I believe understanding the cultural and historical factors that have shaped 
our numerical and mathematical abilities will provide us with greater insight into 
developmental processes and the roles played by different cultural practices and 
language.

 4. Over the past decade or so, there has been a growing interest in the role that 
parents play in their children’s numerical and mathematical development. In this 
vein, factors such as parental number talk (Gunderson & Levine, 2011), their 
ability to enhance children’s mathematical skills through and the role played by 
parental mathematical anxiety have been studied (Maloney, Ramirez, Gunderson, 
Levine, & Beilock, 2015). While this line of work is undoubtedly valuable, the 
majority of the extant studies are likely reporting inflated effect sizes with respect 
to the effect of parental factors on children’s numerical and mathematical skills. 
This is because children and their parents share not only an environment but also 
genes. Therefore, without, at least partially, accounting for the biological factors 
that might explain relationships between parental and child factors, the environ-
ment is overestimated. One way to better understand the roles played by parents 
is to control for the numerical and mathematical abilities of parents (van Bergen, 
van Zuijen, Bishop, & de Jong, 2017). This would allow for an indirect control 
of biological factors and thus yield more accurate estimates of the effects of 
particular parental behaviors on their children.

 5. Finally, and to my mind of the greatest importance for the progress of the field, it 
is necessary that influential effects in the fields of numerical and mathematical 
cognition are replicated. It is well established that many influential effects in the 
social sciences have been found to have a surprisingly poor replication rate (Open 
Science Collaboration, 2015). This implies that many theories may be built on 
shaky foundations and are in dire need of revision. In order to build a cumulative 
science of numerical and mathematical cognition, where every advance is built on 
foundations that are represented by replicable effects and findings, it is necessary 
to come together as a field to conduct multi-lab, registered replication studies of 
key findings in the field (Munafò et al., 2017). For example, theories that postulate 
that we are born with a sense of approximate number are built, at least in part, on 
the evidence that infants and newborns can discriminate between dot arrays and 
numbers of sounds. While I do not mean to challenge, a priori, the existence of 
such effects, I believe that our confidence in key theoretical accounts concerning 
the ontogenetic foundations of numerical competencies would be significantly 
strengthened by adequately powered, registered replication studies of the infant 
number processing studies. Similar efforts are underway in other domains of infant 
cognition (see http://babieslearninglanguage.blogspot.ca/2015/12/the-manyba-
bies-project.html). This need applies equally to many other studies in the field of 
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numerical cognition. For example, we reported in 2007 that children with develop-
mental dyscalculia exhibit reduced activation of their right intraparietal sulcus (a 
brain region thought to be critical for numerical and mathematical processing) 
during a dot discrimination task (Price, Holloway, Räsänen, Vesterinen, & Ansari, 
2007). However, the data reported involved a comparison of eight children with 
developmental dyscalculia and eight age-matched typically developing controls. It 
is clear that the results we reported in 2007 were woefully underpowered (Button 
et al., 2013). There is a need for replicating findings such as these and many more. 
Researchers in the field of numerical and mathematical cognition, including 
myself, must be prepared for accepted wisdom to be shattered and for a process of 
revision to be initiated.

 Can We Compare the Results from Studies on Dyscalculia 
from Different Countries to Each Other?

It is difficult to compare the performance of dyscalculics across countries because 
of the way in which dyscalculia is typically defined. Most children with dyscalculia 
are diagnosed on the basis of their performance on standardized tests. Therefore, 
their performance is always measured against the mean performance of a particular 
population. So, for instance, one might decide that children will be labeled as hav-
ing dyscalculia, more important to study if their performance on a set of standard-
ized tests falls below two standard deviations of the mean of the population of which 
they are member of (country A). Now consider children in a different country 
(country B) where the mean is two standard deviations higher. In other words, the 
population means of the two countries differ by two standard deviations. It follows 
mathematically that children who would be labeled as having dyscalculia in country 
B would be considered to fall within the average range of mathematical ability in 
country A.  Therefore comparing “dyscalculics” from countries A and B would 
result in the comparison of children with very different mathematical abilities. This 
does not necessarily imply that the factors that contribute to the low mathematical 
performance of children in both countries may not be similar. It may be that the 
causal factors are very comparable but that the educational system in country B is 
more effective at shifting the mean of the countries math performance distribution 
than country A.

A more meaningful comparison of children with mathematical difficulties across 
countries would be to move away from the present way of selecting children on the 
basis of arbitrary cutoff points (e.g., two standard deviations below the mean) 
toward studying the predictors of individual differences in children’s mathematical 
skills across countries. If, say, number comparison predicts individual differences 
across countries, this would imply that children with mathematical difficulties 
across countries all have weaknesses in number comparison. Put differently, if we 
accept that there will be mean differences in the level of performance of children 
defined as presenting with dyscalculia, then we can begin to investigate more inter-
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esting questions concerning both the common mechanisms (despite mean differ-
ences) that underpin mathematical learning difficulties across countries. We can 
also learn from high-performing countries about the ways in which they succeeded 
in raising the mean level of performance of students in their systems (and therefore 
also the level of performance of children with dyscalculia).

Finally, it is important to mention that there are, of course, other approaches of 
determining whether a child has a mathematical learning difficulty that go beyond 
using cutoffs on standardized measures. In particular, approaches such as response 
to intervention/instructions may be very fruitful in the context of international com-
parisons of dyscalculia. Here students are identified as having difficulties when they 
persistently fail to respond to instruction (even when that instruction is varied and 
uses different approaches to teach the same problems).

 How Far Are We in Understanding the Mathematical Brain?

We have made tremendous progress in understanding the brain circuitry that under-
pins our numerical and mathematical abilities (Ansari, 2008; Cantlon, 2012; 
Dehaene, Piazza, Pinel, & Cohen, 2003). Not only have noninvasive neuroimaging 
methods helped us to better understand what brain regions, at a large scale, are 
involved in numerical and mathematical processing, but we know more about 
how single neurons might process numerical quantity (Nieder & Dehaene, 2009). 
Furthermore, we are beginning to make progress in understanding how the mathe-
matical brain develops (Peters & De Smedt, 2017) and we are starting to understand 
how mathematical processing interacts with other domains such as language and 
visuospatial cognition in the brain.

 What Are the Key Questions to Focus on Next to Improve 
the Understanding of the Mathematical Brain?

While I strongly believe that the developments in the study of the neural mecha-
nisms have progressed significantly, I can also see outstanding questions (at least a 
selection):

 1. How replicable are the data on the neuroscience of numerical and mathematical 
cognition? As is the case for most other domains of cognitive neuroscience, what 
we know about the neural correlates of numerical and mathematical processing is 
built on a body of neuroimaging studies with small samples. This necessarily 
means that the body of knowledge that we have garnered to date is underpowered. 
Therefore, we need studies into the neural basis of numerical and  mathematical 
cognition that are more adequately powered and thus have larger sample sizes. 
This will require researchers in our fields to collaborate more intensively on 
collecting larger datasets.
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 2. Some may argue that we have made progress in understanding the neural corre-
lates of mathematical learning problems, such as developmental dyscalculia. My 
impression is that we have not. The research on the neural mechanisms under-
pinning mathematical learning difficulties is conflicting and not conclusive. As 
is the case for the study of mathematical learning difficulties more generally, the 
study of their neural correlates is confounded by small sample sizes, vast differ-
ences in the classification of what constitutes a mathematical learning disorder 
(Szűcs, 2016), and publication bias (studies that report differences in functional 
and structural neuroanatomical correlates between children with and without 
mathematical difficulties are far more likely to be published than studies show-
ing the contrary). Furthermore, as I have argued above, I believe that we need to 
move beyond trying to find the “unique” signatures of mathematical learning 
difficulties to better understand how mathematical difficulties intersect with 
other domains of learning and dysfunctions therein.

 3. Research on the neural architecture that supports numerical and mathematical 
cognition, including my own research, is still primarily correlational in nature. We 
tend to try and understand the neural correlates of a particular task that we are 
interested in. There is nothing wrong with that, of course, and such lines of 
research will and should, in my opinion, continue. However, we need to have 
more investigations of how experimental manipulations change the neural net-
works engaged in numerical and mathematical cognition (Zamarian, Ischebeck, 
& Delazer, 2009). Training studies can help us to better understand causal mecha-
nisms and to inform our understanding of the direct link between neural mecha-
nisms and behavioral outcomes. For instance, there is much interest in whether 
training nonsymbolic representations of magnitude can enhance symbolic num-
ber processing (e.g., whether the numerical magnitude processing mechanisms 
apparently available to infants and nonhuman animals can be trained and, impor-
tantly, whether their training-induced enhancements will lead to improvements in 
symbolic number processing (e.g., symbolic calculation)). This hypothesis should 
be tested at the level of the brain: Can the neural mechanisms underlying nonsym-
bolic number processing be changed and does that change affect the brain repre-
sentation of number symbols? Beyond resolving similar theoretical questions, 
training studies provide the opportunity to inform education questions. For exam-
ple, do the particular materials used to train a particular mathematical concept 
differentially influence the brain mechanisms engaged, and, in turn, do those 
changes have a differential impact on behavioral outcomes?

 Are There Some Breakthroughs in Science that You Think 
Would Change Our Picture in the Near Future?

The breakthroughs in science that will change our field are already beginning. 
Scientist are realizing that in order to make real progress, the traditional model of 
each lab running studies by themselves should come to an end. To truly make progress 
and to be able to study phenomena of interest in a serious way, we need to 
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collaborate at a larger scale. We need to collect data using the same methods across 
laboratories and combine our data to be able to make the most powerful inferences. 
In this way, it will also be necessary to engage in more adversarial collaborations. 
That is researchers who hold opposing theoretical positions should be collaborating 
with one another to resolve their disagreements by agreeing on experimental proto-
cols that would help to arbitrate their positions and then to run those preregistered 
empirical studies in their labs and agree a priori to publish their results no matter 
which (if any) of their theoretical positions is supported by the data.

 What Is the Role of Spontaneous Focusing on Numerosity 
(SFON) in MLD?

That is a rather difficult question. I suspect that the neurocognitive mechanisms that 
underpin SFON are, at least in part, the same ones that underpin visual attention. I 
think it is highly unlikely that SFON is underpinned by very specific neurocognitive 
processes that do not apply in other domains of cognition, such a single brain area 
or even a dedicated network of regions. Instead, it is, in my estimation, more likely 
that SFON is linked to processes of visual attention. For instance, one might hypoth-
esize that processes of so-called bottom-up or stimulus-driven attention play a role 
(Corbetta & Shulman, 2002). These attentional processes must, at some level, inter-
act with representations of number and the cardinality of sets. In general, any pre-
cise account of the mechanisms underpinning SFON must tease out the relative, 
interactive processes of the process of “focusing” and pre-existing conceptual num-
ber knowledge. In order to SFON, children must be capable of representing the 
cardinality of the sets they are focusing on.

I think it is not fruitful to look for a core cause of developmental dyscalculia and 
related mathematical difficulties. Instead, future research should embrace the het-
erogeneity of mathematical difficulties and the associated developmental trajecto-
ries. Having said that, it needs to be acknowledged that, as discussed by Lethinen 
et al., individual differences in SFON have been found to correlate with variability 
in students’ concurrent and future performance on measures of mathematical com-
petence. Therefore, it is highly likely that children with mathematical learning dif-
ficulties also show lower levels of SFON. However, that does not mean that SFON 
is the core cause of mathematical learning difficulties. Given that, to date, our 
understanding of the relationship between SFON and mathematical competence 
comes from correlational studies, it is also a possibility that lower frequency of 
SFON behavior among children with mathematical learning difficulties is driven by 
their poor conceptual understanding of number. In other words, if children have 
impoverished representations of the cardinality of sets, they may not be able to 
“spontaneously” deploy this knowledge to engage in behaviors that can be charac-
terized as SFON. Taken together, I believe it is useful to study SFON in the context 
of children with mathematical learning difficulties, but I believe the causal relation-
ship between SFON and such difficulties may be far from straightforward.
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 Can a Child Be at Different Levels in Different Math Contents 
in the Way Described by Reiss or Is the Development More 
Based on Some General Factors?

I strongly believe that a detailed characterization of the difficulties that children 
with MLD have is critical in order to inform educational strategies. The levels pro-
posed here can be easily identified by educators and can help them to design strate-
gies to scaffold the skills and understanding that a given student is lacking. In this 
way, what Reiss proposes is likely to be incredibly valuable for educators working 
with children who have mathematical learning difficulties.

As for the question of whether more general factors are involved, I think there is 
ample evidence that competencies such as working memory, inhibitory control, and 
attention are associated with mathematical learning difficulties (Cragg & Gilmore, 
2014). However, I am not convinced that measuring such variables in the context of 
assessing the specific difficulties that individual students have (and the level of their 
difficulties) is as essential as characterizing the specific difficulties within the 
domain of learning (in this case mathematics). Consider the following two 
scenarios:

 1. A teacher receives a report that states that a student who they know has mathe-
matical learning difficulties scored low on a test of working memory.

 2. A teacher uses the diagnostic scheme put forward by Reiss and discovers that the 
student who presents with mathematical learning difficulties has real difficulties 
understanding the place value structure of the decimal system. For example, if 
the student is asked to write down “thirty-six,” the student writes 306.

Now consider which of the two scenarios is more informative from a pedagogi-
cal point of view. I think it is likely that most educators would be able to have a 
clearer action plan based on the second compared to the first scenario. Of course, 
being aware of both scenarios may lead to the richest pedagogical interventions. 
However, without a clear characterization of the mathematical difficulties that stu-
dents experience, educators will be less well equipped to help their students.

 What Are the Roles of Informal and Formal Learning 
in Mathematics?

The distinction between informal and formal learning is a useful one in mathemat-
ics education. Currently most (but by no means all) educational systems are struc-
tured in such a way that young children, before they enter elementary school, are in 
environments that emphasize play, unstructured time, and exploration. When chil-
dren enter grade 1, they often find themselves in a strikingly different environment 
in which they have much more structured time, homework, etc. Therefore, the dif-
ference between informal and formal education is imposed by the structures of 
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education. In contrast, I am not convinced that the differentiation between informal 
and formal learning is one that is empirically useful. I am not aware of any data that 
suggest that there is a qualitative difference between the neurocognitive systems 
that operate in so-called informal and formal contexts of learning. In other words, 
for me, the difference between informal and formal learning is a structural, contex-
tual one, not one that reflects the way in which children learn.

What is the Role of Socioeconomic Status in the Development 
of Math Skills

It is widely agreed that SES is a very broad index of the environments in which 
children develop. It can be reflective of the educational opportunities they are 
afforded, the amount of time that they spend with their parents, and the amount of 
input they consequently receive from their parents and other family members. I 
think the mechanisms by which SES exerts its effects on individual differences in 
children’s math skills are complex. Furthermore, the mechanisms by which SES 
affects individual differences are poorly understood. As much as I believe that it is 
important to study the mechanisms by which SES exerts its effects, I think it is 
equally, if not more important to study how the environment can be structured to 
counteract the effects of SES on academic outcomes. I will go into more detail on 
this in my answer to the next question.

Kotzé (see Chap. 5) gives an example that children in different countries with the 
same absolute SES perform at different levels of skills. The SES in that chapter is 
defined based on only buying power. One of the questions for research is what other 
aspects of SES should be included into the equation? For example, cross-national 
comparisons, such as PISA (programme in International student assessment), have 
consistently revealed that the effect of SES on educational outcomes varies between 
countries. The relationship between SES and educational attainment is sometimes 
referred to as the “SES gradient.” In educational systems that strive for a high degree 
of equity (affording the same educational opportunity and quality to all learners 
regardless of neighborhood, etc.), the gradient is flatter. Therefore, it is entirely pos-
sible that in one country, low SES might be associated with negative outcomes, 
while in another the association may not be as severe. I think the lesson from these 
findings is that educational policy has the potential to work against the association 
between SES and educational attainment. This is why I think it is critical to examine 
closely how one can structure the educational system in such a way that it does not 
exacerbate the negative effects of SES. Of course, there might also be other policies 
that could lessen SES differences within any countries, such as universal income or 
greater tax breaks to low income earners. However, in the presence of SES differ-
ences, the educational system can be structured in a way that lessens the gradient.
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 What Is the Interplay Between Different Perspectives 
of Numerical Development? Do They Talk to Each Other?

Like in any field of science, there should, of course, be more cross talk between dif-
ferent perspectives. But that is easier said than done. How many conferences have 
you been to where the conclusion is something along the lines of “We need more 
interdisciplinary research” or “There should be more collaboration,” and how many 
times have you gone away and actually changed the way you do your research and 
with whom you collaborate? I think we all know the answers to these questions. 
This is not to say that it is impossible, and it definitely does happen, but to a lesser 
degree than we might hope. This is not because researchers are lazy or unmotivated 
to collaborate with others. However, researchers do operate within different circles 
of a disciplines’ Venn diagram, and therefore their views and approaches are only 
ever partially overlapping with that of others. Despite the growing access to infor-
mation from across different fields, all scientists are biased toward theories and 
methodological approaches that are close to their own expertise, theoretical per-
spective, and methodological toolkit.

 How Could We Improve the Discussion Between Different 
Views?

The most likely answer, given our current models of doing science, would be to 
hold a conference and publish an edited volume that brings together individual 
researchers with different perspectives. But I am not convinced that this model has 
been successful in providing the fertile grounds for greater interdisciplinary, seri-
ous consideration of differing perspectives, and the growth of new knowledge that 
builds on different views. In my view, real breakthroughs can only be achieved by 
incentivizing interdisciplinary discussions and research through funding and insti-
tutional support structures. To put it bluntly, researchers, like most individuals, 
follow the money. That is not to deny that we all have good intentions, but we also 
need to keep our labs and research programs funded. Therefore, unless there are 
real changes in the way that research is funded and the way that institutions mea-
sure our success, the journey of truly integrating different viewpoints, research 
methodologies, and theories will continue to be difficult. Again, this is just my 
perspective. I am truly optimistic that change is on the horizon. However, change 
is not just up to the individual investigator and their good will and idealism, but 
change needs to be systemic and provide the means and infrastructure to make it 
happen. We need different grant funding systems and different metrics for hiring 
and promotion of researchers.
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 Will Science Change Math Education in the Near Future?

I do not believe that science can directly change math education, as in prescribing 
how educators should teach, nor does it need to. In this way the difference between 
evidence-based and evidence-informed is really useful. I do not think that any single 
empirical research study, or even a body of research findings, will directly change 
the way that educators work on a daily basis. It might inform how they structure 
their classrooms, the materials they use, the way they space activities, etc. But I 
don’t think that science will fundamentally change math education. Education is a 
dynamic process between adults who are educators and children who are part of a 
social system that demands them to be in classrooms. I view the role of scientific 
research on learning and development as one that is informative rather than pre-
scriptive. By stating this, I do not wish to diminish the role that empirical research 
has to play in education, rather I wish to acknowledge the complexities of the edu-
cational landscape that are informed by the sociocultural context, the priorities of a 
particular educational system, and the training and attitudes of the educators within 
that system. That is far from saying that research is irrelevant – no it is critical, but 
not in a prescriptive way but in an informative one. Researchers have, in my view, a 
social responsibility to make their evidence available to educators and educational 
policy makers. But they cannot expect their insights and results to lead to immediate 
uptake. By the same token, researchers also have the responsibility of pointing out 
educational policy and practices that run counter to what the current received scien-
tific wisdom is. There needs to be a conversation and alignment between education 
practice and empirical research. Importantly, such as process of alignment needs to 
be bidirectional, research can inform math education, and, equally, math education 
can inform research.
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Chapter 8
Mathematical Learning and Its Difficulties: 
The Case of Nordic Countries

Pekka Räsänen, Espen Daland, Tone Dalvang, Arne Engström, 
Johan Korhonen, Jónína Vala Kristinsdóttir, Lena Lindenskov, 
Bent Lindhardt, Edda Oskarsdottir, Elin Reikerås, and Ulf Träff

The Nordic countries are located in the North corner of Europe and consist of 
Denmark, Finland, Iceland, Norway, and Sweden. They form a culturally and politi-
cally isomorphic group with tight relationships. These welfare societies share the 
ideology of a strong responsibility of the state on the well-being of the members of 
the society. The strong economies (World Bank, 2013) and high levels of taxation 
(see KPMG International, 2013) have been the guarantees for that the states have had 
the assets to organize the welfare including health, social services, and education. 
During the current millennium, the Nordic countries have consistently been at the top 
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of different international comparisons on welfare, health, quality of living, economic 
competitiveness, and even happiness of the citizens (Helliwell, Layard, & Sachs, 
2013). Likewise, these countries are similar in a high expenditure on education, rela-
tively small class sizes in schools, and long academic teacher education (see OECD, 
2012). Investing in education has been one of the core features of the success of these 
countries. Despite many similarities, there are differences how the educational sys-
tems work and how education is conceptualized. For example, Finland and Denmark 
have compulsory learning, while Iceland, Norway, and Sweden have compulsory 
schooling. Compulsory schooling means that a pupil is obliged to attend school, 
while compulsory learning means that the educational authorities are obliged to 
ensure that pupils acquire the knowledge laid down in the curriculum (Tomas, 2009).

One of the marked differences between the Nordic countries has been the results 
of the OECD PISA studies, where Finland since the first study in 2000 has been 
among the top performers in mathematics and Denmark significantly above OECD 
average, while the other Nordic countries have been close to the OECD average 
(OECD, 2013a). In PISA 2015, Finland’s and Denmark’s students performed 
equally high and significantly higher than students in the other three countries. 
However, in Denmark, Finland, Sweden, and Iceland, the trend of performance 
level since 2003 has been declining (OECD, 2016). The percentage of low perform-
ers (defined as below Level 2) was as low as 6 in Finland in 2006 but has raised to 
14% in the 2015 assessment. In other Nordic countries, the percentage of low per-
formers in mathematics has varied from 14% in Denmark in 2006 and 2015 up to 
27% in Sweden 2012. The latest TIMMS studies for fourth- and eighth-grade stu-
dents have shown similar trends (Mullis, Martin, Foy, & Arora, 2012) (Fig. 8.1).

Despite these differences at school age, the Nordic countries reach the world’s high-
est levels of numeracy in adulthood. In the recent study on the numeracy proficiency in 
adulthood (16–65 years of age), all Nordic countries topped the list together with Japan 
and the Netherlands (Iceland did not participate) (OECD, 2013b).

Likewise, the participation rates in adult lifelong learning and training have been the 
highest in the world in the Nordic countries (Eyridice, 2012). The high levels of 
basic skills in adulthood may be connected to the dynamic nature of the work life. 
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The Nordic countries had the highest percentage of workers who reported changes that 
affected their work environment (substantial restructuring or reorganization and an 
introduction of new processes or technologies) in their current workplace during the 
previous 3 years (OECD, 2013b). Continual changes in work life require  continuous 
training of employees to be successful. At the same time, the workers need to have 
strong basic skills to be able to assimilate new skills and ways to work and to adjust to 
the changes what digitalization and automatization bring. Those with low achievement 

a

b

Fig. 8.1 (a) Percentage of low performers (below Level 2) in Nordic countries in PISA studies 
2003–2015, (b) percentage of low performers in fourth grade in TIMSS 2012 and 2016
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Table 8.1 Comparison of the countries in different features of education and education policy

DK SE FI NO IS

Compulsory education (age)
6–16 7–16 7–16 6–16 6–16

Public expenditure on education, % of GDP (2007, source: Eurostat, UOE) (EU average 4,98%)
7,83 6,69 5,91 6,76 7,36

Ratio of pupils to teachers in ISCED 1 (2008, source: Eurostat, UOE)(EU average 16)
10,1 12,2 14,4 10,8 10,0

Decision-making authorities involved in developing and approving the principal steering 
documents for mathematics teaching
  Curriculum (a) Central Central Central Central
  Guidelines for teachers Central Central Regional/

school
All levels –

  School plans Schools Schools Schools Regional/
schools

Schools

Evaluation of the effectiveness of curriculum implementation
  External Yes Yes No No No
  School self-evaluation No Yes Yes Yes (b)
Assessment criteria prescribed
Learning objectives/outcomes Yes/yes Yes/yes Yes/no Yes/no Yes/yes
Recommended minimum taught time compared to total time
  Primary 15,3 13,5 17,5 17,2 15,1
  Compulsory secondary 12,9 13,5 11,8 11,0 13,5
  Total time primary, estimation 

for (9 years)
1200 900 (from 

2016 1125
912 1092 1200

Textbooks
  Autonomy Yes Yes Yes Yes No
  Monitoring of consistency No No No No No
Central level guidelines for teaching methods
  Prescribed or recommended Yes No Yes Yes No
  Types of grouping Yes No No No No
Low achievement
Surveys or report on low 
achievement

Yes Yes No Yes No

Central level support Yes (c) No Yes (d) Yes (e) No
Differentiation of curriculum 
content according to ability

No (f) No Yes Yes No (f)

Support for low achievers
  Standardized tests Yes No Yes Yes No
  Intervention of a specialized 

teacher
No Yes

  Small group tuition Yes No
Compulsory diagnostic tests at 
grades

Third, 
sixth, 
ninth

Third, 
sixth, ninth

Second

(continued)
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in mathematics are vulnerable in work life and often among the first to suffer from 
economic turbulences, or as Parsons and Bynner (2005, p. 7) state it, “Poor numeracy 
skills makes it difficult to function effectively in all areas of modern life.”

There are large differences how the educational systems in the Nordic countries 
(see Table 8.1) have responded to low achievement in mathematics at school age 
and how the educational system provides support both to the children with low 
achievement and to the teachers in the schools to work with these children. 
Therefore, it is reasonable to look at the similarities and differences how low 
achievement in mathematics is treated in these countries. To enlighten the similari-
ties and differences in the educational support systems on learning disorders in 
mathematics between the Nordic countries, we presented five questions.

Table 8.1 (continued)

DK SE FI NO IS

National surveys on motivation Yes No Yes Yes No
Strategy to increase motivation No Yes Yes Yes No
Lack of qualified teachers in 
upper primary education (% 
reported by principles)

2 2,6 2,9 17,8 7,6

Teacher training (advocated by central authorities)
Differentiating teaching for pupils 
with different abilities and 
motivation levels

No No Yes Yes No

Detecting and tackling pupils’ 
difficulties in mathematics

No No Yes No Yes

Source: Eurydice (2011)
(a) Denmark: National authorities develop and publish a document entitled Fælles Mål which 
includes central guidelines and objectives for mathematics teaching, but this is not defined as a 
curriculum in national regulations
(b) Iceland: School self-evaluation is obligatory, but schools do not have to focus on the  curriculum
(c) In Denmark, the Ministry of Education has produced a special document that contains several 
recommendations on how to address learning difficulties in mathematics. It recommends that 
mathematics teachers carefully observe low achievers, engage in a dialogue with them, and focus 
on what they can do, rather than on what they cannot do. Beyond assigning such students easier 
tasks, teachers should also guide them toward new strategies to cope with their  difficulties
(d) In Finland, the core curriculum contains guidelines on general support for students. The most 
common approach is early detection and support. The Ministry of Education organizes targeted 
in-service teacher training and maintains a website (10) with information on the most common 
learning problems in mathematics in the early school years. The site provides access to computer- 
assisted instruction methods for mathematics (Number Race, Ekapeli-Matikka, and Neure). In 
addition, specific tests for the diagnosis of learning problems are available for purchase from pri-
vate companies
(e) In Norway, the main elements of the national policy to reduce low achievement are based on 
early intervention, national tests and mapping (diagnostic) tests, and the integration of basic math-
ematics skills in all subject curricula. The national strategy, Science for the future: Strategy for 
strengthening mathematics, science and technology (MST) 2010–2014, and the National Centre 
for Mathematics Education (see Annex) are important agents in promoting mathematics education
(f) Same content but at different levels of difficulty
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 1. How are special needs in mathematics education (mathematical learning dis-
abilities, MLD) defined?

 2. What kind of support do children get at school for severe MLD?
 3. Who gives the support, and what qualifications they have for this work?
 4. Are the evidence-based assessment tools and intervention methods available?
 5. What are the key issues and current trends in MLD at the moment?

 Sweden

In Sweden, the legislative text does not use the terms MLD, “dyscalculia,” “math 
disabilities,” or even special needs in math education. Instead, the legislative text 
says that all children that are in risk of not attaining the national knowledge goals in 
a school subject have the right to special support, that is, some form of special edu-
cation. The legislative text says nothing about what kind of or how much support the 
children have the right to receive. It only says that the schools must have a compe-
tence for special education. It is the responsibility of a school to provide the child 
individually adapted and adequate support.

In practice, there is large variability how support is organized at the school level. 
For example, some municipalities/schools require that the child has an ICD-10- 
based (KSH, 2011; WHO, 2005) medical diagnosis for mathematical disabilities to 
receive any special support, whereas other municipalities/schools focus on the func-
tional level, which is in line with the legislation. Unfortunately, not all children 
receive the support that they need and have the right for it according to the law, 
because the schools do not have the required financial resources or the special edu-
cation competence. In principle, there are two types of support: individual support 
with special needs teacher (one-to-one teaching) and level-groupings in small 
groups (2–5 children) with special needs teacher or regular class teacher.

An additional problem in Sweden is that not all schools acknowledge the con-
cept or term mathematical disabilities (dyscalculia). Accordingly, it is very diffi-
cult to estimate the prevalence of children with mathematical disabilities. About 
15% of the students usually do not get a pass on the national test in mathematics 
for the final grade (Skolverket, 2013). Immigrant students or students whose par-
ents have low levels of education are overrepresented among those who do not 
reach the goals. There is great variation between schools and municipalities in 
performance levels. There are suburban schools in metropolitan areas with large 
numbers of immigrant students where the majority of students do not get a pass 
on the national test.

In Sweden, there is a considerable lack of special needs teachers on mathemati-
cal difficulties, because the university-based special needs teacher program started 
as late as 2008. This program is a 1.5-year-long training program for teachers. 
Therefore, most of the teachers responsible for helping children with MLD are not 
specialized to these pedagogical questions. The legislative text does not specify that 
the schools should have special needs teachers and/or special education teachers. 
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It only says that the schools must have special educational competence in some form. 
Likewise, there are no organized systems for continuing education or further training 
for special needs teachers or special education teachers.

The schools do not use any evidence-based assessment tools or intervention 
methods because there are none available. Furthermore, there are very few experts 
in Sweden who do assessments on MLD.  However, at Danderyds Hospital in 
Stockholm, which is one of the few places where this kind of assessments is done, 
they use the British Dyscalculia Screener (Butterworth, 2003), and recently they 
have started to use the Panamath test (Halberda, Mazzocco, & Feigenson, 2008).

The new Swedish Education Act from 2010 stipulates that the education and 
instructions used in Swedish schools must be founded on scientific evidence and 
established experience. Thus, in the future, the Swedish school authorities will 
probably put more emphasis on matters regarding evidence-based teaching methods 
and evidence-based assessment tools. There is, however, some skepticism about the 
“evidence movement” developed in Anglo-Saxon countries.

 Norway

The Norwegian educational policy is founded on the principles of inclusion and 
adapted education. However, to develop educational practices that achieve these 
overarching principles is a continuous challenge (Haug, 2010; Mathisen & 
Vedøy, 2012).

Laws and regulations in Norway do not define or apply the terms dyscalculia and 
mathematical disabilities. The term learning difficulties is used. According to the 
Educational Act, the focus is on pupils who do not benefit satisfactorily from ordi-
nary teaching and thereby have the right to be assessed for being in some kind of 
special needs (See section “A Lack of Certain Arithmetical Abilities or a Certain 
Way of Doing Arithmetic?” in Chap. 6). Pupils should be referred to educational 
and psychological counseling service (EPS) for an expert assessment. The expert 
assessment shall consider and determine the following:

• The pupil’s learning outcome from the ordinary educational provisions
• Learning difficulties the pupil has and other special conditions of importance to 

education
• Realistic educational objectives for the pupil
• Whether it is possible to provide help for the pupil’s difficulties within the 

ordinary educational provisions
• What kind of instruction is appropriate to provide (See section “Evidence on the 

Impact of Instructional Efforts Focused on Non-counting Strategies” in Chap. 6)

In 2013 an amendment became in force that describes more details about admin-
istrative procedures in connection with decisions concerning special education. 
“Before an expert assessment is undertaken, the school must have considered and 
tested out, if relevant, measures within the ordinary education facilities that might 
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make the pupil benefit satisfactorily” (See section “Overcoming Computing by 
Counting as a Didactic Challenge” in Chap. 6).

This can be interpreted as pointing toward a more systematic problem-solving 
approach in line with recent response to intervention models (Glover & Vaughn, 
2010). Further descriptions or guidelines regarding how to assess satisfactory 
learning outcome and/or the substance of the local schools’ investigations are not 
provided. However, obligatory standardized national test (grades 2, 5, 8, and 9) is 
a part of the assessment of the children’s mathematics at school. The tests aim to 
be a tool for the teachers to adapt the teaching to each child.

An emerging use of the term dyscalculia is taking place in Norway, and related 
diagnostic practices evolve. There is, however, no unified and agreed upon defini-
tion overall related to mathematics difficulties. On this grounding, it is not straight-
forward to find the extent of pupils with MLD. If difficulties are defined as getting 
a low grade in mathematics in school (low achievers), the results from the exam of 
Norwegian 15-year-old pupils show that 35–40% got 1 or 2  in mathematics (the 
grading system 6–1, with 6 as the highest). In 2012–2013 the percentage of pupils 
with individual decisions about special needs education was 8.6% in total (The 
Ministry of Education, 2013). How many of them with special needs in mathemat-
ics is not known. In research, e.g., Ostad (1997) used the term mathematical disable 
for the lowest performing 10% of children in Norwegian schools and found this 
level of low performance to be stable through all school years.

The support provided by schools varies. Lessons can be given in smaller groups 
or individually, outside or inside the regular classes and classrooms. The quality of 
the support also varies in line with the helper’s background, from adequate support 
from a teacher in special needs with competence in mathematics to an assistant 
without teacher training at all. The use of assistants in special education increased 
from 2001 to 2008 (Bonesrønning, Iversen, & Pettersen, 2010).

Due to a lack of research-based knowledge about what goes on in segregated and 
inclusive special education in Norway, a joint research project was carried out from 
2012 to 2015. The project had as main research questions: “What special education 
is about, and what is its function?” (http://www.hivolda.no/speed).

One of the main points from the research is to build education for all on a profes-
sional ground, to understand the complexity of the challenges, and to make institu-
tions responsible, not only individuals (Haug, 2016). 

Laws and regulations in education put emphasis on identifying pedagogical 
needs and developing supportive actions. Categorizing students or groups by diag-
nostic labeling is subordinate. However, this question of diagnosis and labeling 
causes a tension in the public and is a constant topic of the educational debate.

New practices of assessment in contexts (Nielsen, 2013) are being developed and 
tried out by Statped and EPS (Daland & Dalvang, 2009, 2016). It adopts a stance 
toward curiosity on how mathematical learning situations can be understood and 
further developed. This assessment approach seeks to investigate and analyze relations 
between three main dimensions: developing as a person, learning mathematics, and 
participating in learning communities.
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 Iceland

Like in other Nordic countries, laws and regulations in Iceland do not define diffi-
culties with mathematics or dyscalculia at any school level. Schools set their own 
targets of competency in mathematics in coherence with the national curriculum 
guidelines, and pupils are offered support based on them, as well as on outcomes 
from standardized testing in mathematics in grades 4, 7, and 10. On those tests, 
between 17% and 24% of pupils score 0–22 points on a normal scale and fall into 
the category of poor performance (Sverrisson & Skúlason, 2012).

Support in schools for pupils with difficulties in mathematics is either in the 
hands of special education needs (SEN) teachers or mathematics (or other) teachers. 
In a survey from 2010 (Óskarsdóttir, 2011), different approaches to grouping and 
teaching were evident. In some schools, the tradition is that the SEN teachers work 
with pupils that need support in small groups of two to four pupils two to four les-
sons a week usually in a separate room. In other schools, pupils in the same year 
group are tracked into groups in mathematical classes depending on their level of 
performance, and the low-performing pupils work in small groups often with a 
mathematics teacher (or other experienced teachers) up to six lessons a week. In a 
minority of schools, SEN teachers or mathematics teachers go into classrooms and 
assist pupils that need support.

SEN teachers, according to the survey, map pupils’ abilities before they begin 
working with them and tend to work with tailor-made assignments. They use 
manipulatives and physical models in their teaching and do not necessarily follow 
the textbook that is used for mainstream mathematics teaching. The focus in their 
teaching is on how to learn algorithms as a means of solving problems and to estab-
lish ways of working with mathematics. Mathematics teachers on the other hand use 
the textbooks and other teaching materials used by the year group and tend to follow 
the curriculum guidelines. The emphasis in teaching is placed on basic algorithms, 
teaching pupils how to calculate but less on how to use manipulatives other than 
computers and calculators.

In Iceland teachers and SEN teachers have a university degree. There is one course 
aimed at preparing SEN teachers to teach mathematics, and it is called “Mathematics 
for all.” The focus of this course is on mathematics learning and how children develop 
mathematical thinking. The participants of the course also work to develop their own 
understanding of mathematics and discuss their different ways of approaching math-
ematical problems. The aim is to be able to understand children’s diverse ways of 
developing mathematical thinking. The main goal of the course is to prepare teachers 
to map pupils’ abilities and to learn how to support children to overcome their diffi-
culties in learning. Also, there is a discussion about diverse pupils’ difficulties and 
how SEN teachers need to collaborate with mathematics teachers in assisting pupils. 
The course is based on research on how children learn mathematics as well as on 
research on learning difficulties in mathematics and teacher development in teaching 
mathematics in inclusive settings (Guðjónsdóttir, Kristinsdóttir, & Óskarsdóttir, 
2007, 2009, 2010).
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One standard-based assessment tool is available to SEN teachers as well as 
mathematics teachers. This test, Talnalykill (Guðmundsson & Arnkelsson, 1998), is 
standardized and criterion-referenced in Iceland. Those who want to use it must be 
licensed. The test is made up of two main test components, written group tests, and 
individual oral testing. Some schools in Reykjavik and other places have used the 
written part of the test to screen third grades for mathematics difficulties. The test 
has been criticized for focusing mainly on children’s fluency in using traditional 
algorithms and not screening for other mathematical competencies such as the 
 ability to deal with mathematical language and tools. Many teachers in schools also 
find it too time-consuming, both regarding assessing the pupil and the time it takes 
to calculate the results. School psychologists also assess pupils for difficulties with 
mathematics using tests such as WISC-IV (Guðmundsson, Skúlason, & Salvarsdóttir, 
2006), which has been standardized and localized for the Icelandic context.

In the new national curriculum (Ministry of Education, Science and Culture, 
2011), the emphasis is on equal opportunities for all pupils regardless of their abili-
ties or circumstances. At the compulsory school level, all pupils have the right to 
compulsory education in their inclusive neighborhood school. The focus in the 
mathematics chapter is on the right of all children to develop their mathematical 
thinking and get the support they need to develop mathematical competencies 
(Mennta-og menningarmálaráðuneytið, 2013).

 Finland

The Finnish educational system is state governed and funded but municipally orga-
nized. The private school sector is practically non-existing. The leading principle of 
the educational policy has been to offer free, high-quality education to all in local 
schools. There are no standardized or national assessments in primary education, 
but every school and teacher have a freedom to decide how they monitor the devel-
opment and learning of their pupils. Typically, teachers use a lot of formal and 
informal exams to follow the progress of their students.

The number of pupils in special education increased rapidly in Finland during 
the last two decades from less than 3% up to 8.5% in 2010. At the same time, the 
number of children receiving part-time special education peaked at 23.3% (The 
Finnish Centre for Statistics, 2013) resulting in about one-third of children at the 
early-grade education to receive some individualized support. Even though support-
ing reading skills was clearly the largest subject, special needs education in mathe-
matics showed the largest growth (Räsänen & Koponen, 2011). In 2010 about 
one-fourth of part-time special education was devoted to mathematics. All these 
figures were world records at their time.

This unexpected growth in special education caused the Finnish special educa-
tion system to be reformed. It started to be a too expensive solution for treating 
individual differences in learning. The changes in the Basic Education Act were 
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passed in 2010. The new strategy emphasized inclusion over segregation and 
stressed the importance of a pedagogical approach over medical and psychological 
approaches. The aim was to change the old diagnostic terminology to a more peda-
gogically oriented language. According to the “new educational talk,” medical or 
psychological terms like mathematical learning disorders or dyscalculia were not 
recommended. Instead, the focus should be given to identifying pedagogical needs 
and taking supportive measures (Thuneberg et al., 2013).

The new support system is divided into three levels of intensity. General support, 
targeted to all children, is for temporary needs in learning. The second level, con-
cerning about 20% of children with needs for more regular support, is referred to a 
pedagogical assessment and to an intensified support with a time limit. Main tools 
are part-time special needs education, individual guidance counseling, and use of 
flexible teaching groups, as well as home-school cooperation. The third level, tar-
geted to about 5% of the children, special support, is provided for those who cannot 
adequately achieve their growth, development, or learning objectives through other 
support measures. The most serious cases, defined in the previous system, as having 
severe mathematical learning disorders, go through a broad pedagogical evaluation 
and if needed may study according to an individual learning plan (ILP). The peda-
gogical evaluation is coordinated by the school teachers and typically contains a 
consultation of a child psychologist who has many options for standardized tests of 
mathematical achievement to be used as part of the assessment.

Even though the system reminds the descriptive conventions of the response to 
intervention (RtI) model (Fuchs & Fuchs, 2007), it was not the foundation for the 
new model in Finland. The key differences between the RtI and the Finnish models 
are the absence of standardized assessments and structured evidence-based inter-
ventions in the Finnish model. In the Finnish model, the teachers are at the helm, 
and they are given freedom and responsibility to tailor the needed processes to 
support each child. This requires a well-organized system at the school level and 
continuous further training for teachers. In larger cities, there are “Mathlands,” 
which are support and learning centers for teachers. Likewise, there is a government- 
funded web service (lukimat.fi) run by Niilo Mäki Institute, a research center on 
learning disorders. The service offers information and free tools for early interven-
tions and assessment of reading and mathematical difficulties in early primary 
education.

In Finland, practically every school has qualified special education teachers with 
a university degree. The majority of them give part-time special education in col-
laboration with the classroom and subject teachers. Likewise, every school has a 
student welfare group for multi-professional collaboration. However, even though 
the school system offers a lot of individualized support, there are still a lot of chal-
lenges to meet. According to the two recent analyses from the national assessments 
on mathematical achievement from sixth (Räsänen, Närhi, & Aunio, 2010) and 
ninth grades (Räsänen & Närhi, 2013), close to half of the children identified having 
a low achievement in mathematics (about 5–6% in total) get only a little attention 
from the school or teachers.
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These results were a surprise because the criterion for low achievement in 
these evaluations was a combination of assessment and teacher’s identification. 
Therefore, the reason for ignoring these children with low achievement from support 
was not due to non-identification. The biggest challenge in Finland is not whether 
the pupils will be identified having mathematical learning disabilities but how to 
guarantee that they all are offered the support and care they need.

 Denmark

The Danish educational system is free and publicly funded. Even private schools get 
public funding for as much as 73% of the amount given to public schools, while the 
rest is paid by the parents (per private school student around 130 Euro per month). 
Private schools are getting more popular. While in 2000 the percentage was 12% in 
private schools, in 2016 the percentage was 18%.

All public schools prepare the students for national exam at the end of grade 9. 
From 2017, national compulsory assessments also include 14 digital, adaptive tests 
from grades 2 to 8, including 3 mathematics tests in grades 3, 6, and 8. Most private 
schools offer these national tests, too. For teachers, the aims of the national testing 
program are to provide a tool for teachers’ own formative assessment of their stu-
dents’ progress and a tool for monitoring their own teaching. Nevertheless, many 
teachers find it difficult to use the national tests according to these aims. Other assess-
ment tools are provided by publishers or the teachers themselves, and every school 
has the freedom to decide how to act upon test results. Besides, some schools and 
adult learning centers use the British Dyscalculia Screener (Butterworth, 2003).

In the present national curriculum guidelines for mathematics (Common Goals, 
2016), no student characteristics (i.e., special needs students) are described. But for 
some specific skills and knowledge, eight “attention points” are described: they 
refer to the level of basic skills that are a prerequisite in order to acquire sufficient 
skills later on.

The political agreement in the Parliament June 2013 on improving Danish school 
children’s performance in school subjects included initiatives for “students with 
dyscalculia.” On this background, a test for dyscalculia for grade 4 in Danish schools, 
guidelines for test takers, and ideas for follow-up assistance are being developed in 
2015–2018. A proposed definition of dyscalculia serves as a starting point: 
“Dyscalculia is an impairment that may influence education and work. Weak calcula-
tion skills are not matched by corresponding weak skills in other fields” (SFI, 2013). 
Expected percentage of students to be identified by this future dyscalculia test is as 
low as 1%. Many more students than 1% are facing mathematics difficulties and in 
need for focused support, either just in mathematics or also in other subjects, draw-
ing on social, psychological, physical, and didactical perspectives. Support in math-
ematics is needed for students in segregated special schools and classes as well as in 
regular school and classes.
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Since the Salamanca Declaration (UNESCO, 1994), professionals and politi-
cians have argued for increasing efforts for inclusion. The number of students in 
special education and the costs of special education have been steadily growing in 
Denmark. Data from public schools showed that in 2008–2009 support organized in 
special classes and special schools was provided for 5,6% of the students, while 
special education in ordinary classes was provided for another 8,7%. When these 
and other data were brought up and analyzed (Finansministeriet et al., 2010), politi-
cal efforts were intensified to include more students in ordinary classes and schools 
and to replace special education with another instrument. Economistic arguments 
were put forward but also humanistic arguments for better learning and well-being 
when “special students” would be more along with “regular students.”

As several special schools have been closed the last years, also some students 
with diagnoses as autism, Tourette syndrome, conduct disorders, or general learning 
difficulties are now being included in regular classes and schools. However, it has in 
many cases proven to be problematic, as several teachers have not been trained, are 
not knowledgeable, or are not given sufficient resources to create the needed inclu-
sive learning environment.

After the law “No 379 – 28 April 2012,” less than 9 specialized lessons of 60 min 
(equivalent to 12 lessons of 45 min) per week are not seen or regulated as a special 
education program. Support less than nine lessons is given as part of mainstream 
education. In instruction, can be used, inter alia, differentiated teaching, tracking for 
shorter periods, two teachers in class, teaching assistants who can both help each 
student and the class as a whole, or supplementary teaching and other kinds of sup-
port (www.uvm.dk 2015). Some programs for supplementary teaching are devel-
oped and used as an early intervention in mathematics; see, for instance, Lindenskov 
and Weng (2014).

Available data on mathematics in special education in special and regular schools 
is extremely sparse (Lindenskov, 2012). Nevertheless, the interest in special needs 
in mathematics has been growing since 2000 among school teachers in public and 
private schools, adult educators, high school teachers, school psychologists, special 
education teachers, consultants, teacher educators, and researchers. To increase the 
overall quality of school mathematics, 10 years ago a diploma program was set up 
for mathematics teachers in service to become “math tutors.” The 1-year program 
includes six modules, and one module focuses on students in mathematics difficul-
ties. Several seeds have been sowed for continuous interest and for development 
projects and initiatives at school and municipality levels. The educated math tutors 
have organized a national network covering about 1000 tutors spread over 800 out 
of 1400 schools.

In 2010, the association DanSMa (Danish Special Mathematics) was founded as a 
common meeting place for these professionals to discuss typical issues concerning 
people with special needs in mathematics in order to improve offers for children, ado-
lescents, and adults. DanSMa initiates public debates, disseminates the latest research 
on the character and background of mathematics difficulties, as well as on identifica-
tion and interventions, and arranges seminars with invited speakers (dansma.dk).
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 Summing Up

We presented five questions to analyze the similarities and differences between the 
Nordic countries how children with MLD are recognized and how their learning is 
supported. To summarize our findings, we go through the replies question by 
question.

The first question concerned how special needs in mathematics education and 
mathematical learning disabilities (MLD) are recognized and defined in each coun-
try. In all countries, the legislations recognize low achievement as a special ques-
tion, but none of those take any stance on ICD or other clinical diagnostic systems. 
There are no commonly accepted criteria for diagnosing MLD.  The assessment 
procedures used in Iceland, Denmark, and Norway are rather close to those defined 
in ICD, namely, combining standardized achievement tests and cognitive assess-
ment. In Finland, standardized tests and a psychological assessment are a common 
practice in a case with persistent learning disabilities, but giving a diagnostic label 
for MLD is exceptional. The educational reform in 2010 pushes Finland closer to 
the Swedish approach where there is a strong aim to avoid assessments and diagnos-
tic labeling and to concentrate on methods of inclusive education.

The Finnish and Icelandic schools have been extremely sensitive to define a child 
as having special needs in education (SNE). In Iceland, about 24% of children are 
defined as having special needs, while in Finland about 8% of children are defined 
as pupils with SNE, and an additional 20% receive a part-time special education. 
Denmark and Norway are in the middle, but a striking contrast is Sweden, where 
only 1.5% of children are defined having SNE (see Table 8.1, NESSE, 2012).

We can also contrast the Nordic models against the response-to-instruction mod-
els of special education. In the RtI models the extremes of a continuum could be 
called as “a standard protocol” at one and “a problem-solving approach” at the other 
end (Fuchs, Fuchs, & Stecker, 2010). In the standard protocol, assessment means an 
evidence-based intervention with standardized measures of improvement before 
and after the intervention to be able to define those with MLD and needs for more 
intensified and individualized special educational intervention. The problem- solving 
approach sees the assessments as a tool for a non-categorical evaluation of skills 
mastered and yet to be mastered and is used primarily to inform classroom instruc-
tion, rather than to guide decision-making on a diagnosis or for a more individual-
ized intervention. In other words, while the first stresses the importance of special 
education as a separate process, the latter sees that the special education should be 
blurred inside the regular instruction (for more about this discussion, see, e.g., 
Fuchs, Fuchs, & Compton, 2012).

If we try to put the Nordic models into this discussion and continuum, none of 
the countries follow the standards approach. The success of the RtI model in the 
USA has not attracted the policy-makers in Nordic countries to formalize the sup-
port systems or increase the usage of standardized tests. The general discussion has 
been more about how to develop inclusive models and lessen the needs for separate 
special needs education (e.g., Statped model in Norway). Finland is the only  country 
where SNE has been formally structured to levels of support with defined procedures 
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how the evaluation should be done when moving between the levels. This mimics 
vaguely the standards approach with pedagogical evaluations, but without specifica-
tions of assessment procedures. At the same time, there is an aim to push forward 
the inclusive problem-solving RTI model. Sweden has been an extreme on its reluc-
tance toward assessments and diagnostics with a strong inclusive ideology and aims 
to apply the problem-solving approach.

One of the largest differences between the Nordic countries lies in the details how 
children’s progress in learning is monitored. In Norway, Denmark, and Iceland, there 
are standardized assessments at specific grade levels, which are absent from the 
Swedish and Finnish systems. In Finland, the evaluation is totally in the hands of 
the teachers, who typically use a lot of formal and informal examinations to monitor 
the children’s development in their own classroom. The specific feature in the Swedish 
discussion on education has been the reservations against assessments, especially 
standardized assessments and the evidence-based, “quantitative” approaches.

The second and third questions were: what kind of support do children with 
MLD get at school, and what are the qualifications for the support personnel? In all 
countries, the importance of inclusive education is stressed, but still, a common way 
of dealing with MLD is still taking the child out of a classroom to individualized or 
to a selected small group receiving special education. In none of the countries, there 
are officially recommended or recognized intervention programs to be used. In 
Finland, there are research centers on learning disorders, which have developed 
widely used programs on learning disorders. According to a recent analysis (Sabel, 
Saxenian, Miettinen, Kristensen, & Hautamäki, 2011), these research centers have 
had a large role in shaping the Finnish special education. In Norway, a state-funded 
Statped is developing models for special education. However, their aim is not to 
produce evidence-based intervention programs but to guide teachers in professional 
development (cf. problem-solving approach in RtI). In Denmark, the development 
work is concentrated around the large network of diploma-trained teachers.

In Sweden, there has been a lack of specialized teachers, and the university train-
ing of special educators started as late as in 2008, while in Finland it started in 1959, 
and nowadays the majority of the Finnish universities have units of special educa-
tion offering studies up to the Ph.D. level. Therefore, it is not a surprise that from 
Nordic countries, what kind of, and who gives extra support to children with MLD, 
varies the most in Sweden. The Swedish educational office (Skolverket, 2009) has 
also raised concerns over the influence of increasing segregation in the Swedish 
school system after it transformed itself from one of the most centralized school 
systems into one of the most decentralized (Tomas, 2009). Even though the variance 
between schools in mathematics has increased in Sweden, the Nordic countries still 
have the smallest between schools variance in mathematics achievement in the 
world (Gaber, Cankar, Umek, & Tasner, 2012).

Our fourth question concerned the role of research and evidence-based approaches 
in interventions on MLD. Following the international trends, research interest toward 
MLD has been raising in all Nordic countries. There is a biannual Nordic Congress on 
special needs education in mathematics (NORSMA, The Nordic Research Network 
on Special Needs Education in Mathematics) where experiences on different types 
of assessment and interventions and on the effectiveness of special education are 
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shared. However, none of the educational systems require that special educational 
approaches should be evidence-based. Therefore, research-based tools, even though 
welcomed at schools, are not a standard, and it depends on teacher’s own activity, if 
they apply any of the models or instruments.

In all Nordic countries, an increasing number of researchers are pushing toward 
more research-based assessment and intervention procedures. The increasing under-
standing of the dyscalculic brain and changes in the diagnostic definitions encour-
age the researchers. At the same time, new questions emerge for the interplay 
between research and educational practice. The new competency-based curriculums 
redefine the learning aims and bring new colors to the practices at school and new 
challenges and research questions for studies on learning disabilities. It seems that 
the gap between everyday activities and aims in classrooms and the neuroscientific 
research is not getting narrower in the near future.

Our last question was about the future challenges. We can see a perennial battle 
between different views on the role of individualized special needs education and 
inclusive education. The puzzle how to teach the whole classroom effectively but at 
the same time individualize education within and outside of the classroom is an 
open question asking for scientific efforts. Neuroscientific research on learning and 
learning disorders gets the headlines (e.g., Coughlan, 2014) but still gives a little to 
the actual educational practices in classrooms. A lot of different views are presented, 
and the only thing where all parties agree is the lack of scientific evidence for any 
of the opinions.

According to the latest TIMMS study (Mullis et al., 2012), low motivation toward 
mathematics learning is more apparent and concerning feature of current Nordic stu-
dents than low achievement. However, in the international assessments, there has been 
interesting feature: Within each participating country, there is a positive correlation 
between students’ learning motivation and achievement; but when aggregating the 
data at a country level, the correlation between motivation and achievement becomes 
negative (He & Van de Vijver, 2016). High-performing countries show lower averages 
in motivation than lower-performing countries. From the Nordic countries particu-
larly Finland, together with the many Asian top performing countries, they show this 
strong achievement paradox of high achievement and low motivation. Despite high 
general well-being of youth in Nordic countries, enjoyment of learning mathematics, 
especially in the upper primary education, has not been a part of it. The equation how 
to combine efficient learning, self-efficacy, and motivation in mathematics education 
is a big challenge for both research and practice to solve.
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Chapter 9
Mathematical Learning and Its Difficulties  
in the Middle European Countries

Annemie Desoete, Ann Dowker, and Marcus Hasselhorn

 The Big Picture

The acquisition of good mathematical skills is important for academic success 
throughout the life span (Duncan & Magnuson, 2009). Moreover, difficulties with 
math learning were found to affect people’s ability to gain full-time employment 
and often restricted employment options to manual and often low-paying jobs 
(Dowker, 2005). In this chapter we aim to gain insight into the state of the art regard-
ing math learning and its difficulties in the Middle European countries.

The PISA 2015 study of mathematics and literacy of 15-year-olds revealed that 
Singapore had the highest scores in mathematics, closely followed by Hong Kong, 
Taipei, Macau and Japan. The Netherland was in 11th place, Belgium in 15th place, 
Germany in 16th place and the UK in 27th place.
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Overall average scores may not fully tell us the extent of the problem of low 
numeracy in a country. The same PISA study indicates that 7.6% of the Singapore 
sample were classified as low achievers in mathematics (at or below PISA’s Level 1), 
as were 16.7% in Belgium, 17.2% in Germany and 20.1% in both the UK and the 
Netherlands.

It is important to remember that this is a survey by a specific organization using 
specific measures and that other measures might lead to different results. In fact the 
other main international survey, TIMSS (2015), gives fairly similar results overall 
but puts England in a better position (10th) than would be expected by the UK’s 
position in the PISA study. Over the years, England has generally done significantly 
better in TIMSS than PISA surveys (Sturman, 2015): something which has never 
been fully explained.

Within-country studies have shown that low numeracy is a common problem in 
the UK (Butterworth, Sashank, & Laurillard, 2011). Cohort studies of people born 
in particular weeks in 1958 and 1970 have indicated that about 22% of the popula-
tion in the UK have severe numeracy difficulties that have a serious impact on their 
occupational and social chances (Bynner & Parsons, 1997; Parsons & Bynner, 
2005), whereas only about 5% have similar levels of difficulty in literacy. Less 
severe, but still significant, mathematical difficulties are still more common. A 
recent survey indicates that nearly half of working-age adults in the UK are on the 
level of numeracy that one would expect at the end of primary school (BIS, 2011). 
Although 17.2% of the 15-year-old students in Germany did not reach the defined 
minimum Level 2  in the PISA estimates of mathematical competencies, public 
awareness of mathematical difficulties as compared to written language difficulties 
is comparatively small.

A number of children have severe and persistent difficulties with mathematics 
which are resistant to instruction. In this case they are labelled as individuals with 
mathematical learning disabilities (MLD). The prevalence of MLD in the Middle 
European countries has been estimated as approximately 6% (Barbaresi, Katusic, 
Colligan, Weaver, & Jacobsen, 2005; Desoete & Baten, 2017; Desoete, Roeyers, & 
De Clercq, 2004; Dowker, 2016) depending on the criteria used to define MLD. The 
prevalence in siblings of children with MLD is even higher, ranging from 40% to 
64% (Desoete, Praet, Titeca, & Ceulemans, 2013). However, the prevalence of 
MLD varies by age with a maximum in about Grade 3 students (Hasselhorn & 
Schuchardt, 2006). A recent epidemiological study on the prevalence of MLD in 
Germany controlling for learning disabilities in reading and spelling reported a 
percentage of 9.2% of children with MLD at the beginning of Grade 3 with about 
half of these children even fulfilling the criteria of the WHO definition of dyscal-
culia, i.e. being identified to have a discrepancy between their poor mathematical 
skills and their intact general intelligence of at least 1.2 SD (Fischbach et  al., 
2013). The discrepancy criterion is however not used in all Middle European coun-
tries. In Belgium, for example, a child can have below average intelligence and 
MLD if the low IQ does not explain all of his or her behaviour. In this case this is 
defined as comorbidity.
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 Educational Policies on MLD

Educational policies on MLD differ between countries in several regards. We give 
three examples.

In the UK, children with specific learning difficulties may be given additional 
support within the school system. The situation is currently in a state of flux, with 
some significant changes taking place in response to the Children and Families Act 
2014; and also there are some differences between the systems in operation in the 
different countries within the UK. In the system currently being implemented in 
England, children assessed as having special educational needs may be given 
within-school support, which may include physical adaptations, extra individual 
attention often from a teaching assistant or participation in any appropriate inter-
vention program available. A minority with more complex needs may be given a 
wider-ranging education, health and care plan, which may include recommenda-
tions for medical and social support outside as well as within school. Various pro-
fessionals may be involved in special needs assessments, but specific learning 
difficulties are most commonly diagnosed by educational psychologists. In addi-
tion, it is rare for children to have a main diagnosis of mathematical learning dif-
ficulties/dyscalculia in the UK.  Dyscalculia was only formally recognized as a 
specific learning difficulty in the UK in 2001 and is still far less often diagnosed 
than dyslexia or ADHD, even though the actual incidence may be similar. It is, 
however, recognized that many pupils with dyslexia have comorbid mathematical 
difficulties: about 40% of dyslexic people also meet criteria for dyscalculia (Wilson 
et al., 2015), and even those who do not, may have difficulties with specific areas 
of arithmetic such as memorizing multiplication tables. Thus, mathematical diffi-
culties may sometimes be diagnosed and addressed in connection with a main 
diagnosis of another specific learning disability, especially dyslexia. Moreover, not 
all children, who may benefit from educational interventions, are appropriately 
diagnosable with specific learning difficulties. The problem of low attainment in 
arithmetic is very common, and there are many factors that may contribute to it. 
Poverty and social disadvantage are important contributory factors (Bynner & 
Parsons, 1997; Parsons & Bynner, 2005). Currently, the government provides a 
‘pupil premium’, an additional funding for publicly funded schools in England, 
according to their number of pupils from disadvantaged backgrounds (usually 
defined as those eligible for free school meals) with the purpose of raising their 
attainment and closing the gap between these children and those from more advan-
taged backgrounds. The money is sometimes used to fund intervention projects in 
both literacy and numeracy.

In Germany, the 16 federal states are autonomous with regard to most issues sur-
rounding education and school. However, there is a standing conference of the min-
isters of education from the 16 federal states (called KMK), who decided to fix a lot 
of organizational details, contents and strategic issues of schooling in order to 
achieve a high level of comparability of schooling among the German Federal 
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States. With regard to most issues surrounding MLD, there are not much common 
accords. In 4 of the 16 German Federal States, the school law does not even mention 
the existence of MLD. In most of those federal states having an explicit decree on 
MLD, almost all issues surrounding the diagnosis are determined. Some of them in 
addition have rules for the compensation of resulting disadvantages and the provi-
sion of individual aids. With regard to the diagnosis in most cases, the individual 
teacher or the head of the school has to initiate the testing of the children concerned. 
However, only in one federal state there is an explicit diagnostic service as part of 
the local education authority. As a consequence, in many regions in Germany, only 
very few concerned children are really diagnosed by MLD experts. In states in 
which rules exist for the compensation of resulting disadvantages, mainly the school 
grades in math are paused for children with diagnosed MLD during the elementary 
school years to protect them from becoming a repeater. However, the individual aids 
offered to those children to overcome their MLD are mostly restricted to the exper-
tise of the classroom teachers.

Most recently, a further training program called MARKO-T for poor math learn-
ers was developed (Gerlach, Fritz, & Leutner, 2013) and successfully evaluated 
(e.g. Ehlert & Fritz, 2013). Despite some differences in detail, the theoretical ideas 
behind the program are similar to those of the MZZ program described above.

In Belgium there are different approaches to education in the Dutch, French and 
German community with Brussels depending on the French and Dutch education 
structures. The power for education lies with the communities. Within the Flemish 
government, the Minister of Education is responsible for almost all aspects of edu-
cational policy, from nursery to university education. Nevertheless, the federal 
authorities are competent for some educational issues, namely, the start and end of 
compulsory education, establishing minimum conditions for obtaining a diploma 
and determining education staff pensions, and schools are entirely free in choosing 
teaching/education methods, curriculums and time tables. The complexity of the 
Belgian political structure does not facilitate the educational policy on MLD.  In 
Flanders there is the M-decree, making schools less segregated and more inclusive 
for children with disabilities (such as MLD). Due to the constitutional freedom of 
education, schools are entirely free in choosing teaching/education methods (math-
ematics), curriculums and time tables and education views. However, if they want 
government recognition or funding, they must meet the attainment targets or devel-
opmental objectives in the curriculum, teaching materials must be available and the 
school buildings have to comply with safety provisions and hygiene standards. The 
support of all pupils (and also of pupils with MLD) is organized by the pupil guid-
ance centre (or CLB), a service financed and evaluated by the government. The CLB 
is responsible for the diagnosis of MLD (based on their PRODIA protocol) and for 
the support within a continuum of care. Children remain in regular education. Only 
if their needs are out of proportion, they can go to special schools for a short period. 
Before September 2015, there was segregated education for children with MLD with 
special education type 8 especially aiming on children with learning disabilities. In 
Flanders the support of teachers of children with (and  without) MLD is organized by 
the pedagogical support centre (PBD), giving educational and methodological 
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advise. The educational inspectorate of the Flemish Ministry of Education and 
Training acts as external supervisor by assessing the implementation of the ‘attain-
ment targets’ and ‘developmental objectives’.

 Theories and Educational Practice

The knowledge about learning disabilities and the need to understand and empower 
individuals with MLD and their environment increase in most countries. The oppor-
tunity propensity model (e.g. Byrnes & Wasik, 2009) states that children are more 
likely to attain high levels of math achievement if they are given genuine opportuni-
ties to enhance their skills (opportunity condition) and if they are willing and able to 
benefit from these opportunities (propensity condition). This model claims that some 
low performers are presented with fewer opportunities, while other low performers 
are presented with opportunities but unable to benefit from them (e.g. due to lack of 
preparation), and a last group of low performers are presented with opportunities but 
unwilling to engage fully and benefit from them. Especially the last group is a big 
challenge when trying to develop interventions and guide practice.

There were relatively few numeracy interventions available in the UK until 
recently. Individualized programs used in Britain by the early twenty-first century 
included the Mathematics Recovery program first developed in Australia by Bob 
Wright and his colleagues (Wright, Martland, & Stafford, 2006); some computer-
ized interventions, such as RM Maths (Earl, 2003); and Dowker’s (2001) Numeracy 
Recovery program, since expanded and developed as Catch Up Numeracy (Dowker 
& Sigley, 2010; Holmes & Dowker, 2013).

The British government, in the first decade of the twenty-first century, became 
more active in developing interventions for children with numeracy difficulties 
(Dowker, 2004; Gross, 2007). They developed the Springboard program for small 
groups and ‘Wave 3’ materials for individual use.

Focus on interventions increased further, with the Williams Review of primary 
mathematics education (2008). This review recommended early intervention for 
primary school children with difficulties in mathematics. Children with serious dif-
ficulties in mathematics should receive intensive one-to-one intervention from a 
qualified teacher, though paired or small-group work may be appropriate in some 
cases. Children with somewhat less severe difficulties might receive less intensive 
individualized or small-group intervention, and teaching assistants could provide 
some of this, with appropriate training. Williams (2008) proposed that mathematics 
interventions should be given in the early years of primary school, preferably in 
Grade 2 (6–7 years). This proposal resulted in schools and local authorities being 
given some funding to set up such interventions. A variety of such interventions 
were set up, but most came into one of three categories: (1) those that involved the 
use of the existing Wave 3 materials, usually with some modifications; (2) those 
that were based primarily on detailed diagnostic assessments of individual strengths 
and weaknesses, with activities targeted to these; and (3) those that primarily 
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involved the use of multisensory apparatus such as Numicon. A review (Dowker, 
2009) indicated that the interventions were viewed positively by teachers and local 
authorities. They were described as improving performance and attitudes in chil-
dren, and it was often stated that teachers and pupils enjoyed them. It was some-
times reported that the schools improved their overall performance in national 
curriculum tests. Only rarely, however, was it possible to carry out systematically 
controlled studies on their effectiveness. In order to set up an intensive intervention 
for children with serious numeracy difficulties and to test its effectiveness, Every 
Child Counts was set up as a partnership initiative between the Every Child a 
Chance charity (a coalition of business partners and charitable trusts) and govern-
ment. The aim was to enable the lowest-attaining children to make greater progress 
towards expected levels of attainment in mathematics, catching up with their peers 
and performing at least at average levels on school assessment tests, wherever pos-
sible, by the end of the second year of primary school. The original intention was 
to provide intensive support in mathematics to 30,000 Grade 2 children annually, 
though this has been significantly reduced due to the financial crisis of 2008 and 
subsequent government spending cuts.

Dunn, Matthews, and Dowrick (2010) developed the Numbers Count pro-
gram, which draws on aspects of three existing interventions: Multi-sensory 
Mathematics (developed in Leeds using Numicon materials), Numeracy Recovery 
(developed in Hackney) and Mathematics Recovery (Wright et al., 2006). This 
program involved careful assessment of individual children’s strengths and 
weaknesses, followed by intervention targeted to addressing specific weaknesses, 
and emphasizes the development of number concepts through multisensory 
teaching. It included a wide variety of components of arithmetic but places par-
ticular emphasis on methods of counting and number representation. Children 
received half an hour of individualized or sometimes very small-group (two or 
three children to a teacher) intervention per day. It was delivered by teachers who 
have received masters-level training. In the initial stages of the project, 
2621 Grade 2 children, across 27 English local authorities, took part in Numbers 
Count. They received an average of 40 half- hour individualized Numbers Count 
lessons in a term, delivered by teachers who had received masters-level training. 
The participating children were given the Sandwell test, a standardized arithme-
tic test, before and after entering the program, and were retested 3 months and 
6 months later.

Torgerson et al. (2011) carried out an independent evaluation of the program. 
About 12 children of 44 schools were randomly allocated to either an intervention 
group or a waiting-list control group. Children in the intervention group received an 
average of 40 half-hour individualized Numbers Count lessons in a term, delivered 
by teachers who had received masters-level training. The participating children 
were given the Sandwell test, a standardized arithmetic test as a pretest, and were 
posttested on the Sandwell test after 3 months and 6 months and also the Progress 
in Maths 6 (PIM 6) test after 3 months. Findings showed that the intervention group 
performed significantly better than the controls on the PIM 6 test (effect size 0.33).
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The changes in the Sandwell scores were greater. Before entering the program, the 
children’s Number Age was on average 11 months below their chronological age. 
On average, they gained 14 months in Number Age in one term, a ratio gain of over 
4 (months gained in mathematical age divided by mean duration of intervention in 
months), and were scoring at chronological age level by the time they exited the pro-
gram. However, it must be noted that while the PiM scores were marked by people 
blind to the children’s group assignment, the Sandwell scores were not, so that there 
could have been unconscious bias with regard to the latter. As always, the question 
arises of whether the gains will be maintained over the long term. A long-term evalu-
ation is currently being carried out to investigate whether the effects of the interven-
tion persists to the end of primary school and into secondary school.

However, interventions of this level of intensiveness are unlikely to be possible 
from a practical or economic point of view for the majority of children who experi-
ence milder mathematical difficulties and, even if they could be implemented, might 
take up too much time from such children’s other educational activities. Yet, there 
are many children, who, though they are not among the lowest attainers, still strug-
gle with mathematics and are at risk of persistent numeracy difficulties in adult-
hood. Lighter-touch interventions are needed for such children. Thus, a somewhat 
less intensive intervention developed by Edge Hill University in association with 
Numbers Count is first Class @ Number. In this program, a specially trained teach-
ing assistant delivered 30 half-hour sessions to a group of up to 4 children, for 
12–15 weeks. The lessons focussed on number and calculation, developing chil-
dren’s mathematical understanding, communication and reasoning skills. It was 
used for both primary and secondary pupils. So far it has been used with over 45,000 
children. Evaluations so far by Edge Hill University have shown an average Number 
Age gain of over three times the expected amount of progress. It is now receiving 
an independent evaluation organized by the Education Endowment Foundation. 
Another less intensive intervention, in terms of time spent, is Catch UpTM 
Numeracy (Dowker & Sigley, 2010; Holmes & Dowker, 2013). The main target 
pupils for the Catch UpTM Numeracy intervention were pupils in Years 2–6 who 
have numeracy difficulties. Up till now, over 45,000 children in England and Wales 
took part in this intervention since its development in 2007. The intervention begins 
by assessing the children on ten components of early numeracy, ranging from 
counting to word problem- solving to estimation to memory for arithmetical facts. 
Each child is assessed individually by a trained teacher/teaching assistant using 
‘Catch UpTM Numeracy formative assessments’ which the member of staff then 
uses to complete the ‘Catch Up Numeracy learner profile’. This personalized profile 
is used to determine the entry level for each of the ten Catch Up Numeracy compo-
nents and the appropriate focus for numeracy teaching (based on the profile and the 
individual learner’s needs). Children are provided with mathematical games and 
activities targeted to their specific levels in specific activities. Teachers and teaching 
assistants receive 3 days of formal training from the Catch Up TM organization in 
delivering the program. The children receive weekly intervention (two 15-min ses-
sions per week) for approximately one school term, focusing on components with 
which they have difficulty. Each 15-min teaching session includes (a) a review and 
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introduction to remind the child of what was achieved in the previous session and to 
outline the focus of the current session, (b) a numeracy activity and (c) linked 
recording activity where the child records the results of the activity, in oral, written 
and/or concrete fashion, and where the child receives focused teaching related to 
his or her performance in the activity and any observed errors. Evaluations so far 
indicate that Catch Up Numeracy results in children making over twice the improve-
ment in Number Age on the Number Screening Test (Gillham & Hesse, 2001) than 
would be expected by the passage of time alone and leads to significantly more 
improvement than a business- as-usual control group (Dowker, 2016; Holmes & 
Dowker, 2013). It appears also to give more improvement than a matched-time 
control group (Holmes & Dowker, 2013), but a randomized controlled trial study of 
this is still in progress.

There are many other interventions in use. While so far, we have focussed on 
individualized or very small-group interventions, schools are found to use a variety 
of interventions of varying degrees of intensiveness. Interventions in literacy and 
numeracy have sometimes been classified into three categories of varying degrees 
of intensiveness, described as ‘waves’ in the UK and ‘tiers’ in the USA. Wave 1 
involves whole-class teaching designed to be suitable for children of a variety of 
attainment levels; Wave 2 involves interventions in small groups with children who 
are experiencing mild or moderate difficulties in the subject, while Wave 3 involves 
more intensive, usually individualized interventions for children with more signifi-
cant problems. Wave 1 or 2 interventions may involve allowing for independent 
individualized or small-group work within a class. Individualized work within a 
class usually involves progressing through a textbook at one’s own pace, the use of 
individualized worksheets and/or the individualized use of educational computer 
software. Small-group approaches may take a similar form or may involve group 
projects where several pupils work together on the solution or solutions to a prob-
lem. On the whole, whole-class approaches have not been regarded as interventions, 
but in the context of curriculum development. However, as the UK has become 
increasingly concerned with improving numeracy standards, there is an increasing 
interest in investigating the possible role of certain new whole-class programs in 
reducing the incidence of numeracy difficulties. One program which is attracting 
current interest from this point of view is Mathematics Mastery, a program inspired 
by some aspects of Singapore mathematics education. Compared to traditional cur-
ricula, fewer topics are covered in more depth, and greater emphasis is placed on 
problem-solving and on encouraging mathematical thinking. A current evaluation 
by the Education Endowment Fund has so far indicated that the use of the program 
in Grade 1 results in an average increased gain in mathematics age of 2 months in 
the first year and the use of the program in Grade 7 results in an average increased 
gain in mathematics age of 1 month. Further investigation is desirable to see whether 
these gains are maintained or extended over time.

In Germany there is a widespread scepticism regarding standardized training 
programs as tools to aid children with MLD accompanied with the dominant belief 
that the best location for individual math acquisition support is school. Most 
math teachers agree that adequate interventions for concerned children should 
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 follow a guideline fitting at least the following three principles: First, the training 
activities should focus exclusively on mathematical contents, since the practice and 
enhancement of domain-general learning skills would not help to overcome the 
deficits associated with MLD; second, it is necessary to build up the mathematical 
competencies systematically by starting with basic numerical skills including skills 
usually acquired by children before school entry; and third, the systematic usage of 
manipulatives (as a kind of didactic tools) is held to be crucial to help children to 
understand the relevant mathematical concepts as well as the symbols that are used 
to represent these concepts. Among the most common manipulatives in German 
schools are the counting frame (abacus), multisystem blocks (DIENES material) and 
the number ray. With regard to the usage of the child’s ten fingers to count, however, 
there are controversial debates whether this is a helpful mean of number representa-
tion or not (see Moeller, Martignon, Wessolowski, & Nuerk, 2011). Whereas experts 
in mathematics education recommend fostering mentally based numerical representa-
tion and to induce children at least from the second year of math instruction to aban-
don finger counting, neurocognitive researchers argue that elaborate finger-based 
numerical representations are beneficial for later numerical development at least for 
children with problems in the acquisition of arithmetic skills.

Despite the reservations of many teachers with regard to standardized numeracy 
interventions during the last couple of years, a number of those programs were 
developed and some of them successfully evaluated. Especially, there are some 
promising evaluation results of programs focussing at rather young children before 
formal schooling to prevent them to develop MLD after school entry. The currently 
most disseminated program in Germany is the Würzburg training program (‘quanti-
ties, counting, numbers’) aiming to promote early awareness of quantities, numbers 
and relations between numbers (MZZ; Krajewski, Nieding, & Schneider, 2007). It 
systematically builds up conceptual knowledge from practising basic skills to 
instruction in numerical structures. It draws on the means of representation that 
incorporate basic mathematical ideas particularly well, offering a clear structure of 
the numerical space and allowing for effective problem-solving strategies. MZZ 
tries to teach children the meaning of numbers in a playful manner. The abstract 
structure of numbers and of the numerical space is thus rendered ‘tangible’ and ‘vis-
ible’. During the playful practice, children use materials that represent and clarify 
the structure of numbers. The children hence do not need to mentally deduct the 
abstract meaning of numbers themselves, but they gain fundamental insights into 
basic mathematical knowledge by dealing with the objects as the means of represen-
tation, which they can grasp and compare.

The program comprises three focal areas of promotion. The first area focusses on 
training and linking basic numerical skills of the children (quantities, counting, num-
bers). Within due course, the children are expected to manage counting and numbers 
up to ten and develop an awareness of the quantities underlying numbers (awareness 
of linkage of quantities to number-words). The second priority targets the under-
standing of numbers in terms of their rising sequence (precise quantity number-
words linkage). At this stage, the children are supposed to learn that  numbers can be 
ordered sequentially according to their power and compared. The third priority 
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teaches the children that numbers are related in various ways. They shall thus learn 
that numbers can be decomposed and recomposed to build different numbers and 
that the difference between two numbers is a number itself (linking quantity relations 
with number-words). These insights are promoted by the support of visual represen-
tations and adequate verbal descriptions. The children are thus guided to grasp 
numerical rules not only in a visual sense (e.g. greater numbers take up more space) 
but to become aware of such rules linguistically and reason verbally (e.g. ‘4 is 
larger than 3, because more things belong to 4 than to 3’). A number of evaluation 
studies did provide evidence for the training’s effectivity with preschool children 
(for an overview, see Krajewski & Simanowski, 2016). The program also was suc-
cessfully applied to foster numerical skills at school starting in children at risk for 
mathematical achievement problems (Hasselhorn & Linke-Hasselhorn, 2013) and 
among first graders with poor basic numerical skills (Ennemoser, Sinner, & 
Krajewski, 2015).

In Belgium there is also the belief that the best location for individual math acqui-
sition support is school with training activities focusing on mathematical contents, 
focusing on prenumerical and numerical skills and using manipulatives to represent 
concepts. Among the most common manipulatives in Flanders are the Multi-
Arithmetic Blocks (MAB material) and number ray.

Working memory (De Weerdt, Desoete, & Roeyers, 2013), small number discrimi-
nation (Ceulemans et  al., 2014), familiarity with math language (Praet, Titeca, 
Ceulemans, & Desoete, 2013), symbolic numerical processing (Vanbinst, Ghesquière, 
& De Smedt, 2015), seriation, classification (Stock, Desoete, & Roeyers, 2010) and 
intelligence (Dix & van der Meer, 2015) are examples of the propensity factors that 
have been frequently related to later math achievement.

Although all these elements can help explaining a great amount of the variance 
in mathematical performance, a lot of the variability keeps unexplained, making the 
development of guidelines for practice difficult. In addition the most compelling 
finding within the O-P model is why some children getting enough opportunities are 
unwilling to engage fully and benefit from them. Therefore it might be important to 
not only focus on cognitive propensity factors but also to investigate the role of 
metacognition (Baten, Praet, & Desoete, 2017) and noncognitive propensities and 
of the match with opportunity constructs (Ceulemans et al., 2017). In a recent study, 
the motivational/interactional profiles of 54 students with low math performances 
and a high risk for dropout and 40 teachers of a school for vocational secondary 
education in Flanders were examined. The dataset revealed that the communication, 
motivation and transactional profiles of the teachers and students differed. Of the 
students 58% were playful-resister, whereas 47% were enthusiastic and empathic. 
Of the teachers 50% were empathic and 35% were responsible workaholic. The 
most compelling finding was that there was a match of motivational needs espe-
cially for empathic individuals (47% of the students and 50% of the teachers). 
However, 30% of the students were motivated by action and excitement, whereas 
none of their teachers were motivated by such an interaction. Moreover 55% of the 
teachers were motivated by structure, planning and recognition of their work, 
whereas 49% students were not motivated by this behaviour. In addition the need for 
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accuracy and precision was very small in the 51% of the students, whereas 23% of 
the teachers had this as one of their most important motivational needs (Baten & 
Desoete, 2016; Baten, Desoete, Van de Velde, & Hantson, 2016). Thus, there might 
be a mismatch of motivational needs leading to miscommunication between teach-
ers and students due to a difference in motivational and transactional preferences, 
especially with children motivated by playfulness (learning has to be fun) or action 
(learning has to be exciting and challenging), resulting in reduced engagement and 
high dropouts. If we want more children to engage and be motivated, we should also 
provide humour and action opportunities in our math lessons.

In addition in Flanders (given the option of its government for inclusive educa-
tion), more and more teachers are confronted with and have the knowledge about 
MLD. To apply the M-decree, more knowledge is needed to coach teachers in their 
capacity to identify, promote, monitor, pilot, analyse and mainstream dealing with 
diversity such as children and adolescents with MLD (‘cooperative collaboration’). 
On several places trainings took place to build capacities such as the creating ‘uni-
versal designs for learning (UDL)’ (e.g. Meirsschaut, Monsecour, & Wilssens, 
2015) in teachers and ‘action-based’ assessment and working (HGD, HGW) in 
school guidance centres. There is also an active organization of parents with chil-
dren with learning disabilities organizing workshops and paper sessions to inform 
other parents. In school guidance centres, the action-based approach and the model 
of continuous care are used. However in practice there is a huge difference between 
schools and their knowledge and preparedness to deal with individuals with MLD.

 What Is the Role of Research Guiding the Practice?

There is an increasing influence of research on educational practice.
In England, reviews of research have been used by governments to influence 

practice with regard to educational interventions, including those in numeracy 
(Dowker, 2004, 2009; especially Williams, 2008). There is an increasing interest in 
gathering evidence on the effectiveness of interventions and other educational poli-
cies. The Education Endowment Foundation was set up in 2011, with the aim of 
gathering evidence as to what works effectively in reducing low attainment, espe-
cially in disadvantaged groups, and in particular funding trials of promising but 
untested programs and approaches and supporting schools and other educational 
institutions in using the evidence in practice. The Institute of Effective Education in 
York conducts evaluations of the effectiveness education programs and practices 
throughout the UK and internationally. It publishes ‘Best Evidence in Brief’, a free 
fortnightly online newsletter of education research news, and ‘Better: Evidence-
based Education’, a magazine for teachers about findings with regard to effective 
practice, and Evidence4Impact, an online database of education programs with nearly 
15,000 subscribers worldwide.

In Belgium speech therapists, occupational therapists, special educators and psy-
chologists are trained to assess and treat individuals with MLD. In their training 
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materials, the discrepancy criterion no longer is present as criterion for MLD. This 
criterion is not included in the PRODIA protocol of school guidance centres. There 
is a direction to a more evidence-based approach of all professionals assessing and 
helping individuals with MLD and their environment.

Overall there are more studies on reading disabilities compared to the studies on 
math disabilities. Nevertheless the main question is how can we define, predict, 
understand and help individuals with MLD?

Although the criteria for MLD seem clear, there are some disagreements on f.ex, 
the criteria used to define the ‘substantially below’ performances (Stock et al., 2010). 
In addition, there is some disagreement as to whether MLD represents a specific and 
definable impairment or the lower end of the continuum of arithmetical ability. 
Mazzocco, Devlin, and McKenney (2008) found that children with MLD (and a 
severe form of disability) showed qualitatively different profiles in fact retrieval per-
formances when compared to typically achieving children, whereas the differences 
between children at the lower end of the continuum (low achievers, LA, with a mild 
form of disability) and typically achieving children were of a quantitative turn. Geary, 
Hoard, Byrd-Craven, Nugent, and Numtee (2007) revealed that children with MLD (a 
severe disability) had a severe math cognition deficit and underlying deficit in work-
ing memory and speed of processing. The LA groups (with a mild disability) had 
more subtle deficits in few math domains. Finally, although the criterion of nonre-
sponsiveness to intervention (Fuchs et al., 2007; Fuchs, Fuchs, & Prentice, 2004) is an 
interesting one, some studies suggest that even quite significant arithmetical difficul-
ties are often responsive to interventions targeted at their specific strengths and weak-
nesses (Dowker, 2016; Dowker & Sigley, 2010).

Another question is whether mathematics should be considered as one compo-
nent or not. Some authors propose at least a procedural and a semantic memory 
subtype within MLD (e.g. Geary, 2004; Pieters, Roeyers, Rosseel, Van Waelvelde, 
& Desoete, 2015). The procedural subtype would be due to executive dysfunction 
and characterized by a developmental delay in the acquisition of counting and 
counting procedures used to solve simple arithmetic problems. The semantic 
memory subtype would be due to verbal memory dysfunction and characterized 
by errors in the retrieval of arithmetic facts (Wilson, Revkin, Cohen, Cohen, & 
Dehaene, 2006). However, not all studies have found different profiles for these 
groups (Landerl, Bevan, & Butterworth, 2004; Rousselle & Noël, 2007).

Nevertheless, the research finding that mathematical difficulties are not unitary 
is based on studies of both atypical and typical mathematical development (Cowan 
et  al., 2011; Desoete et  al., 2004; Dowker, 2005; Gifford & Rockliffe, 2012; 
Jordan, Mulhern, & Wylie, 2009; Russell & Ginsburg, 1984). Studies of adults 
with acquired dyscalculia (Cappelletti, Butterworth, & Kopelman, 2012; Delazer, 
2003; Warrington, 1982) and behavioural and brain imaging studies of adult math-
ematical cognition (Stanescu-Cosson et al., 2000; Van Eimeren et al., 2010) have 
provided increasing and converging evidence that arithmetical cognition is made 
up of multiple components and that it is quite possible for children and adults to 
show strong discrepancies, in either direction, between the components. In other 
words, although the components often correlate with one another, people can show 
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weaknesses in virtually any component. There is still room for debate, however, as 
to whether these varied difficulties have similar or distinct causes. In this context, 
there is a lot of debate about the extent to which mathematical difficulties are 
mainly due to domain-specific causes (e.g. difficulties in subitizing; difficulties in 
magnitude comparison), to domain-general causes (e.g. verbal difficulties; spatial 
difficulties; working memory difficulties) or to an interaction between the two. 
Perhaps the answer may be different for different types or severity levels of math-
ematical difficulties.

In addition there is still some disagreement about hypotheses to explain research 
data, leading to confusing suggestions for clinical practice. We give some examples. 
According to the triple-code model (Dehaene & Cohen, 1995; Noel, 2001; Schmithorst 
& Brown, 2004), there are three types of representations for numbers. Two of them are 
symbolic and format-dependent, a visual Arabic number form (e.g. ‘5’) and a verbal 
word frame with number-words (e.g. ‘five’), and one is nonsymbolic and format-inde-
pendent: the analogue magnitude representation (e.g. five dots). There is an agreement 
on the importance of these representations (Desoete, Ceulemans, De Weerdt, & Pieters, 
2012) and on the problems due to imprecise representations in MLD (e.g. Mussolin, 
Mejias, & Noël, 2010; Piazza et al., 2010). However there is no agreement on how to 
explain this finding. Butterworth and his collaborators (Landerl et al., 2004) explained 
this with their defective number module hypothesis, assuming that MLD occur when 
the basic ability to process numerosity fails to develop normally, resulting in difficulties 
to understand number concepts and, consequently, in learning numerical information. 
However Rousselle and Noël (2007) evaluated an alternative explanation with the 
access deficit hypothesis stating that there was no deficit in number sense per se, since 
when investigating numerosity processing with no symbolic processing requirement, 
MLD children in second grade were only impaired when comparing Arabic numerals 
(i.e. symbolic number magnitude) but not when comparing collections of sticks (i.e. 
nonsymbolic number magnitude). The Walloon authors suggested that children with 
MLD had difficulty in accessing number magnitude from symbols rather than in pro-
cessing numerosity per se.

These debates remain important question areas of the basic research on MLD at 
the moment. The future of MLD education in Western European countries remains 
unclear. In most countries there is a tendency towards inclusive education empow-
ering children with and without MLD and looking for good practices where every-
one benefits (as the Universal Design for Learning, UDL suggests).
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Chapter 10
Mathematical Learning and Its Difficulties 
in Eastern European Countries

Csaba Csíkos, Szilárd András, Attila Rausch, and Anna Shvarts

 Eastern European Mathematics Education as Defined 
by Geographical, Historical, and Political Factors

In this book, the term “Eastern Europe” is used in accordance with how other chap-
ters in the section titled “Lessons from International System-Level Surveys” have 
considered their territory and field of interest. Thus, the group of countries to which 
we refer in this chapter is defined not strictly geographically, but we have taken 
them as a group of countries that previously belonged to the immediate sphere of 
interest of the former Soviet Union. According to a current multilingual thesaurus 
(Eurovoc), published by the Publications Office of the European Union, Eastern 
Europe consists of 21 states. Other descriptions available in the geographical or 
political literature may add the Baltic states (Estonia, Latvia, and Lithuania) or even 
Finland to this group of countries. Furthermore, the Visegrad Group (the Czech 
Republic, Hungary, Poland, and Slovakia) and Slovenia are often labeled as Central 
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European countries, together with Austria, Germany, and Switzerland. Having 
acknowledged that any such categorizations may be offensive to some or unusual to 
others, in this chapter we refer to Eastern Europe as a group of 24 countries: those 
21 listed in the footnote and the three Baltic states.1

 Constraints and Promises of Recent Decades in Eastern 
European Mathematics Education

The Eastern European countries belonged for some decades to the immediate politi-
cal, economic, and/or military sphere of the former Soviet Union. In this block of 
countries the leading role of one (or more, but not many) Marxist political parties 
defined several aspects of the school system. Centralized curricula and textbooks 
aimed to provide the same pathway for all children. Equality has always been a 
central issue in the Central and Eastern European socialist states (Bankov, Mikova, 
& Smith, 2006); however, the Programme for International Student Assessment 
(PISA) studies revealed that this has not been accomplished.

Adler (1980) praised the intensive study of educational psychology in the Soviet 
Union and the links between school practice and the newly emerged psychological 
findings on how children learn. The influence of Soviet educational psychology had 
its effect in the region, according to Szalontai (2000). Even nowadays, the classical 
seminal works by Talysina, Stolyar, Davidov, Vygotsky, Leontiev, and others play 
important roles in Russian math educators’ training. According to Goldin (2003), 
any kinds of ideologically set mathematics education necessarily dismiss the integ-
rity of mathematical knowledge. Nonetheless, Eastern European mathematics and 
science education were seen with a kind of fear from the other side of the Atlantic 
Ocean from the time of the Sputnik shock (1957) until the very end of the Cold War. 
Stefanich and Dedrick (1985) emphasized that in Eastern Europe, 42% of Bachelor 
of Arts (BA) degrees were awarded in the field of engineering (while only 6% were 
in the USA). As Valero et al. (2015, p. 290) state, “The narrative that connects prog-
ress, economic superiority, and development to citizen’s mathematical competence 
is made intelligible in the 20th century”. Emphasizing the importance of mathemat-
ics education in the Western world was a reaction in order to maintain the suprem-
acy of the capitalist Western world.

Was there a special kind of mathematics education that might be labeled as 
socialist mathematics education? In his book, Swetz (see Howson, 1980) compared 
seven rather different countries (all labeled as socialist countries, including 
Tanzania). The country profiles were provided by excellent scholars; however, some 
of them did not live or work in the countries they were writing about. In spite of his 
critical book review, Howson agrees that “mathematics education in any country 

1 Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Czech 
Republic, Former Yugoslav Republic of Macedonia, Georgia, Hungary, Kosovo, Moldova, 
Montenegro, Poland, Romania, Russia, Serbia, Slovakia, Slovenia, Ukraine.
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cannot be divorced from politics” (p.  285). In these seven “socialist” countries 
(among which the Soviet Union, East Germany, Yugoslavia, and Hungary were 
included, as part of Eastern Europe) there were three strong common features: (1) a 
central curriculum (not only in mathematics); (2) textbook word problems stressing 
industrial and societal phenomena; and (3) a strong emphasis on talent development 
and competitions. This third feature in itself may be the reason why the “mathemat-
ics for all” movement has not spread widely in Eastern Europe (Karp & Furinghetti, 
2016). Eastern European mathematics education could rather well fulfill the role of 
“the gate keeper,” i.e., dividing the society into two parts: those who are able to do 
mathematics and those who cannot (Skovsmose, 1998).

In case the reader finds a country description written by one or more (no matter 
how excellent) scholars incidental or nonrepresentative, a little larger sample was 
involved in Hawighorst’s (2005) investigation; 15 parents from three different cultures 
were interviewed (five of them were German parents resettling from the former Soviet 
Union). The study focuses on some significant differences the “resettlers” expressed 
in their view. They seem to be particularly critical of school mathematics lessons. 
They expect a high level of content knowledge in mathematics; therefore, they plan to 
send their children to the most elitist type of secondary school—the Gymnasium.

If a kind of socialist mathematics education did exist in the bloc of Eastern 
European countries, it was certainly not uniform. Karp and Furinghetti (2016) ana-
lyzed how consecutive eras in the Soviet Union differed from each other with 
respect to aims and methods. Mathematics as a school subject was once considered 
a robust system to train the new bureaucracy of a new political era, while later some 
parts of the mathematics curricula were considered useless. What is more, the meth-
ods of instruction and evaluation changed according to what the leaders thought 
about the development of the so-called collective spirit.

Stoilescu (2014) summarized what many Eastern European citizens felt under 
the socialist regimes: people’s capability to make decisions and take responsibility 
were weakened by encouraging centralized, uniform thought through uniform and 
ideologically infiltrated textbooks. The freedom of research was constrained by 
ideological factors. A direct (and negative) intervention from governmental officers 
is described by Varga (1988): his teaching experiment, which was interrupted by 
withdrawal of authorization from the ministry of education, was able to restart later 
but only with modified experimental factors.

The countries in Eastern Europe have further common features beyond those origi-
nating in the decades of the Soviet sphere of interest. Eastern European states had long 
historical relations with the European centers (Bertomeu-Sánchez, García- Belmar, 
Lundgren, & Patiniotis, 2006) with respect to the circulation of scientific knowledge. 
From the sixteenth century it was quite common that encyclopedias written in one of 
the European languages were translated and used as textbooks in both central and 
peripheral countries in Europe. The word “textbook” itself came from English in the 
eighteenth century and had the meaning of a collection of texts that might be used for 
educative or reference purposes. However, encyclopedias were used as textbooks long 
before that term was coined. An example is the Encyclopaedia written by the 
Hungarian Apáczai in 1655 (Palló, 2006), which was unique not only at that time but 
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indeed also until the end of the nineteenth century, since textbooks translated from 
German or French were mainly in use in Eastern Europe.

Historically, educational thoughts in the heart of Europe were formed in such a 
way that this tradition is now called “Didaktik,” as opposed to the Anglo-Saxon cur-
riculum tradition (Westbury, 2000). In a Berlin–Hong Kong comparative study, Lui 
and Leung (2013) described several aspects of mathematics teaching common in 
Berlin and in Hong Kong, where the Confucianist tradition is standard. Both tradi-
tions emphasize exercises and practice (for more than one third of the time allocated 
to math lessons).

Even nowadays, Eastern European countries have some common characteristics 
that might be considered as part of their historical and cultural backgrounds. The 
PISA study (Mikk, Krips, Säälik, & Kalk, 2016) revealed that students’ scores in 
mathematics and science were, unusually, correlated with their judgment of their rela-
tions with their teachers. The five items in the background questionnaire asked them 
to score, on a five-point Likert scale, how much they trusted their teachers, to what 
extent their teachers treated them fairly, etc. From Eastern Europe, the Czech Republic, 
Hungary, Poland, Romania, Russia, and Slovakia were considered, and the −0.63 cor-
relation (albeit not significant in such a small country sample) was at least alarming. 
No similar tendency was revealed in other country groups in the world.

 Lessons from International System-Level Surveys

International educational surveys based on nationwide representative samples 
started in the twentieth century. The International Association for the Evaluation of 
Educational Achievement (IEA) focused on mathematics from the outset. The First 
and Second International Mathematical Studies (FIMS and SIMS) involved far 
fewer countries than the later TIMSS series. (Note: initially the acronym “TIMSS” 
was defined as “Third International Mathematics and Science Study” but later the 
definition was changed to “Trends in International Mathematics and Science 
Study”.) From Eastern Europe, only Hungary took part in SIMS, while Bulgaria, the 
Czech Republic, Hungary, Latvia, Lithuania, Romania, Russia, Slovakia, and 
Slovenia participated in TIMSS in 1995. Since 2003, TIMSS has been conducted 
every 4 years, making it possible to outline developmental trends in countries’ pro-
files. With the advent of the PISA studies, much more attention has been paid to 
each country’s overall educational achievement, especially in comparison with the 
overall state of the country’s economy, health, and culture. Each year the United 
Nations publishes Human Development Index (HDI) scores, which are composite 
scores indicating each country’s general state of development. From the Eastern 
European region, Slovenia, Estonia, Slovakia, and Poland had the four highest 
scores in 2015. There is a fairly strong connection between a country’s HDI score 
and its PISA score. For the 27 countries where both PISA scores and HDI scores 
were available, the correlation coefficients are shown in Table 10.1.

On one hand, Table 10.1 clearly indicates a strong connection between a coun-
try’s general developmental level and its PISA score. In this respect, mathematics is 
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not exceptional at all, implying that fostering students’ performance in mathematics 
should by all means be embedded in the general development of the quality of edu-
cation. Nonetheless, at the individual and classroom levels, mathematics does have 
some unique characteristics. On the other hand, Table 10.1 also demonstrates the 
very strong connection between PISA scores in the three fields. This further 
strengthens the idea that achievement will develop as a consequence and in accor-
dance with an increase in the general quality of the educational system.

 Strengths and Weaknesses as Measured by International 
Surveys

The Eastern European countries achieved fairly different average scores in the latest 
TIMSS and PISA surveys. Table 10.2 illustrates how different their positions in the 
two lists are.

There is a tendency for several countries to refrain from participating in the 
eighth graders’ TIMSS survey since that age group has a large overlap with the 
PISA target population. Since the sample of countries participating in each survey 
varies and a score of 500 on the TIMSS scale refers to the actual average mean 
(while in PISA a score of 500 means the OECD country average in 2000), it is hard 
to compare the achievement results in the two studies. Of course, the large differ-
ences in the ranking lists may attract lay people’s attention, but there is a large 
overall tendency for TIMSS and PISA to both measure the quality of education and, 
of course, the quality of mathematics education.

In which fields of mathematical thinking do Eastern European countries have an 
advantageous or disadvantageous position? In “mathematics years,” i.e., when 
mathematics is the central field to be measured in PISA, detailed scores are avail-
able regarding three thinking processes in mathematics (Table 10.3) and four con-
tent domains within mathematics (Table 10.4).

In each row of Table 10.3, the first aspect of our analysis is whether there is any 
strikingly high or low score or whether the students’ results are balanced in the 
fields of the three thinking processes. For a detailed analysis of what these processes 
mean, the reader should consult the PISA 2012 framework (OECD, 2013). Roughly 
speaking, the formulating aspect of mathematical thinking refers to the process of 

Table 10.1 Correlation coefficients between Human Development Index (HDI) scores and 
Programme for International Student Assessment (PISA) 2000 scores (N = 27 countries)

Correlation coefficients

HDI score
PISA reading 
score

PISA mathematics 
score

Reading 0.606
Mathematics 0.599 0.898
Science 0.433 0.924 0.919

Source: Modified from Csíkos (2006, p. 184)
All correlation coefficients are significant (p < 0.05)
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formulating mathematical models in a given situation, usually described in a word 
problem. Employing (which has a 50% weight, while the two others each have a 
25% weight) refers to mathematical concepts, facts, and procedures. Interpreting 
involves evaluation of mathematical outcomes. In several Eastern European coun-
tries, students’ achievement is well balanced among the three processes. However, 
when there is a larger difference between columns, it might define a type of math-
ematical process that is relatively underdeveloped in that country. Quite often, the 
processes of formulating have a fairly weaker average (Slovenia, Hungary, Croatia), 
which may point also to the relative strength of routine processes belonging to the 
employing category. According to Table 10.3, Russia has a relatively weak average 

Table 10.2 Eastern European countries’ Trends in International Mathematics and Science Study 
(TIMSS) and Programme for International Student Assessment (PISA) scores, and their 
connections with Human Development Index (HDI) scores and gross national income (GNI) per 
capita

HDI 
ranking Country

HDI 
score

2015 TIMSS 
score (fourth 
grade)

2015 TIMSS 
score (eighth 
grade)

2015 
PISA 
score

GNI per 
capita (2011 
PPP $)

25 Slovenia 0.880 520 516 510 27,852
28 Czech Republic 0.870 528 492 26,660
30 Estonia 0.861 520 25,214
35 Slovakia 0.844 498 475 25,845
36 Poland 0.843 535 504 23,177
37 Lithuania 0.839 535 511 478 24,500
44 Hungary 0.828 529 514 477 22,916
46 Latvia 0.819 482 22,281
47 Croatia 0.818 502 464 19,409
49 Montenegro 0.802 418 14,558
50 Belarus 0.798 16,676
50 Russian 

Federation
0.798 564 538 494 22,352

52 Romania 0.793 444 18,108
59 Bulgaria 0.782 524 441 15,596
66 Serbia 0.771 518 12,190
76 Georgia 0.754 463 453 404 7,164
78 Azerbaijan 0.751 16,428
81 Macedonia 0.747 371 11,780
81 Ukraine 0.747 8,178
85 Albania 0.733 413 9,943
85 Armenia 0.733 8,124
85 Bosnia and 

Herzegovina
0.733 9,638

107 Moldova 0.693 420 5,223
Correlations with 
2015 PISA

0.84 0.72 0.92 0.88

Even in this small sample of countries, the correlation coefficients are significant
PPP $ international dollars after conversion using purchasing power parity rates
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Table 10.3 Eastern European countries’ average scores for three different mathematical thinking 
processes

Country 2012 PISA score Formulating score Employing score Interpreting score

Estonia 521 517 524 513
Poland 518 516 519 515
Slovenia 501 492 505 498
Czech Republic 499 495 504 494
Latvia 491 488 495 486
Slovakia 482 480 485 473
Russian Federation 482 481 487 471
Lithuania 479 477 482 471
Hungary 477 469 481 477
Croatia 471 453 478 477
Serbia 449 447 451 445
Romania 445 445 446 438
Bulgaria 439 437 439 441
Montenegro 410 404 409 413
Albania 394 398 397 379

PISA Programme for International Student Assessment

Table 10.4 Eastern European countries’ average scores in four different mathematical content 
domains

Country
2012  
PISA score

Change and 
relationships score

Space and 
shape score

Quantity 
score

Uncertainty  
and data score

Estonia 521 530 513 525 510
Poland 518 509 524 519 517
Slovenia 501 499 503 504 496
Czech 
Republic

499 499 499 505 488

Latvia 491 496 497 487 478
Slovakia 482 474 490 486 472
Russian 
Federation

482 491 496 478 463

Lithuania 479 479 472 483 474
Hungary 477 481 474 476 476
Croatia 471 468 460 480 468
Serbia 449 442 446 456 448
Romania 445 446 447 443 437
Bulgaria 439 432 442 443 432
Montenegro 410 399 412 409 415
Albania 394 388 418 386 386

PISA Programme for International Student Assessment
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in the interpreting cluster of mathematical thinking as compared to the other math-
ematical processes.

Table 10.4 indicates whether in a given country there is any field of mathematics 
that is relatively highly developed or underdeveloped. Often, and understandably, 
the country profiles are rather well balanced (e.g., Slovenia, Hungary, Romania, and 
Bulgaria). However, in several cases, countries have a prioritized field (at least, one 
may infer that the reason is massive curricular coverage or a larger body of learning 
material in that country). For instance, Albanian students have far better results in 
geometry than in other fields. Geometry, in general, is thought to have a relatively 
momentous role within mathematics in Eastern Europe (Aubrey & Godfrey, 2003). 
On the other hand, Russia (Kolmogorov’s country) seems to have a weakness in 
uncertainty and data, which may be due to a focus on formal mathematics since 
Kolmogorov’s reforms in 1970. These results have been seriously taken into 
account, and these themes are included in curricula and the national maturation 
exam. The aforementioned relative strengths and weaknesses usually reflect long- 
term curricular and instructional methodological traditions in a given country.

 Socioeconomic Background and Mathematics Achievement

At the time when Hungary was the only participant from the Eastern European 
region in the IEA studies, and Japan and Hungary competed for the highest country 
achievements, the Second International Science Study (SISS) created a measure of 
inequalities, called the Ratio of Homogeneity (ROH) index. Although in the early 
1980s there was a central curriculum in Hungary, with only one textbook, the differ-
ences between schools proved to be larger than those in other top-performing coun-
tries (see Postlethwaite & Wiley, 1992). These within-country differences reflected 
both parents’ efforts in finding the “best available” school for their children, and 
traditional geographical and socioeconomic differences in the country.

The PISA studies put a special emphasis on the role of family-related back-
ground variables. Over the course of the six PISA cycles, a more and more refined 
measure of students’ socioeconomic status (SES) has been developed. Schleicher 
(2014) made computations from the PISA 2012 database, and one striking illustra-
tion of how SES is related to mathematics achievement was based on comparing 
groups that belong to different SES deciles. For each country, ten such SES groups 
can be compared, and while the top decile groups usually do not differ from each 
other, the lowest or the lower two deciles often lag far behind. The three eye- catching 
examples in this respect are Slovakia, Hungary, and the Czech Republic. It is very 
peculiar that the average mathematics scores of the students in the lowest SES decile 
in these three countries are lower than those of their Mexican peers. However, at the 
country level, Mexico has an average score of 413.

The PISA studies developed an index to measure students’ economic, social, and 
cultural status (ESCS). In general, in top-performing countries, ESCS tends to have 
a relatively weak correlation with students’ performance. Conceptually, ESCS can 
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be connected to the idea of social inclusion, and the within-school and between- 
school differences in ESCS in a given country indicate the level of social inclusion. 
Although social justice and equity have long been catchphrases in Eastern Europe, 
according to the aforementioned ROH index, these countries may still suffer from 
lack of inclusion and lack of equity in their mathematics classrooms. Two intercon-
nected phenomena should be investigated here: the question of low performers and 
whether the school system provides a chance for them to succeed (Table 10.5).

There is a clear connection between a country’s overall average achievement and 
the percentage of low-performing students in that country. Estonia’s 10.5% is the 
lowest value in Europe, a little lower than those of Finland (12.3%) and Switzerland 
(12.4%). In the majority of Eastern European countries, it is not only the high per-
centage of low performers that hinders their future development, but also the rela-
tively low level of inclusion, as measured by means of ESCS.  In general, ESCS 
explains around 15% of the PISA score variance in the overall country pool, but in 
certain countries, a higher percentage (i.e., a more expressed role of) explained vari-
ance appears. The OECD (2016) provided a statistical analysis (https://doi.
org/10.1787/9789264250246-en) to compare the percentages of low-performing 
students in the top and bottom quartiles of ESCS. Ranking the countries in ascend-
ing order of the difference between the two rates of low-performing students, some 
Eastern European countries are at the far end of this; Bulgaria, Romania, Hungary, 
and Slovakia have more than a 40% difference in the rate of low performers in the 
two groups. It means that in these school systems the socioeconomic differences are 
deepened or at least not decreased. Conversely, in Estonia there is only a 12.6% dif-
ference in the rate of low-performing students in the most advantaged and most 
disadvantaged ESCS quartiles.

Table 10.5 Eastern 
European countries’ 
percentages of low- 
performing students in 
mathematics in the 2012 
Programme for International 
Student Assessment (PISA)

Country Low-performing students (%)

Estonia 10.5
Poland 14.4
Slovenia 20.1
Czech Republic 21.0
Latvia 19.9
Slovakia 27.5
Russian Federation 24.0
Lithuania 26.0
Hungary 28.1
Croatia 29.9
Serbia 28.9
Romania 40.8
Bulgaria 43.8
Montenegro 56.6
Albania 60.7

The Organization for Economic Co-operation and 
Development (OECD) overall average rate is 23.0%
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Member states of the European Union should decrease their percentage of low 
performers (not only in mathematics but also in the other key fields) below 15% by 
2020. This aim seems to be unattainable, and in order to approach a 15% or at least 
20% rate, school reforms in some Eastern European countries can be exemplary.

In Poland and Estonia, educational reforms have been aimed at decreasing the 
within-country differences by means of letting prospective vocational school stu-
dents stay for one more year in the general schooling system (World Bank, 2010). 
As a philosophical basis for this reform movement, it is worth highlighting that 
Poland has a relatively fortunate situation within Eastern Europe. According to 
Turnau (1993), Polish scholars had the freedom to build international relations. 
Nevertheless, he is critical of the level of scientific achievement (which should have 
been much stronger in this state of research freedom). As an explanation, the still- 
existing complicating factor of language difficulties has been mentioned, along with 
the lack of strong theoretical embeddedness in math educators’ scientific works.

The Estonian reforms (Lees, 2016) have contained elements that decreased 
inequality: individual psychological support, consultancy offered in the case of 
learning difficulties, free lunch, etc. Some of these elements were started even 
before the country’s independence was regained. These seem to have little to do 
with mathematics achievement, but—as revealed from system-level data—it is the 
overall quality of education that will increase mathematical performance.

Russian reforms in mathematics education, according to a “Conception of 
Mathematics Education Development in the Russian Federation” government docu-
ment, deal with individualization, where each student is supposed to receive education 
in accordance with his or her abilities, including talent recognition and support. At the 
same time, much more attention is paid to the development of gifted children and 
improving scientific achievements than to the support of children with learning diffi-
culties. The need to establish a system of additional “leisure-time groups in mathemat-
ics” and to popularize mathematics is stressed throughout the conception.

There is a long list of educational reforms in Romania with a lot of positive 
effects in general (see UNESCO, 2015) but, as Nicu (2016) stated, there is a lack of 
consistency in introducing elements of reform and pursuing their effects in the 
Romanian education system. One of the reasons could be the fact that there have 
been too many and too rapid changes at the policy level. In the last 17 years there 
have been 12 different prime ministers and 17 different persons as minister of edu-
cation, while the Romanian educational system is still highly centralized with 
almost no professional autonomy for teachers or teacher organizations.

C. Csíkos et al.
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 Some Current Features and Tendencies in Eastern European 
Mathematics Education

 Looking into Classrooms: Methodological Challenges

Blömeke, Suhl, and Döhrmann (2013) conducted an international comparative 
study on teachers’ knowledge. An important aspect of their research is that they 
conducted an item-level analysis of different aspects of teachers’ knowledge: 
strengths and weaknesses in mathematical pedagogical content knowledge and 
(pure) mathematical content knowledge. Here, Russia and Poland represented the 
Eastern European region, and the results pointed to a shared culture of mathematics 
teacher education in these two countries. Furthermore, Polish and Russian prospec-
tive teachers’ advantages have been revealed (as compared to other countries in the 
sample: Taiwan, Hong Kong, Norway, the USA, and Germany) when solving diffi-
cult mathematical tasks.

In another study, Kaiser and Blömeke (2013) provided an example of how 
Eastern–Western dichotomies can be handled in large sample investigations. In this 
analysis, Poland and Russia, of course, belong to the Western culture countries, but 
when comparing future mathematics teachers’ mathematical content knowledge 
and mathematical pedagogical content knowledge, these two countries proved to be 
similar to some traditional Eastern culture countries. In Poland, Russia, Taiwan, 
Thailand, Germany, Switzerland, and Georgia, students had greater mathematical 
content knowledge. Conversely, in the USA, Norway, the Philippines, Malaysia, 
Chile, Spain, and Botswana, prospective teachers’ mathematical pedagogical con-
tent knowledge proved to be greater. Consequently, in the two representative Eastern 
European countries, preservice mathematics teachers are relatively well trained in 
mathematics and relatively poorly trained in pedagogy.

As an example, in Romania a regular teacher training program consists of 180 
credits in the scientific field (bachelor’s level) and 30 credits in the pedagogical 
module (offered by the teacher training institute, which has a fixed national curricu-
lum that is 80% the same for all specializations). For those completing a master’s 
program (2 years, 120 credits) there is a second pedagogical module with 30 addi-
tional credits. During these studies there is only one course of subject didactics and 
one discipline (during one semester) of practical training in schools. Thus, the main 
knowledge of how to be a mathematics teacher is not sourced in the worldwide 
recognized knowledge base (books and research papers) but in mathematical prob-
lem books. This viewpoint and structure (scientific specialization and pedagogical 
module) is historically rooted in the Romanian educational system; it was used from 
1918 onward (when the modern and unified Romanian state was proclaimed) and at 
the beginning it was determined by the necessity for a large number of teachers in a 
relatively short time period (at the outset for unifying the four different educational 
systems that existed in the different regions before the unification, and subsequently 
for elimination of illiteracy, till 1959). This system practically allows the possibility 
for each student from higher education to become a teacher with minimal practical 
training, without any preliminary selection. In this context it is not surprising that 
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according to the TIMSS 2007 teacher reports, rote-learning strategies were used in 
more than half of the lessons for at least 60% of students in the eighth grade in 
Bulgaria, Cyprus, Lithuania, Romania, and Turkey.

In Russia, there is also a traditional emphasis on mathematical content knowl-
edge, with a 50–70% rate of preservice math teachers’ university courses being 
dedicated to pure mathematics. According to the aforementioned “Conception of 
Mathematics Education Development in the Russian Federation” document, the 
curriculum for teachers needs to be changed in order to add extra tasks in elemen-
tary mathematics, including creative tasks and tasks at an advanced level, which 
teachers need to be able to solve by themselves. The conception also stresses the 
role of practices at schools, which would motivate teachers to acquire deeper peda-
gogical and psychological knowledge, but it does not point toward reformation of 
pedagogical or psychological courses that could be based on contemporary findings 
in mathematics education research.

There are many anecdotal cases where mathematics teachers from different cul-
tures have observed each other’s lessons. Such an experience is described by 
Woodrow (1997): Hungarian colleagues in a British school observed that instead of 
forcing students to achieve well, the British colleagues considered it more important 
not to hurt their students’ self-image.

A current trend in Europe is the widespread dissemination of inquiry-based learn-
ing (IBL; often called problem-based learning in mathematics education). According 
to Maaß and Dorier’s (2010) analysis, three Eastern European countries participating 
in the Promoting Inquiry in Mathematics and Science Education across Europe 
(PRIMAS) project—Hungary, Romania, and Slovakia—can be characterized by late 
introduction of IBL into their curricula. In this way, these countries proved to be simi-
lar to Malta, Spain, and Cyprus. Remarkably, problem-based learning was introduced 
in Russia back in 1832 by P. S. Gur’yev in his “Arithmetic leaflets” [“Arifmeticheskie 
listki”] (Polyakova, 2011) and then was spread in curricula during the 1940s and 
1950s (Karp, 2011); the current programs still honor this tradition.

Moreover, the analysis of the Mathematics and Science Across Europe (MASCIL) 
project (see Maaß and Engeln (2016)) revealed that teachers have a positive attitude 
about IBL and about connecting IBL with the “World of Work” (WoW) in some 
Eastern European countries (Romania and Bulgaria), but neither IBL nor the WoW 
context is frequently used in daily teaching practice. Teachers from Romania feel 
less supported than teachers from other European countries in implementing IBL or 
using WoW contexts. Romania puts an emphasis on active participatory methods 
and active learning using cooperative strategies (in pairs or in groups). In other 
words, it recommends a shift from teaching from the front to cooperative teaching 
and learning in order to improve motivation and engagement in mathematics.
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 Fostering Students’ Mathematics Learning Talent 
Development, Remedial Education, School Readiness, 
and Attitudes

Hungary is said to be first country where a nationwide high school mathematical 
competition was organized, at the end of the nineteenth century (Kontorovich, 
2011). Frank (2012) cited George Pólya’s reason as to why mathematics was so 
important and highly developed in the first decades of the twentieth century in 
Hungary: it is the least expensive science. The “competition cult” that was so greatly 
expressed in the Eastern European countries during the Soviet regime had strong 
antecedents in Hungarian mathematics and physics competitions. Also, the exis-
tence of specialized high schools aimed at developing mathematical and science 
talent originates in Budapest, e.g., the Lutheran High School, where several Nobel 
Prize winners studied high-level mathematics (see Marx, 1996).

Currently, Russia maintains a strong tradition of specialized mathematical edu-
cation in schools; in many schools, children are divided into mathematics and 
humanities classes after the eight to ninth grades. Educational standards and the 
approximate curriculum for schools (which is officially provided by the ministry of 
education) assume two levels of competence and corresponding programs: ordinary 
and advanced. For example, the advanced level for primary school (first to fourth 
grades) includes the ability to solve logical tasks; to read simple pie charts; to plan, 
conduct, and analyze simple empirical investigations; and other tasks. There is also 
a number of special mathematics schools for the most talented children. These 
schools have a unique system to teach mathematics, which is called the “system of 
leaflets” (e.g., Shen, 2000). In this two-level system, all curricula for advanced 
mathematics are presented as sequences of problems, and a student needs to solve 
them on his own and then explain his solutions to a teacher assistant. This system 
develops the skill to think, to achieve a new mathematical result on one's own, and 
to experience a mathematical discovery together with the team of teacher assistants 
and schoolmates, as they not only go through mathematics problems but also expe-
rience out-of-school activities together (Yurkevich & Davidovich, 2008). As a 
result, each student is able to enter the mathematical departments of the best univer-
sities; many students successfully participate in all-Russian and other mathematical 
competitions, although successful participation in competitions is mostly consid-
ered an incidental result of education.

In Eastern European mathematics education, much less attention has been paid 
to remedial education. Currently the system is undergoing serious reconstruction in 
Russia: all children are supposed to be taught in inclusive classes, thus the system 
of specialized schools is going to be renewed and new educational standards are 
being elaborated in order to adjust school curricula to specify what needs to be 
taught at each of three disability levels of each disorder (Malofeev, Nikol’skaya, 
Kukushkina, & Goncharova, 2009).
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 Talent Development and Participation in the International 
Mathematics Olympiad

Since the beginning of mathematics competitions, the main aim has been not to win 
prizes or praise good students, but to find future creative mathematicians 
(Kontorovich, 2011). The International Mathematics Olympiad (IMO) was initiated 
in the socialist countries with the aim of promoting excellence in mathematics 
(Adler, 1980).

The first IMO was held in Romania (and still Romania has hosted the most 
IMOs—five times). The Romanian team has participated in all 57 contests over the 
years. Several times, Romania has been first in the unofficial country rankings (the 
last time was in 1996), and there is a very strong tradition in Romania for preparing 
children for mathematical contests. If we focus only on the countries of the European 
Union, we can see that the results for the Romanian team are in the forefront of the 
rankings: in first position in 2011 and 2012, and in second position in 2014 and 
2015. Obviously, in the worldwide ranking, the results of the Romanian team show 
a declining trend (see Table 10.6).

Of course, the results of the Romanian IMO team can be analyzed from several 
viewpoints. If we see the numbers of medals won over the years (75 gold, 138 silver, 
and 98 bronze), they are impressive. But if we relate this number to the number of 
Romanian students participating in the IMO competition (380), we see that the effi-
ciency is around 82%, which is less than the efficiency obtained by the Hungarian 
teams (91%) or by the Russian teams (100%).

The way in which talented students are selected in Eastern European countries 
has a long tradition. In Romania, there is a multistep testing procedure for high- 
achieving students (they are tested at the local level in schools, at the county level, 
and nationally), a huge collection of background materials (the Gazeta Matematica 
journal and publications from several specialized publishing houses like GIL), and 
an excellent study program for those included in the enlarged national teams. It is 
also worth mentioning that from a professional point of view the educational system 
is controlled by the ministry of education (through local inspectorates), while the 
contests are supervised more or less by members of the Romanian Mathematical 
Society. This duality seems to be persistent in the Romanian educational system, 
and there are no concrete signs that there is a (common or political) will to change 
it at the national level. Despite the good Romanian results in international competi-
tions, the talent recognition, talent development, and talent support programs are 

Table 10.6 Ranking of the Romanian International Mathematics Olympiad (IMO) team in the 
unofficial country rankings

2010 2011 2012 2013 2014 2015 2016

Romania’s overall ranking 16 8 10 22 11 13 22
Romania’s ranking among European Union 
countries

6 1 1 5 2 2 6
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not visible at a systemic level in schools. Extra classes for remedial education are 
allowed, but for talent development these are transferred to centers of excellence 
(mostly created in cities), which are unavailable for most children. There are several 
civil initiatives (sponsored by foundations), but most of them are not embedded in 
the regular (not private) school system.

Our second example here is Russia. As the cessionary of the former Soviet 
Union’s several first rankings, Russia traditionally has had quite good results in 
IMOs. It achieved second to fourth places in the worldwide ranking during the last 
20 years, though in the last 2 years the results got worse; Russia won no gold medals 
and took eighth place in 2015, but it came seventh and won four gold medals in 
2016. The mass media stressed that the results in 2016 were noticeably better than 
those in 2015, but they need to be improved further since Russia is expected by poli-
ticians and mathematicians to come first or second every year, as it did many times 
during the Soviet years. The 11th place it achieved in 2017 signified a failure of the 
current efforts. As has been mentioned, education for gifted students receives spe-
cial attention; for example, a special center for gifted children was opened in Sochi 
under the personal control of the president. The preparations of the Russian team for 
IMOs, together with other conferences and summer and winter camps, are con-
ducted at this center.

There are a few levels in the selection process of the IMO participants. Results 
from two all-Russian mathematical competitions, an open Chinese competition, and 
a “Romanian Masters” competition are taken into account. Around 50 selected par-
ticipants are invited for 2 weeks of preparations a few times during the last 2 years 
of school. At the end the final team is formed, and a lot of attention is paid to indi-
vidual preparation during the last 2 weeks of preparation before the IMO: each pupil 
solves the tasks that are chosen for him or her in accordance with his or her difficul-
ties during the previous competitions and preparations. Tasks in international and 
all-Russian competitions are different: tasks in all-Russian competitions need more 
creative thinking, while tasks in the IMO are more technical, and it is exactly cre-
ative thinking in which Russian participants are so strong, while they lose in com-
parison with their Asian colleagues in technics and stability of calculation skills. 
This is what needs to be approached during the preparations.

 School Readiness in Mathematics

The importance and topicality of school readiness investigations in the Eastern 
European region is illustrated here by the cases of Hungary and Poland. The first kin-
dergarten in Central and Eastern Europe was established in 1828 in Buda by Terézia 
Brunszvik. Since that time, kindergarten education has been a central topic in Hungary. 
The current national kindergarten curriculum considers mathematics “a tool for 
observing and learning in the world through activities” (Government decree 363/2012). 
In Poland the development of mathematics skills is an important part of the core 
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curriculum in kindergarten. Children learn about counting, numeracy, classification, 
addition, and subtraction through playful activities (Smoczyńska et al., 2014).

Children start school at age 6 in both countries. School readiness assessments are 
not compulsory in Hungary. The decision as to whether a child is ready for primary 
school is generally made by kindergarten teachers based on mostly social and physi-
cal characteristics. Cognitive development is also an important indicator, but lan-
guage and vocabulary are usually more relevant than early numerical skills. The test 
battery most commonly used to assess the key cognitive and social skills for school 
readiness in Hungary is called the Diagnostic System for Assessing Development 
for Four- to Eight-Year-Old Children (DIFER), which includes a basic counting and 
numeracy test (see Csapó, Molnár, & Nagy, 2014). However, kindergarten teachers 
barely use these tools, considering that face-to-face measures are time consuming 
for them. To overcome these problems there are new research projects to extend 
technology-based assessments to early childhood as well (Rausch & Pásztor, 2017). 
A newly developed online test is used at school entry to assess early numerical skills 
from age 5–7, including five subtests: basic counting, the number word sequence, 
numeral recognition, magnitudes, and numerals and relations. The results of the first 
nationwide measurements are promising (Rausch, 2016).

In Poland, kindergarten teachers are requested to make school readiness assess-
ments, which is called preschool diagnosis, based on the instructions of the core 
curriculum (Smoczyńska et  al., 2014). Assessing basic counting skills is usually 
part of these measurements. Integrating information and communication technolo-
gies (ICT) into early mathematics education and assessments is a rapidly develop-
ing research area in Poland as well. The Test of Abilities at the Start of School 
(TUNSS), done using tablet computers, is used to assess school achievements in 
mathematics, reading, and writing from preschool up to second grade students at 
primary school. The mathematics subtest has items related to numbers, measure-
ments, space and shape, relations, and dependencies (Szram, 2016).

The worldwide growing importance of mathematics education and the unques-
tioned importance of the early years of schooling define a research field that has 
brought some important findings from Eastern European colleagues. A cross- 
cultural investigation into early arithmetic by Rodic et  al. (2015) found similar 
knowledge structures in 5- to 7-year-old students in the participating countries: the 
UK, Russia, China, and Kyrgyzstan.

 Conclusion

Eastern European countries have a rather famous (sometimes labeled as infamous) 
heritage of school mathematics education. Having built on both the European didac-
tical tradition and the Soviet ideas of psychology, Eastern Europe’s mathematics 
education has produced impressive results in talent recognition and talent develop-
ment, as indicated by the outstanding participation at International Mathematics 
Olympiads. From the 1980s, however, the average results of students in 
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mathematics have tended to decrease, as measured by large-scale international sur-
veys. At the root of the problems is an increasing difference between students with 
advantaged and those with disadvantaged socioeconomic status, and (not indepen-
dently of that) the increasing proportion of low-performing students may lead to the 
conclusion that many countries in the region may and should follow some elements 
of the Polish and Estonian school reforms.
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Chapter 11
Mathematical Learning and Its Difficulties 
in Southern European Countries

Maria Gracia-Bafalluy and Miguel Puyuelo-San Clemente

 Introduction

In this chapter, we consider the countries of Southern Mediterranean Europe: 
Portugal, Spain, France, Italy, and Greece. Historically rich and complex, these 
countries present deep differences both between and within them, with deep territo-
rial North–South divides and gender discrepancies.

They also feature decentralized education policies (except for Greece, which 
retains mainly centralized education). Aside from European and national policies, 
regions and school centers have some autonomy in the way central guidelines are 
applied and in the professionals, materials, and resources they choose.

Some common guidelines are set by the European Union. Concepts such as com-
petencies, special educational needs, etc., are shared among the member countries 
through entities such as the Eurydice network—part of the Education, Audiovisual 
and Culture Executive Agency (EACEA)—which supports European cooperation in 
education systems, and other international entities such as the Organization for 
Economic Co-operation and Development (OECD).

However, there is a substantial gap between current scientific knowledge and the 
legislative bodies responsible for ensuring that individuals receive the support they 
need in mathematics. Bringing about this necessary improvement will require more 
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effort in promoting and facilitating communication between researchers, lawmakers, 
therapists, and other educators.

Also, this geographical area is currently undergoing a deep, decade-long crisis 
and social transformation. In some cases, that has caused economic resources 
devoted to education to be blocked or increased by less than the needs of the sector 
in these countries. By 2014, some countries had had reduced education budgets for 
three or four consecutive years (Portugal and Spain, respectively), while others had 
done so for even longer (Greece and Italy).

 Educational Policies in Southern Europe

In 2006 the European Union issued a guide to the competencies necessary for active 
participation in society, including mathematics (Eurydice, 2016). This forced Southern 
European countries to update their curricula in order to follow the guidelines. These 
changes were also driven by new benchmarks, such as the shift from traditional sub-
ject-based to learning-outcome-based curricula, the inclusion of cross-curricular links 
between subjects, and the introduction of specific targets as criteria for learning. 
Moreover, these changes can be understood as a response to the performances obtained 
by students in external examinations such as the Program for International Student 
Assessment (PISA) test of 15-year-olds, organized by the OECD (Eurydice, 2011) 
(see Table 11.1).

However, the OECD itself has issued alerts about increasing inequalities between 
and within countries over the last 30  years (OECD, 2014), as can be seen in 
Figs. 11.1 and 11.2.

Table 11.1 Scores of Southern European countries in the last Organization for Economic 
Co-operation and Development (OECD) Programme for International Student Assessment (PISA) 
evaluation (2015) and 2012 evaluation scores (the last edition in which mathematics was assessed 
as a main domain); extracted from OECD (2016)

Country

2015 score 
(standard error) 
[OECD average: 
490]

2015 standard 
deviation 
(standard error)

2012 score (standard 
error) [OECD 
average-30: 496]

% score under level 2 in 
math in 2015 [OECD 
average-30: 22.9%]

Spain 486a (2.2) 85 (1.3) 484a (1.9) 22.2
France 493 (2.1) 95 (1.5) 495 (2.5) 23.5
Italy 490 (2.8) 94 (1.7) 485a (2.0) 23.3
Greece 454a (3.8) 89 (1.8) 453a (2.5) 35.8
Portugal 492 (2.5) 96 (1.3) 487 (3.8) 23.8

At level 2, students can interpret and recognize situations in contexts that require no more than 
direct inference. They can extract relevant information from a single source and make use of a 
single representational mode. Students at this level can employ basic algorithms, formulas, proce-
dures, and conventions to solve problems involving whole numbers. They are capable of making 
literal interpretations of the results. This is the baseline level of proficiency required to participate 
fully in modern society (www.oecd.org)
aMean scores significantly below the OECD average. Significance data are not available for 
percentage scores under level 2 in mathematics in 2015
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Due to the common European guidelines, all the countries included in this chapter 
have similar policies on how and when to assess children for mathematics  learning 
difficulties (MLD). In all of them, teachers are encouraged to detect cases of learning 
difficulties and assess them or refer them to the relevant pedagogical teams.

For instance, in Italy, a 2010 law (Legge 170/2010 Gazzetta Ufficiale, 2010) set 
out conditions and supports for including cases of learning difficulties in normal 
schooling. A more recent guideline (Direttiva Ministeriale 27.12.2012 (Ministero 
dell’Istruzione, 2012) included dyscalculia as a specific learning difficulty and indi-
cated that these cases should be detected by teachers.

In Portugal, when a case of special education needs is detected, the child must be 
included in “quality education” (Decreto-Lei n.° 3/2008), even if that requires 
additional support (see Fernandes, Miranda, & Cruz-Santos, 2014, p. 15). However, 
the assessment criteria to determine such cases are not prescriptions but recom-
mendations (Eurydice, 2011, p. 36).

Fig. 11.1 Organization for Economic Co-operation and Development (OECD) Programme for 
International Student Assessment (PISA) 2015 results for European countries. Average scores are 
compared with the OECD average. (Courtesy of Jakub Marian, https://jakubmarian.com/)
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In Greece, MLD are mentioned in Ministerial Decision 24136/Γ7/21-2-2013 
regarding lower secondary (compulsory) education (UNESCO, 2015). According to 
Ministry of National Education Law 2817 (2000, (Syriopoulou-Delli 2010)), the 
category “people with special educational needs” includes “difficulties in mathe-
matics.” These cases must be identified by the Center of Differential Diagnosis and 
Support of Special Educational Needs (KEDDY; Law 3699/2008), which includes 
a psychologist, a teacher of special education, and a social worker, and must provide 
counseling support to teachers and parents (Syriopoulou-Delli 2010).

In France, a decree (décret n° 2005-1014 of 24 August 2005 (Bulletin Officiel, 
2005)) sets out that during elementary school, families of children who do not attain 
the basic competencies will be contacted by the school principal to set up a person-
alized support plan together (Programme de Réussite Éducative (PPRE)), to be 
applied during or after school hours from cours élémentaire 1 (CE1) (around 7 years 
of age). The professionals in charge are psychologists, pediatricians, or specialized 
teachers, all with specific training.

Fig. 11.2 Organization for Economic Co-operation and Development (OECD) Programme for 
International Student Assessment (PISA) 2015 results for autonomous communities in Spain, the 
only country with detailed scores. Average scores are compared with the OECD average. (Courtesy 
of Jakub Marian, https://jakubmarian.com/)
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In Spain, a 1995 law (Real Decreto 696/1995; 28 April, 1995) regulated work 
with special educational needs (in children who could not attain basic objectives, 
without further definition) and specified that these cases might be temporary or 
permanent. Thus, the law referred to a rather heterogeneous population, and specific 
learning difficulties were not mentioned. It was not until 2006 that a law (Ley 
Orgánica de Educación (LOE); 3 May, 2006) encompassed “specific learning diffi-
culties” as particular needs requiring educational support, although the specific 
kinds of difficulties remained unspecified.

More recently, a new organic law for educative quality improvement (Ley 
Orgánica para la Mejora de la Calidad Educativa (LOMCE), published as Ley 
Orgánica 8/2013 December 9) was passed as a response to the poor results obtained 
by Spanish students in PISA and other international evaluations. However, this law 
does not repeal the previous LOE, and its modifications do not affect concepts such 
as mathematics learning or special needs in mathematics.

To sum up then, for these countries, when a tutor and/or mathematics teacher 
detects a child who has serious trouble completing their mathematical assignments, 
they contact their corresponding educational orientation and psychopedagogical 
team (in Spain or France), or select tests in order to further assess the child’s general 
and specific abilities. The psychopedagogical teams are made up of psychologists, 
therapeutic pedagogues, and speech therapists. Their roles include psychopedagogi-
cal evaluation, proposing adaptations to the curriculum that best respond to the edu-
cational needs of the student, and orienting teachers. Only in the case of Spain can 
the teams or individual professionals also develop a specific curricular proposal or 
individual curricular adaptation (not significant or significant) for these students; 
similarly, in Greece the content difficulty can be adapted to the performance level of 
the pupil (but with no modifications of the curriculum objectives) (Eurydice, 2011).

 Definition of Mathematics Learning Difficulties, 
and Assessment and Diagnostic Criteria

Countries providing a clinical definition of specific learning difficulties make refer-
ence to the criteria in the International Classification of Diseases 10 (ICD-10) (World 
Health Organization, 1992) or the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition (DSM-V) (American Psychiatric Association, 2013).

As for pedagogical criteria, these center on low performance in standardized 
calculation tests and mathematical competency below what is expected for the 
chronological age, when this is combined with normal performance in other areas 
and the absence of socioeducational factors that could otherwise explain the prob-
lem. Thus, a specific learning deficit is initially defined as a discrepancy between 
the student’s performance and the objectives determined by the curriculum, without 
any mention of underlying cognitive processes (Inserm, 2007). This “conceptually 
empty” criterion can certainly serve as an indicator of the need to assess a particular 
child, but it is not enough for adequate diagnosis or effective intervention.
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Math anxiety is another widespread condition with well-known adverse emo-
tional and cognitive effects; however, it is not officially recognized in mathematics 
remediation programs.

When a case of learning difficulties is detected, the relevant professionals (teachers 
and/or pedagogical teams) must administer a battery for general intellectual perfor-
mance and some specific mathematics measures. If the MLD is confirmed, then the 
school, via the teachers (as in Portugal or Greece) or the corresponding pedagogical 
team (as in France or Spain), provides the necessary support for a category included 
as children with special educational needs (not the same as “low achievers,” who are 
not considered to have any specific learning difficulty).

Currently, two different approaches reflect the ongoing debate in the numerical 
cognition literature between those claiming that dyscalculia is a domain-specific 
deficit and those attributing it to general factors. According to this view, educators 
should be attentive to young children who show difficulties in recognizing small 
quantities of elements without counting them (i.e., subitizing), have problems when 
counting manageable sets, or make errors when comparing numbers and quantities. 
These kinds of indicators relate to the concept of number sense, which denotes our 
intuitive ability to “quickly understand, approximate, and manipulate numerical 
quantities” (Dehaene, 2001).

Along these lines, a document published by the French Pediatric Society 
(Société Française de Pédiatrie, 2009) includes a brief explanation of the mile-
stones of logical–mathematical competency acquisition (see Table 11.2).

The same document (Société Française de Pédiatrie, 2009) indicates alert signs 
for two school stages:

• Maternelle (3–5 years old): Difficulties in accessing numerical symbols; very 
little or no imitation game; drawings with no representative level; no numerical 
chain and mistakes when counting; difficulties when enumerating

Table 11.2 Acquisition of logical–mathematical competencies

Grade (age) Counting Calculation (addition) Problem solving

GSM 
(5–6 years)

Spontaneous comparison 
of two different 
collections (n < 10) with 
the same kind of object

Based on rhymes

CP/CE1 
(6–8 years)

Conservation of 
numbers: comparison of 
two collections with the 
same numerosity but 
different kinds of object

Addition of two numbers < 10, 
adding the smaller to the bigger, 
one by one 
(3 + 1 = 4 + 1 = 5 + 1 = 6 …)

By combination 
(how many more, 
how many less)

CE2 
(8–9 years)

Mastering counting 
above 100

Notions of commutativity 
(4 + 3 = 3 + 4) and associativity 
(4 + 3 + 2 = 4 + 5)

By combination 
(how many more or 
less than); by 
choosing the 
proper operation

Adapted from Société Française de Pédiatrie (2009)
CE cours élémentaire, CP cours préparatoire, GSM grande section de maternelle
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• Primaire (6–10  years old): Difficulties in memorizing arithmetical facts or 
multiplication and addition tables; problems when operating with borrowing or 
transcoding; poor comprehension of arithmetical problems

Similarly, two regions in Spain have provided indicators of mathematics difficul-
ties (see Table 11.3).

A second, much more pervasive, approach claims that all learning difficulties 
are due to problems in general cognitive abilities. In line with this approach, 
mathematics- specific difficulties are most commonly assessed through tests of 

Table 11.3 Indicators provided to teachers and counselors in two regions of Spain—Catalonia 
and Navarra—to detect mathematics difficulties

Region Age group Difficulty

Catalonia Kindergarten (children 
up to 6 years old)

Symbol access difficulties
Counting difficulties
No cardinality principle
Difficulty in understanding basic notions of quantity
Difficulty in recognizing/reproducing basic geometric 
figures
Difficulty in putting elements into an ordered series
Persistent mistakes when reciting the number sequence

First cycle of primary 
school (first and 
second grades, 
6–7 years of age)

Difficulty in learning basic arithmetic
Mistakes when performing calculation exercises
Problems in choosing the correct operation to execute
Problems with large magnitudes
Reading and transcription errors
Frequent errors in operations
No number sense
Difficulty understanding arithmetic situations
Performance discrepancy with other academic subjects

Middle cycle of 
primary school (third 
and fourth grades, 
8–9 years of age)

Missing strategies for addition and approximate 
calculation
Difficulty recalling basic arithmetic facts
Difficulty counting backward and learning to divide
Anxiety/math aversion
Frequent errors in operations
Slow mental calculation
Difficulty in calculating large magnitudes
Errors in understanding and solving problems
Difficulty in understanding positional notation (e.g., the 
decimal system)
Performance discrepancy with other academic subjects

Higher cycle of 
primary school (fifth 
and sixth grades, 
10–12 years of age)

Anxiety, low motivation, apparent lack of interest
Secondary behavioral issues
High engagement not corresponding to the final result
Lack of a solid base in calculation taught in previous years
Difficulty in complex geometry
Lack of calculation strategies
Need for support material (e.g., a calculator)

(continued)
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Table 11.3 (continued)

Region Age group Difficulty

Secondary and high 
school (12–18 years of 
age)

Difficulty in understanding basic concepts in physics, 
chemistry, finance, etc.
Lack of a solid base of skills taught in previous years
Anxiety/math aversion
Slow processing, not remembering multiplication tables
Performance discrepancy with other academic subjects

Navarra 
(CREENA, 
2012)

Up to 5 years of age Difficulty in reciting the number sequence
Errors when representing numerals with their fingers
Problems in reading or writing numbers seen at school
Errors when enumerating small magnitudes
Difficulty in subitizing (i.e., rapidly identifying quantities 
<5)
Errors when comparing numbers and magnitudes

Approximately 
5–8 years of age

Difficulties in automatizing calculation (e.g., problems in 
performing addition or subtraction with a result less than 
10, rapidly and without counting)
Immature strategies such as finger counting
Alignment errors in multidigit addition or subtraction
Problems when working with numerical series

Approximately 
9–18 years of age

Persistent difficulty in memorizing multiplication tables, 
basic errors in multiplication
Memory problems during mental calculation (e.g., 
forgetting quantities while performing operations)
Frequent arithmetical errors when calculating or carrying
Immature strategies for problem solving (e.g., “I don’t 
know if I must add or subtract”)

memory, perception, or cognitive styles, and mathematical ability is evaluated 
mainly through results obtained in mathematics exams.

As for the prevalence of these learning difficulties, none of the studied countries 
either specifies or publishes its own statistics, and there are no epidemiological stud-
ies of learning difficulties in school populations. At most, international references 
(about 5–7% of the student population, Inserm, 2007) or national estimations 
(2.5–3.5% of the Italian student population, Ministero della Salute, 2011) are consid-
ered, although not in a generalized way.

In general, teachers are encouraged to use batteries devoted to general intellec-
tual abilities, such as WISC, K-ABC, Raven, etc. (all of which have adaptations for 
some of these countries). Also, other specific measures for mathematics have been 
adapted to or from other Southern European countries’ languages. For instance, the 
Nucalc battery, also known as Zareki (Deloche et al., 1993), has been adapted for 
French and Greek populations (Koumoula et  al., 2004), and a new version, 
Zareki-R, has been adapted for the French population (von Aster & Dellatolas, 
2006). Tedi- Math (Test Diagnostique des Compétences de Base en Mathématiques 
[Diagnostic Test of Basic Mathematics Competencies] (Grégoire, Noël, & Van 
Nieuwenhoven, 2001)), besides its original French version, has been adapted for 
Spanish (Sueiro & Pereña, 2005) and Italian (Girelli, Bizzaro, Krinzinger, & 
Willmes, 2015) populations.
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 Assessment of Mathematics Learning Difficulties in Italy

Dyscalculia in Italy cannot be diagnosed before the end of classe terza (8–9 years of 
age). From this age on, if any alert sign is detected, an external team must complete 
neuropsychological and intellectual assessments including attention, reading and 
writing, praxis, and visual–spatial abilities. After this evaluation, an intervention 
program must be suggested by the team and planned together with the child’s school 
center. The intervention should include personalized plans, compensation strategies, 
specific materials, and the participation of a support teacher.

Although tests for neuropsychological or cognitive measurements are not indi-
cated, there are a number of specific tests for mathematics difficulties designed 
originally in Italian. Some of these are:

• AC-MT—Test di Valutazione delle Abilità di Calcolo e Soluzione di Problemi 
[Test of Abilities of Calculation and Problem Solving]: Developed from the 
theoretical background of the ABCA test (Lucangeli, Tressoldi, & Fiore, 1998) 
as a response to recent official regulations, this is a revision of its original version 
but presents a shorter administration delay. This new version can be administered 
individually or collectively, and it takes around 20 minutes. It includes a series of 
arithmetical problems presented on paper, which must be answered on a response 
sheet. The evaluation includes the total number of responses, accuracy, errors, 
and time needed for completing the test.

• AC-MT is divided into two age groups. AC-MT 6–10 (Cornoldi, Lucangeli, & 
Bellina, 2002) for primary education includes tasks of written calculation, 
numerosity judgment, digit transformation, and numerosity order; and an indi-
vidual part also including mental and written calculation, enumeration, dictation 
of numbers, and arithmetical fact recall. AC-MT 11–14 (Cornoldi & Cazzola, 
2004) is oriented to lower secondary school; it has no numerosity order but instead 
adds tasks on arithmetic expression, series completion, approximate calculation, 
and numerical facts and procedures.

• BDE-2—Batteria Discalculia Evolutiva [Developmental Dyscalculia Battery] 
(Biancardi & Nicoletti, 2004): This test is designed to diagnose MLD and calcu-
lation difficulties in children from 8 to 13 years old, based on the triple code 
model described by Dehaene and colleagues (Dehaene, 1992; Dehaene, Piazza, 
Pinel, & Cohen, 2003). The tasks are distributed into three areas: number elabo-
ration (counting and transcoding), calculation, and number sense. It also includes 
a test of logical–mathematical problem solving.

• Dyscalculia Test (Lucangeli, Molin, Poli, Tressoldi, & Zorzi, 2009): This battery, 
constructed using evidence from recent research, evaluates five categories of 
numerical cognition: number sense, number line, numerical facts, dictation of 
numbers, and mental calculation. It can be administered with a computer or in 
paper-and-pencil format.

• ABCA Test—Test delle Abilità di Calcolo Aritmetico [Arithmetic Calculation 
Ability Test] (Lucangeli et al., 1998): This test is based on a theoretical model of 
modular magnitude representation for 8- to 10-year-olds, described by McCloskey, 
Caramazza, and Basili’s (1985).
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 Assessment of Mathematics Learning Difficulties in Greece

The DeDiMa battery (Karagiannakis & Baccaglini-Frank, 2014) was created as a pro-
posed classification model for MLD and is standardized for grades 5 and 6 (ages 
10–12). It distinguishes between four domains: core number, visual–spatial, memory, 
and reasoning. This can also serve to outline the pupil’s strengths, thus orienting an 
eventual intervention. Administration is computer based. The battery includes 13 
tasks: subitizing–enumeration, number magnitude comparison, dot magnitude com-
parison, addition fact retrieval, multiplication fact retrieval, number lines 0–100 and 
ordinality, number lines 0–1000, math terms, calculation principles, mental calcula-
tion, equations, and word problems. There is a French adaptation in preparation.

 Assessment of Mathematics Learning Difficulties in Spain

• Evamat—Batería para la Evaluación de la Competencia Matemática [Battery for 
the Evaluation of Mathematical Competency] (García-Vidal, González-Manjón, 
García-Ortiz, & Jiménez-Fernández, 2010): Evamat, created to assess numerical 
abilities, can be administered individually or collectively in about 60 minutes and 
is aimed at children from the end of the first year of primary school (6 years of 
age), to the beginning of the third year of secondary school (15 years of age). 
It includes eight booklets, one for each educational level, and is composed of tests 
of basic number knowledge (writing numbers, composing and decomposing 
quantities, completing series, or placing numbers on a number line); calculation 
(mental or written calculation, relating multiplication and division, calculating 
doubles and halves); geometry (identifying a missing part in a drawing, differen-
tiating figures); and problem solving involving different operations.

• Mathematikoi II (Camarero, Santos, García, et al., 2003): This was designed and 
standardized by an Asturian educational orientation and psychopedagogical 
team with the aim of individually or collectively assessing curricular achieve-
ment in mathematics. It is aimed at children in the second cycle of primary 
school (8–10 years of age) and is composed of 32 multiple-choice items with an 
increasing level of difficulty, including questions on geometry, volumes and 
measures, chart interpretation, Arabic digits, seriation, arithmetical calculation, 
fractions, and problem solving.

There are other more general tests, created in Spanish, that include numerical 
subtests:

• BADyG—Batería de Aptitudes Diferenciales y Generales [Battery of General 
and Specific Aptitudes] (Yuste & Martínez, 2012): This is a general performance 
test designed to evaluate 4- to 16-year-old children. It includes five global factors 
(general intelligence and logical reasoning, as well as verbal, numerical, and 
spatial factors). The subtests are specific for each age and standardized for every 
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academic level. As for the numerical subtests, they include quantitative numerical 
concepts (for 4- to 6-year-olds), calculation and numerical–verbal problems (for 
6- to 12-year-olds), and completion of numerical series (for 12- to 16-year- olds). 
The test can be administered on a computer or in a paper-and-pencil format, 
either collectively or individually.

• Evalua (García-Vidal & González-Manjón, 2003): This is a battery assessing 
general intellectual abilities in 6- to 12-year-olds, standardized by age groups 
(6–8, 8–10, and 10–12 years). Administration can be either individual or collec-
tive. The battery includes two numerical subtests: calculation and numeration, 
and problem solving.

 Assessment of Mathematics Learning Difficulties in France

A compulsory general assessment of pupils is administered at two specific points: at 
the beginning of CE2 and in the sixth grade of collège (at 8 and 11 years of age, respec-
tively). When a learning difficulty is detected, the effects of the intervention must be 
evaluated every 6 months, after which its contents and goals must be adjusted to the 
child’s needs (article L2325-1 of the Public Health Code; see Legifrance, 2016).

To perform this general assessment, the Ministry of Education, via the Assessment 
Board (Direction de l’Évaluation) has created a computer program called J’Ade, which 
can be administered individually or collectively. It is designed not only to detect learn-
ing difficulties but also to evaluate general performance and to orient the intervention 
program in detected cases. As for sixth-grade mathematics, the items are distributed 
into five areas: space and geometry (15 items), numerical data utilization (18 items), 
sizes and measurement (eight items), numerical knowledge (27 items), and calculation 
(33 items). The assessment has been administered nationwide since 2005.

Some of the mathematics evaluations originally developed in French include:

• ECPN—Epreuve Conceptuelle de Résolution des Problèmes Numériques 
[Conceptual Test of Numerical Problem Resolution] (CIMETE, 1995; Duquesne, 
2003; Noël, 2007): This is a short test (it takes 10–30 minutes to be administered) 
comprising nine tasks divided into four parts: comparison, equilibrating collec-
tions, creating a difference, and adding and subtracting. The test is standardized 
for children between 4 and 9 years old.

• Numerical (Gaillard, Segura, & Taussik, 2000): This is oriented to 8- to 9-year- 
olds and inspired by the EC301 assessment battery for adults (Deloche et al., 
1993); it can be used to detect dyscalculia.

• UDN-II—Batterie sur L’Utilisation du Nombre [Battery for Number Use] 
(Meljac & Lemmel, 1999): This battery is based on the Piagetian theory of devel-
opment and includes tests on elementary logic (classification, inclusion, and 
seriation), conservation, number use, spatial tasks, and numerical and opera-
tional knowledge and comprehension. It can be administered to children aged 
from 4 to 11 years.
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 Intervention: Theories, Research, and Educational Practice

All the countries studied here require the use of evidence in policy-making pro-
cesses. Each ministry of education works with its own (France, Italy, and Spain) or 
external independent (Greece, Portugal) research institutes or international organi-
zations. The Eurydice Agency (2017) has recently published a detailed description 
of the sources for each country and how the flow of information between evidence 
providers and policy makers works.

As for remediation methods for MLD, however, there is no national policy pro-
viding central guidelines apart from the diagnostic pedagogical criteria and the sup-
ports for the intervention, as far as we know. Nevertheless, the pedagogical services, 
along with schools (and families, in the case of France), are in charge of the inter-
vention content for each case.

In Spain, the National Center for Innovation and Educational Research (http://
educalab.es/cniie/) provides resources complementary to curricula. Among them, a 
publication compiles some recent evidence and measurements for MLD, along with 
some online intervention programs (Martínez-Berruezo, 2015). Likewise, the 
Portuguese government furnishes digital resources for teachers via the School 
Gateway program (Portal das Escolas; http://portaldasescolas.pt), and Italy offers 
an online learning scheme specifically for low achievers—SOS Studenti (http://
puntoedu.indire.it/pon_sosstudenti/iscrizione/index.html).

In addition, some professionals or researchers in each country have proposed a 
number of programs, which are discussed below.

The Number Race (La Course aux Nombres; http://www.lacourseauxnombres.
com/nr/home.php) (Wilson et al., 2006) aims to strengthen brain circuits for repre-
senting and manipulating numbers in children between 4 and 8 years old (with or 
without learning difficulties) and has been translated into French, Spanish, and 
Italian (see http://www.lacourseauxnombres.com/nr/nr_download.php?lang=en). 
Its activities include number presentation (sets of digits or number words), counting 
(from 1 to 40), and basic calculation (addition and subtraction).

Also, the same authors who created Tedi-Math have developed two associated 
intervention proposals—Ad-Math 1 and 2 (Cornet, Goerlich, Vanmuysen, & Van 
Nieuwenhoven, 2001)—consisting of four complementary games, each designed 
for 4- to 10-year-olds to improve numerical representation through games, and 
requiring the participation of sight, touch, and hearing.

In Portugal, an interesting proposal is a program for intervening in metacognitive 
procedures and numerical reasoning (Dias & Santos, 2009) for lower secondary 
school students. Verbal instructions are presented, both for self-assessment in calcu-
lation and for justifying procedures in solving a problem. The intervention also 
records the pupils on audio in order to complement feedback.

Similarly, in Spain, Miranda-Casas, Arlandis, and Soriano (1997) and Miranda- 
Casas, Marco, Soriano, Meliá, and Simó (2008) have developed two intervention 
programs using metacognitive strategies for problem solving in children with math-
ematical difficulties. The first training program, designed for 10- to 12-year-olds 
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(Miranda-Casas et  al., 1997), requires students to reflectively engage in their 
problem- solving process while graphically representing problem data. After answer-
ing some reflective questions, students conduct a final self-correction. The second 
program, Escuela Submarina [Submarine School] (Miranda-Casas et al., 2008), has 
been developed for 8- to 10-year-olds and uses similar training in self-instruction 
combined with computer use.

Another program is Infopitagoras (www.infopitagoras.com), which allows 
teachers to create curricular adaptations by providing them with internet materials 
to use in their reinforcement programs. This program is available for specific learn-
ing difficulties in reading, writing, and arithmetic for 6- to 7-year-olds.

Some materials originally developed in Italian include:

• Dyscalculia Trainer (Molin, Poli, Tressoldi, & Lucangeli, 2009): This consists 
of a book and software designed for 8- to 12-year-olds. Several games are 
grouped into four categories: number sense, dictation of numbers, mental calcu-
lation, and number facts.

• I Numeri e lo Spazio con la Lim [Numbers and Space with Lim (an interactive 
whiteboard)] (Poli, Molin, & Lucangeli, 2017): This involves material presented 
in a book or on a computer, and includes manipulative material (a magnetic tab-
let, unity tiles) for children aged between 5 and 7.

• La Linea del 20 [The 20  Line] (Bortolato, 2011) and La Linea del 100 [The 
100 Line] (Bortolato, 2008): The first consists of a book and manipulative mate-
rial for practicing numerosities up to 20 with addition and subtraction games, 
and is specially designed for 5- to 8-year-olds with MLD; the second features a 
similar book and manipulative material for 6- to 8-year-olds, involving the 
numerical line up to 100. Both can be used independently.

• L’Intelligenza Numerica [Numerical Intelligence] (Lucangeli, Poli, & Molin, 
2003): This program aims to improve the cognitive base underlying number pro-
cessing for children from 3 to 11 years old, distributed into four age groups.

• Memocalcolo (Poli, Molin, Lucangeli, & Cornoldi, 2006): This is designed to 
work on number facts and mental calculation, paying special attention to mem-
ory, in 7- to 11-year-olds.

• Potenziare le Abilità Numeriche e di Calcolo [Potentiating Numerical and 
Calculation Abilities] (Biancardi, Pulga, & Savelli, 2008): This is designed for 
6- to 11-year-olds. It consists of a book and software, with 12 activities in count-
ing, transcoding, and calculation. It is specifically useful for children with 
dyscalculia but also as a support for normal learning.

• Tabelline e Difficoltà Aritmetiche [Tables and Arithmetic Difficulty] (Riccardi- 
Ripamonti, 2014): This is designed for the 5  years of primary school. It 
includes four sections: learning of tables and combinations; counting forward, 
backward and at speed; single, direct and inverse tables; and retrieval and 
velocity.

• Numelline (Riccardi-Ripamonti & Ripamonti, 2007): This is designed for 8- to 
11-year-olds. It comprises a series of ten games (Memory, Countdown, etc.) 
designed to help children to memorize multiplication tables.
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Some materials developed in French are:

• CalculaTICE: This is a website (http://calculatice.ac-lille.fr/calculatice/) designed 
by the Ministry of Education, the Department of the North, and the Sésamath 
Association (http://www.sesamath.net/) devoted to the public utilization of infor-
mation and communication technologies (ICTs) in mathematical learning (this 
association has also developed related apps for the iPad). It features exercises 
adapted for each educational level from cours préparatoire (CP) to CM2 (ages 
6–11), such as memorizing addition and multiplication tables; adding and subtract-
ing unities, tens, or hundreds; division; magnitude estimation; calculating halves, 
doubles, thirds, triples, fourths; problem solving, etc.

• L’Attrape-Nombres [Number Catcher] (designed by Dehaene and colleagues; 
http://www.attrape-nombres.com/an/home.php): This precursor of the Number 
Race is aimed at 5- to 11-year-olds, especially (but not necessarily) those with 
mathematics difficulties. In this case, the content is focused on two-digit numbers. 
The activities include basic calculation, number presentation, and activities using 
base-10 and multidigit numbers.

In general the use of ICTs is encouraged by national guidelines, but so far their 
use has not been generalized, even for MLD remediation (Eurydice, 2011).

 Conclusions

The European Community was built as a strong socioeconomic frame within which 
the member countries share similar concepts, references, and guidelines.

However, recent policy changes and the decentralization of these countries have 
probably contributed to the current absence of an overall policy, national or 
European, for dealing with specific difficulties in mathematics, although national 
plans do exist for the promotion of other essential skills such as reading.

Considering this situation, Europe, and especially the Southern European coun-
tries, have some work to do: teachers and other educational staff should have 
specific regulated training in MLD, and there should be a well-known, generally 
recognized chronology of mathematical milestones to rapidly detect atypical devel-
opmental trajectories. Further, it is essential for health and education professionals 
to work together with families. Given its importance, math anxiety should also be 
included in policies and in generalized assessment tools.

At the same time, all the participants in this process should be guided by com-
prehensive and updated policies and provided with the necessary support and mate-
rials. Guidelines should be based on long-term decisions with a clear final goal—to 
always encourage optimal development for every person, whatever his/her personal 
conditions are—and this objective should not be subordinated to gender, economic 
circumstances, or geographical circumstances.

There also should be a generalized aim (which does not currently exist) to 
decrease inequalities within and between countries. For this purpose, education is 
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the best tool for providing basic skills and integrating migrants, refugees, and peo-
ple at different socioeconomic levels. Every person can make a valuable contribu-
tion to society, and any educational difficulty without treatment will have a long-term 
cost, both for the person and for society.

Research and evidence should be the cornerstones for both professionals and 
policies, and should be shared among educational professionals. Similarly, fami-
lies should have access to information on normal development and how to detect 
alert signs.

To conclude, more effort is still needed to promote further research and specifi-
cally to facilitate the transfer of such findings to new assessment tools and interven-
tion programs, as well as to common policies aimed at improving mathematical 
achievement in Southern European countries.
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Chapter 12
Mathematical Learning and Its Difficulties 
in the United States: Current Issues 
in Screening and Intervention

Nancy C. Jordan, Luke Rinne, and Nicole Hansen

 Mathematical Learning and Its Difficulties in the United 
States: Best Practices for Screening and Intervention

Results from recent cross-national comparative studies indicate that despite 
spending more per student than many other countries, the United States performs 
below average in mathematics, ranking in the bottom half of countries in the 
Organization for Economic Co-operation and Development (OECD, 2012). This 
result, however, does not provide a complete picture of US education. There are 
significant socioeconomic differences across and within states, which explain 
about 15% of variation in student performance (OECD, 2012).

Figures 12.1 and 12.2 depict the percentage of fourth- and eighth-grade students, 
respectively, who performed below the basic level on the US National Assessment 
of Educational Progress (NAEP), overall and broken down by selected states and 
public versus private schools. Although the percentage of students who are strug-
gling has gone down since 1992, there are substantial achievement differences, 
depending on state and geographic region. In Massachusetts, for example, there is 
less poverty than in Mississippi; in 2015 80% of the students in Massachusetts met 
standards versus only 50–60% in Mississippi.
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* Note. 1992-1996 Accommodations not permitted
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Fig. 12.1 The percentage of fourth-grade public and nonpublic school students below the 
Basic level in NAEP mathematics. *Note: 1992–1996 accommodations not permitted. (Source: 
The National Assessment of Educational Progress (NAEP))
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Historically, the United States has differed from other developed nations in that 
control of education policy—including that related to mathematics—has tended to 
be highly decentralized (Woodward, 2004). There is no US national curriculum, 
resulting in a high level of state and local control over what is taught in school. 
As such, there is significant variation in instruction, both across and within states. 
However, 42 of the 50 states and the District of Columbia have now voluntarily 
adopted the national Common Core State Standards (CCSS; Council of Chief State 
School Officers & National Governors Association Center for Best Practices, 2010), 
which specify in relative detail the mathematical content to be covered as well as 
standards for student learning. The CCSS, however, are controversial, and to date, 
their long-term impact on student achievement remains uncertain.

In terms of special education, US federal law, under the 1975 Education of all 
Handicapped Children Act, mandates that all children and youth with disabilities, 
including those with learning disabilities in mathematics, receive a free and appro-
priate education, including nondiscriminatory evaluation and an individual educa-
tion plan. The Individuals with Disabilities Education Improvement Act (IDEIA) 
of 2004 eliminated the law’s original requirement to consider whether children 
exhibit a severe discrepancy between achievement and intelligence, leading to the 
broad implementation of alternative response to intervention (RTI) approaches. 
RTI approaches screen broadly for academic problems and then provide evidence-
based interventions aimed at helping individual students, tracking progress along 
the way to gauge effectiveness. Still, specific methods for assessment are typically 
established in a localized manner at school or school district levels, meaning that 
there is a high degree of variation in screening procedures and types of interventions 
provided to children with or at risk for disabilities.

In a widely cited article, Gersten, Jordan, and Flojo observed in 2005 that 
research on early screening for mathematics difficulties and disabilities in the 
United States was in its “infancy” (p.  293). In contrast, extensive research had 
already been conducted on early screening for reading difficulties, which produced 
reliable measures that could accurately predict which students would have trouble 
learning to read. The reading screeners helped US schools provide research-based 
literacy support and intervention for kindergarten and first-grade students and, to a 
large extent, drove the RTI movement in US special education. On the other hand, 
there was far less research on screening for potential mathematics difficulties and a 
relatively small corpus of evidence-based mathematics interventions.

Since that time, however, the field of mathematics learning difficulties in the 
United States has advanced significantly through various theoretical studies that 
identify the most powerful predictors of and influences on mathematics learning 
difficulties (MLD; e.g., Berch & Mazzocco, 2007; Geary, Hoard, Byrd-Craven, 
Nugent, & Numtee, 2007). Further, studies have validated screeners for detection of 
potential difficulties in mathematics (e.g., Jordan, Glutting, Dyson, Hassinger-Das, 
& Irwin, 2012), and rigorous intervention studies have helped determine best prac-
tices for young students with or at risk for MLD (e.g., Fuchs et al., 2008; Gersten, 
Jordan, & Flojo, 2005).

In addition to developing early screeners and interventions to help students 
acquire whole number competencies or number sense, recent studies have also 
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focused on learning rational numbers (e.g., fractions) in later grades. Typically, 
fractions are introduced in US mathematics in third grade (Council of Chief State 
School Officers & National Governors Association Center for Best Practices, 2010). 
Both whole number and rational number knowledge are crucial aspects of mathe-
matics education and are necessary for later success in mathematics as well in 
everyday life (Gersten et al., 2009).

In the present chapter, we highlight key contributions from relatively recent studies 
related to whole number understanding in the early grades and fraction understand-
ing in the intermediate grades. Although not comprehensive, the contributions 
reflect research-based findings related to MLD that are currently influencing educa-
tional practice in the United States.

 Early Number Competencies

 Early Number Competencies Predict Future Mathematics 
Success, and Deficiencies in Number Concepts Underlie  
Many Mathematical Learning Difficulties

Early mathematics skills correlate with long-term outcomes. Independent of cogni-
tive ability and social class, kindergarten mathematics concepts predict later learn-
ing outcomes not only in mathematics but also in reading (Duncan et al., 2007). 
Most US benchmarks (e.g., Council of Chief State School Officers & National 
Governors Association Center for Best Practices, 2010) for kindergarten and first 
grade primarily concern knowledge of number, including number relations and 
operations, forming a foundation on which later mathematics content is built 
(National Research Council, 2009). Mathematics delays as early as kindergarten 
and first grade put students at risk for difficulties in acquiring mathematics concepts 
in subsequent grades, including fractions and algebra (Mazzocco & Thompson, 
2005; Milgram, 2005; Wu, 1999). Poor number sense also leads to dependence on 
rote memorization, which in turn makes it harder later on for students to develop 
meaningful problem-solving skills (Locuniak & Jordan, 2008; Robinson, Menchetti, 
& Torgesen, 2002).

Kindergarten number sense performance and growth, in particular, predict 
mathematics achievement in elementary school (Jordan, Kaplan, Ramineni, & 
Locuniak, 2009; Jordan, Glutting, & Ramineni, 2010; Locuniak & Jordan, 2008). 
Unfortunately, many children from low-income communities in the United States 
enter kindergarten showing delays in core number knowledge relative to their  
middle-income peers (Jordan, Kaplan, Olah, & Locuniak, 2006; Jordan, Kaplan, 
Locuniak, & Ramineni, 2007; Starkey, Klein, & Wakeley, 2004); additionally, they 
are four times more likely than middle-income children to show little to no growth 
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in number knowledge between kindergarten and first grade (Jordan et al., 2006, 
2007). Jordan et al. (2007) found that number sense performance in kindergarten 
and rate of number sense growth from kindergarten to early first grade accounted 
for about two thirds of the variance in general mathematics achievement at the end 
of first grade. Importantly, income status did not add explanatory variance after 
controlling for performance and growth in number knowledge. That is, the poor 
mathematics achievement of low-income learners was largely accounted for by 
their weak number knowledge. This finding is significant in that number competen-
cies can potentially be changed through intervention, unlike income status, which 
is relatively immutable.

 Core Number Competencies for Early Screening Involve 
Knowledge of Number, Number Relations, and Number 
Operations

A wide variety of number competencies have been targeted for early screening 
(Jordan & Dyson, 2016; Jordan, Resnick, Rodrigues, Hansen, & Dyson, 2016; 
Malofeeva, Day, Saco, Young, & Ciancio, 2004; National Research Council, 2009; 
Rittle-Johnson & Jordan, 2016). In US prekindergarten, kindergarten, and first- grade 
classrooms, screening has often focused on verbal number sense, that is, abilities 
related to the symbolic representation of numbers, as opposed to more fundamen-
tal nonsymbolic numerical representations (e.g., ANS or approximate number 
system), which appear to develop without much verbal input or instruction 
(Feigenson, Dehaene, & Spelke, 2004; Jordan & Levine, 2009). Each screening 
area is discussed next.

Number. Young children recognize small quantities through subitizing (Baroody, 
1987; Baroody, Lai, & Mix, 2006), which involves apprehending and labeling the 
numerical value of two or three objects without having to count them. Counting, in 
turn, expands the child’s quantitative understanding beyond small sets. Before for-
mal schooling, many children can easily recite the count sequence to ten and higher. 
Later, children learn to enumerate sets in one-to-one correspondence with counting 
numbers, recognizing that the last number counted indicates the number of objects 
in the set (i.e., cardinality principle; Gelman & Gallistel, 1978). Children discover 
that they can count any set presented in any configuration, so long as they count 
each object once in numerical order (Gelman & Gallistel, 1978). Children also learn 
to recognize and produce written number symbols (Arabic numerals 1, 3, 5, etc.) 
(National Research Council, 2009). In kindergarten, many US children become 
familiar with the decade words and learn that two-digit numbers represent tens and 
ones. Persistent difficulties with counting are a characteristic of older children with 
MLD (Geary, 2004).
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Number relations. Understanding the magnitudes of numbers is a key developmen-
tal achievement (Case & Griffin, 1990; Griffin, 2002, 2004; Siegler, Thompson, 
& Schneider, 2011). Recognizing that four objects is more than three objects—or 
that two objects is fewer than five—reflects understanding of magnitude relations 
early in development. Later in prekindergarten, children can make judgments about 
quantities in the absence of physical objects, through mental counting or external 
representations, such as the number line. Children learn that as they move to the 
right on the line, numbers represent larger quantities, while moving left is associ-
ated with decreasing quantities. Eventually, children learn that each number in the 
count list is exactly one more than the previous one. Linking abstract representa-
tions to observed numerical magnitudes is critical for the development of mathe-
matical ability; deficits in the ability to draw such connections are associated with 
MLD (Rousselle & Noël, 2007).

Number operations. Many preschoolers successfully solve simple addition and 
subtraction problems using physical representations (Levine, Jordan, & 
Huttenlocher, 1992). Even children with limited counting facility can solve prob-
lems with sums or minuends of four or less (Huttenlocher, Jordan, & Levine, 
1994). Early on, counting (e.g., counting fingers) is a key strategy for solving 
addition and subtraction problems with sums and minuends of five or more. 
Knowing that the next number in the count sequence is always one more than the 
preceding number enables children to compute the value of n  +  1 (Baroody, 
Eiland, & Thompson, 2009). By the end of kindergarten, many children can count 
on from the first or larger addend to find the sum of two numbers (e.g., for 4 + 3, 
the child counts 5, 6, 7 to get 7). This approach is more efficient than counting out 
both addends (Baroody et al., 2006). Kindergartners who use counting principles 
to evaluate number combinations develop calculation fluency earlier in school 
(Jordan et al., 2009).

Children must also learn that whole numbers can be decomposed into sets of 
smaller numbers. For example, 4 can be broken into either 1 and 3 or 2 and 2. Along 
with quantity discrimination, number line estimation, counting, and number word 
comprehension, kindergartners’ ability to identify different combinations that equal 
a given sum predicts growth in mathematics achievement from kindergarten through 
second grade (Fuhs, Hornburg, & McNeil, 2016). Children with strong mathematics 
skills use their knowledge of number sets to derive solutions for new combinations 
(e.g., if 1 + 3 = 4, then 2 + 3 = 5). However, young children with or at risk for math-
ematics difficulties have trouble counting on from a number, decomposing num-
bers, and deriving solutions from known combinations to help them calculate totals 
of 5 or more. These difficulties lead to poor addition and subtraction skills (Jordan 
et al., 2006).
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 Deficits in Number Sense Can Be Reliably Identified 
Through Early Screening, and Interventions Based 
on Screening Lead to Improved Mathematics  
Achievement in School

Gersten et al. (2012) evaluated the predictive validity of early number screeners 
developed by researchers. Screeners assessing number relations (e.g., Clarke, 
Baker, Smolkowski, & Chard, 2008; Jordan et al., 2008; Seethaler & Fuchs, 2010) 
and number operations (e.g., Jordan et al., 2010; Seethaler & Fuchs, 2010) have 
been especially effective in predicting later mathematics performance. These 
screening measures demonstrate high classification accuracy (Geary, Bailey, & 
Hoard, 2009; Jordan et al., 2010; Seethaler & Fuchs, 2010), accurately identifying 
children who will later need additional help in mathematics (Gersten et al., 2012). 
Moreover, measures assessing numerical magnitudes are sensitive diagnostic 
tools for identifying children with dyscalculia, a severe form of MLD (Reigosa-
Crespo et al., 2012).

Importantly, there is clear evidence that core number competencies can be 
improved in most US children (Frye et  al., 2013). At the prekindergarten level, 
experimental studies reveal meaningful effects for interventions that emphasize 
number sense (Baroody et  al., 2009; Clements & Sarama, 2007, 2008; Dobbs, 
Doctoroff, & Fisher, 2003; Klein, Starkey, Sarama, Clements, & Iyer, 2008). 
Jordan and colleagues (Dyson, Jordan, & Glutting, 2011; Jordan & Dyson, 2016; 
Jordan et al., 2012) developed and tested a kindergarten number sense intervention 
that specifically targets skills with number, relations, and operations—competen-
cies that underlie mathematics difficulties, as described in the previous section. 
Study participants were at-risk kindergartners who were from low-income com-
munities and/or performed poorly on a number screener. Results from a series of 
randomized experiments showed that children in the intervention group consis-
tently exhibited greater improvement in terms of both a proximal measure of num-
ber sense and a general mathematics achievement test compared to control children 
who received a language intervention or business-as-usual instruction (Jordan & 
Dyson, 2016). Of particular significance was the finding that many of the interven-
tion gains held over time, and the achievement gap between intervention children 
and their normally achieving counterparts decreased substantially. Clarke et  al. 
(2016) report comparable findings from a kindergarten intervention focused on 
whole number knowledge.

In sum, recent research has highlighted the importance of early number compe-
tencies or number sense for future mathematics success and has identified useful 
targets for intervention that are being used in US schools, such as skill with number 
relations and operations. Compared to basic cognitive abilities or socioeconomic 
status, number sense appears to be relatively malleable, and interventions targeting 
children identified through early screening lead to improved mathematics achieve-
ment. Current US practices in early mathematics education are continuing to be 
revised in concert with what researchers have learned about the sources of early 
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MLD risk and the effectiveness of early screening measures and interventions. 
Many research-based early number interventions are being incorporated under RTI 
models for assessment and intervention.

 Fractions

 Fraction Knowledge in the Intermediate Grades Predicts 
Algebra Success in Secondary School, and Weaknesses 
with Fractions Characterize Middle School Students 
with Mathematical Learning Difficulties

Whereas having a good sense for whole numbers is central in primary mathematics 
education, competency with fractions is the hallmark mathematics achievement in 
intermediate grades in the United States (Council of Chief State School Officers & 
National Governors Association Center for Best Practices, 2010). Fraction knowl-
edge in middle school predicts subsequent performance in algebra, over and above 
socioeconomic status, IQ, and whole number abilities (Siegler et al., 2012). Relative 
to research on whole number knowledge, however, few studies have focused on the 
development of fraction competencies until recently.

Fractions typically afford students their first opportunity to learn about num-
bers with properties that differ from those of whole numbers (Siegler & Pyke, 
2013). Many US students, especially those with MLD, struggle with basic knowl-
edge of fractions (e.g., Bailey, Hoard, Nugent, & Geary, 2012; Ni & Zhou, 2005; 
Hansen, Jordan, & Rodrigues, 2017). These difficulties extend past the intermedi-
ate grades—students in middle and high school—and even some college students 
have trouble with basic fractions tasks, such as ordering simple fractions from 
least to greatest and estimating sums of two fractions (Siegler & Pyke, 2013). For 
example, when asked to estimate the sum of 12/13 + 7/8 from the response options 
1, 2, 19, and 21, 15% of college students at a major US university estimated the 
sum to be either 19 or 21 (Lewis & Hubbard, 2015). That is, students tended to add 
together either the numerators or denominators of the fraction, overgeneralizing 
whole number properties to fractions. Despite errors such as these, whole number 
knowledge is helpful for learning about fractions. In fact, many students who 
struggle with fractions have concomitant difficulties with whole numbers, particu-
larly with respect to judging numerical magnitudes (Jordan et  al., 2016). 
Understanding numerical magnitudes with whole numbers provides a founda-
tional structure for thinking about fractions in terms of magnitudes (Case & 
Okamoto, 1996; Siegler & Lortie-Forgues, 2014; Siegler et al., 2011). As such, 
effective whole number sense interventions, such as those described previously, 
may be crucial for building a general understanding of numerical magnitudes that 
can later be applied to fractions.
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 Fractions Are Especially Hard for Children with MLD

As noted, many students with or at risk for MLD have poorly developed fraction 
knowledge (Fuchs et al., 2013). Because children with MLD tend to lack a sound 
understanding of number magnitudes, many are unable to move beyond the erro-
neous assumption that properties of whole numbers are true for all numbers in 
general (Ni & Zhou, 2005; Jordan, Rodrigues, Hansen, Resnick, & Dyson, 2017; 
Siegler et  al., 2011). In contrast to whole numbers, which each directly corre-
spond to one and only one magnitude, have unique successors, and are expressed 
as a single symbol, different fractions may have the same magnitude and there-
fore refer to the same location on a number line (1/4 is the same as 2/8 or 4/16). 
The magnitudes of fractions do not always change in consistent ways with the 
absolute values of their numerators and denominators (Schneider & Siegler, 
2010). For example, 4 is greater than 2, and 12 is greater than 4, but 4/12 is a 
smaller fraction than 2/4.

When children first start learning fractions, a common misconception is that 
larger numbers produce larger fraction values in all cases, regardless of whether 
they appear in the numerator or the denominator (Rinne, Ye, & Jordan, 2017). For 
example, a child may erroneously think that 1/12 is larger than 1/5 because 12 is 
larger than 5. Instruction leads some students to develop a partial misconception 
that smaller values in both denominators and numerators decrease fraction mag-
nitudes, but this is usually just a stepping stone on the way to a normative under-
standing. Eventually, successful students come to understand that numeral values 
can be inversely related to fraction magnitudes, but this is only true for the 
denominator. However, Rinne et  al. further showed that children who come to 
fraction instruction with a poor understanding of whole number magnitudes are 
much less likely to move beyond the simple view that larger numerals always lead 
to larger magnitudes. Thus, for children with MLD, a lack of whole number mag-
nitude understanding impedes the ability to grasp fraction concepts.

Further problems arise when struggling children begin to learn about fraction 
operations. For example, multiplication of two fractions may yield a product 
smaller than either multiplicand, while multiplication of whole numbers greater 
than one always produces a larger product. A failure to understand numerical mag-
nitudes also produces fraction operation errors that do not appear to derive from 
overgeneralizations of whole number properties. For example, students often mis-
takenly apply the procedure for fraction addition to fraction multiplication prob-
lems and leave the denominator unchanged rather than multiplying across both the 
numerator and denominator (Siegler & Pyke, 2013). Significantly, the one prop-
erty that bridges whole numbers with fractions—and might thereby serve as a 
touchstone for helping students overcome such difficulties—is that both fractions 
and whole numbers have magnitudes that can be represented on a number line 
(Case & Okamoto, 1996; Siegler & Lortie-Forgues, 2014; Siegler et al., 2011).
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 Because they Lack Magnitude Understanding, Students 
with MLD Struggle to Place Fractions on a Number Line

The implications of poor magnitude understanding are also evident in research on 
fraction number line estimation. Resnick et al. (2016) examined the development 
of fraction number line estimation on 0–1 and 0–2 number lines between fourth 
and sixth grade, uncovering three distinct growth trajectory classes: (1) students 
who are highly accurate from the start and became even more accurate, (2) students 
who initially are inaccurate but show steep growth, and (3) students who initially 
are inaccurate and show minimal growth. Growth class membership accurately 
predicted subsequent performance on a standardized mathematics achievement test 
at the end of sixth grade, even after controlling for mathematics-specific abilities, 
domain-general cognitive abilities, and demographic variables. Students falling 
into the minimal growth class tended to place both proper and improper fractions 
below one on a number line, suggesting they do not effectively consider the relation 
between numerator and denominator. Multiplication fluency, classroom attention, 
and whole number line estimation acuity at the start of the study predicted class 
membership, indicating these areas make important contributions to learning frac-
tions, and deficits in these areas may impede learning.

 Fraction Difficulties Can Be Reliably Identified by Fourth Grade

Rodrigues et al. (2016) evaluated the diagnostic accuracy of mathematics screen-
ing measures (starting in fourth grade) for predicting MLD at the end of sixth 
grade. Receiver operating characteristic (ROC) curve analyses showed that of a 
broad group of fraction and general mathematics ability measures, fraction num-
ber line estimation acuity and knowledge of fraction concepts emerged as the 
strongest predictors of who would go on to fail a mathematics achievement test at 
the end of sixth grade. These measures were significantly more accurate predictors 
of sixth-grade mathematics failure than were measures of fraction procedures and 
multiplication fluency, both of which typically receive much more attention in 
instructional settings.

 Fraction Difficulties Can Be Improved Through Meaningful 
Interventions that Center on the Number Line

Referring to current mathematics instruction in the United States, Gersten and 
Jordan (2016) observe the following, despite between- and within-state variation in 
the United States:

N. C. Jordan et al.



193

Perhaps the most profound change in contemporary mathematics instruction for students 
in the elementary grades has been a strong emphasis on mastery of concepts involving 
fractions. This change, reflected in virtually all contemporary state standards, involves not 
only a shift in the amount of time dedicated to teaching fractions but also a shift in empha-
sis. Mathematics instruction is now making fraction concepts, most notably fraction mag-
nitude, take priority over fraction procedures (p. 1).

This change is having a significant effect on instruction for students with MLD, as 
evidenced by new research showing that interventions that focus on representing 
fraction magnitudes on number lines lead to improved mathematics outcomes. 
Fraction number line activities require students to think about proportionality and to 
reason multiplicatively; both skills represent important underpinnings of fraction 
conceptual knowledge (Hansen et al., 2015; Vukovic et al., 2014). Until recently, a 
part-whole interpretation of fractions has been a pervasive influence in the US math-
ematics curriculum (Siegler, Fuchs, Jordan, Gersten, & Ochsendorf, 2015). 
However, in a series of experimental studies that used the number line as a basis for 
helping students evaluate magnitude (sometimes referred to as a measurement 
approach), Fuchs et al. (2016) showed that low-performing fourth graders can learn 
to determine the magnitudes of fractions, and this knowledge transfers to other frac-
tion skills, including arithmetic.

To date, our research team (Dyson, Jordan, Rodrigues, Barbieri, & Rinne, in 
preparation; Jordan et al., 2016; Rodrigues, Dyson, Hansen, & Jordan, 2017) has 
conducted several experimental trials of an intervention for sixth and seventh grad-
ers who persistently struggle with fractions even after several years of typical class-
room instruction. Our “fraction sense” intervention, which is centered on the 
number line, aims to build fundamental understandings of (1) the meaning of a 
fraction (how the numerator and the denominator work together to determine a frac-
tion’s magnitude), (2) fraction relations (how the magnitudes of fractions are 
ordered on the number line), and (3) fraction operations (how fractions are added, 
subtracted, multiplied, and divided). Thus, this model of instruction is partly analo-
gous to the whole number sense model described earlier in this chapter.

To develop core fraction knowledge based on just few key ideas, the three topics 
described above are taught using fractions with a narrow range of denominators. For 
example, we start with denominators of 2, 4, and 8 and gradually expand to include 
denominators of 3, 6, and 12. In addition, the intervention anchors ideas in a mean-
ingful story line to help struggling learners think about fraction concepts in a more 
concrete way (Bottge et al., 2014). Specifically, instruction takes place in the con-
text of a “color run” race for charity during which runners have colored powder 
thrown at them at regular intervals during the race. The race context facilitates 
thinking about fraction magnitudes using a measurement interpretation (e.g., find-
ing fractions of a mile), and the number line helps students see relations between 
fractions with both different and equivalent magnitudes. Children are asked to com-
pare the relative sizes of numerators and denominators and to think about fractions 
as being close to 0, close to 1, equal to 1, or greater than 1. The intervention also 
applies general learning principles from cognitive science by incorporating gestures 
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that guide students’ attention (Alibali, Spencer, Knox, & Kita, 2011), side-by-side 
comparisons of solution methods (Rittle-Johnson, Star, & Durkin, 2009), instruc-
tional explicitness (Gersten et al., 2009), and clear visual models to minimize cogni-
tive load (Fuchs et al., 2009). Practice activities mix problems with more and less 
familiar fractions to develop fluency and improve retention (Carpenter, Fennema, 
& Romberg, 2012). Finally, fast-paced games help build both whole number and 
fraction fluency at the end of each lesson.

Although our intervention work is ongoing, preliminary findings have been posi-
tive. Participants (who were identified by their teachers as needing intervention or 
who performed below a predetermined cut-point on a reliable screener of fraction 
concepts) were randomly assigned to our intervention or a business-as-usual inter-
vention contrast group. Children who received the intervention performed reliably 
better than controls, with large effect sizes on measures of fraction number line 
estimation, as well as more general fraction conceptual knowledge. For the most 
part, students maintained these gains on a delayed posttest administered 2 months 
after the conclusion of the intervention.

Overall, recent intervention work with fractions reveals that interventions that 
focus on fraction magnitude and that use the number line as a representational guide 
hold promise for helping all students learn fractions. The number line approach is 
likely to gain traction in US schools, including special education. In fact, the US 
benchmarks in math (i.e., CCSS) emphasize the use of the number line to teach frac-
tions, starting in third grade. Future work is needed, however, to examine whether 
such interventions can help students succeed with respect to longer-term outcomes, 
such as algebra proficiency and using fractions in daily life.

 Conclusion

In the early elementary years, the primary goal of mathematics instruction in the 
United States is to build children’s number sense with whole numbers. Research 
shows that a good understanding of whole number magnitudes is critical for later 
facility with fractions, mastery of which is a key accomplishment in the interme-
diate grades. Failure to master fractions has severe long-term consequences for 
student success in mathematics, limiting eventual prospects for employment and 
leading to poor decisions in the increasingly number-rich environments of every-
day life.

Acquiring both whole number and fraction knowledge is particularly challeng-
ing for students with MLD and thus a major educational concern in American 
schools, particularly in light of recent shifts in curriculum and standards (i.e., 
CCSS) toward deeper conceptual understanding of mathematics. One challenge 
that remains is how to balance the needs of students with MLD with these more 
rigorous standards; many US students with MLD have weak number sense and 
subsequent difficulty representing fractions as magnitudes on a number line, which 
prevents them from incorporating fractions and whole numbers into a coherent 
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understanding of the rational number system. Fortunately, recent research suggests 
that both early difficulties with whole numbers and later difficulties with fractions 
can be remediated by helping students build solid magnitude representations, 
and interventions focused on representing fractions along with whole numbers on 
number lines lead to improved mathematics outcomes.
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Chapter 13
Mathematical Learning and Its Difficulties 
in Latin-American Countries

Beatriz Vargas Dorneles

 Introduction

The aims of this chapter are to analyze the performance of Latin American students 
in mathematics and to describe some policies designed to identify and attend the 
needs of low achievers in mathematics in Latin America. As Latin America com-
prises 21 very different countries (not including the Caribbean countries)—with 
diverse languages, cultural traditions, educational systems, and policies—we sum-
marize the situation of the eight Latin American countries (Argentina, Brazil, Chile, 
Colombia, Costa Rica, Mexico, Peru, and Uruguay) that participated in the 
Programme for International Student Assessment (PISA), especially in 2009, 2012, 
and 2015, the latest assessment available for inclusion in this chapter. This chapter 
only presents a brief summary of the subject due to the sheer volume of data avail-
able and limited space. Consequently, at times, we have highlighted data from the 
Brazilian context at the expense of data from other countries.

Approximately 22% of European students are low achievers in mathematics 
(EACEA/EURYDICE, 2011) and need some kind of special teaching to learn math-
ematics. Numerical difficulties are linked to lack of progress in education, increased 
unemployment, reduced job opportunities, and additional costs in mental and physi-
cal health (Duncan et al., 2007). This situation has been described in many coun-
tries. As an example, in 2011 a Department for Business, Innovation and Skills 
survey in the UK found that 49% of the adult population could only attain standards 
comparable to those of 11-year-old children in mathematics. Furthermore, 23.7% of 
adults only reached the mathematical standards typical for 9-year-old children, 
compared to 7.1% for literacy (Department For Business Innovation and Skills, 2012). 
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We can infer that there is a worse situation in Latin American countries by analyzing 
the data from the latest PISA (OECD, 2014, 2016a). Some countries, such as Brazil 
and Peru, have only recently managed to introduce universal education for children 
aged from 7 to 14. Now the emphasis is on improving the quality of teaching sys-
tems. Documents prepared by the Organization for Economic Co-operation and 
Development (OECD) (2013a, 2013b, 2013c, 2014, 2016a, 2016b) about the situa-
tion, together with others based on that material, are analyzed in this chapter (for 
example, Rivas (2015)). We focus on the mathematical performance of children in 
the eight Latin American countries that participated in PISA, a test that evaluated 
15-year-olds in mathematics, reading, and science in 65 educational systems in 
2009 and 2012, and in 70 educational systems in 2015. These countries are very 
diverse in terms of culture, language, and customs. In terms of student performance 
in mathematics, the situation is summarized in Table 13.1.

Considering the OECD average scores in mathematics and the OECD average 
scores of low performers in mathematics, and analyzing the OECD documents 
about the situation of mathematics learning in the region (OECD, 2013a, 2013b, 
2013c, 2014, 2016a, 2016b), we reached three particularly relevant conclusions. 
First, the situation varies across the Latin American countries; for example, in 2015 
approximately 50% of students in Chile were very low achievers in mathematics 
(scoring less than 2 on the PISA scale), while in Brazil the figure was 70%. The 
results are more worrying if we remember that the OECD only considers students 
who achieve level 2 (out of 6 levels) or higher to be capable of full participation in 
modern societies. Students who achieve only level 0 or level 1 are incapable of 
using basic mathematical concepts, procedures, or rules to solve simple basic num-
ber problems. If we consider a longer time period, most of the Latin American 
countries have seen no significant improvement in mathematical performance in the 
last 12 years (OECD/CAF/ECLAC, 2016). The exceptions are Mexico and Brazil. 

Table 13.1 Evolution of student performance in mathematics and percentages of low performers 
in mathematics in eight countries in Latin America

Country
Student performance in mathematics 
(mean score)

Low performers in mathematics 
(% of students scoring below 
level 2)

2009 2012 2015 2009 2012 2015

Chile 421 423 432 51.0 51.5 49.4
Mexico 419 413 408 50.8 54.7 56.6
Uruguay 427 409 418 47.6 55.8 52.4
Costa Rica 409 407 400 56.9 59.9 62.5
Brazil 386 389 377 69.1 68.3 70.3
Argentinaa 388 418 456 66.3 66.5 56.0
Colombia 381 376 390 70.4 73.8 66.3
Peru 365 368 387 73.5 74.6 66.2
OECD average 499 494 490 31.4 23.0 23.4

OECD Organization for Economic Co-operation and Development
aThe coverage is too small to ensure comparability; it includes only Buenos Aires
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Secondly, most of the countries maintained their previous results until 2012, with 
the exceptions of Mexico and Uruguay. In 2015, there was a general decline in 
mathematical performance in almost all the OECD countries, from an average score 
of 494 in 2012 to 490 in 2015. In Latin America, there was an improvement in stu-
dent performance in mathematics in Chile, Uruguay, Argentina, Colombia, and 
Peru, while the results from Brazil, Mexico, and Costa Rica worsened. If we only 
analyze the low performers, the same tendency is repeated: fewer students at levels 
0 and 1 in Uruguay, Argentina, Colombia, and Peru; and more students in the coun-
tries with worse results. Thirdly, we can conclude that a large number of students 
are still failing to achieve level 2. It is a very different situation from that of the 
European and Asian countries. However, Rivas (2015) reminds us that comparing 
Latin American countries with European and Asian countries is not useful, consider-
ing that the gross domestic product (GDP), social conditions, and investment per 
student in Latin America are considerably lesser than in the other regions participat-
ing in PISA tests. Consequently, the results obtained in Latin America can be seen to 
reflect a “development debt in broader terms and may not be ascribed to a failure of 
education systems themselves” (Rivas (2015), p. 18). The achievements described in 
Table 13.1 are particularly remarkable if we consider the expansion of access to edu-
cation and improved performance among part of the students in recent decades.

 About the Region

Generally, the last decade has seen widespread economic and social growth in Latin 
American countries. The percentage of GDP spent on education jumped from an 
average of 4.04% in 2000 to 5.44% in 2011. Accordingly, Argentina, Brazil, and 
Uruguay saw the highest increases in investment in education, with Chile, Colombia, 
and Mexico increasing educational expenditure at lower rates. By contrast, in Peru 
the education budget increased significantly but remained in line with its GDP 
(Rivas, 2015). Despite the regional and educational differences existing among the 
countries, we can describe the last 20 years as being marked by a transition from 
decentralization, which was the prevailing tendency in the 1990s, to a recentraliza-
tion of power in ministries of education in the 2000s. More prescriptive curricula 
with extensive content have been introduced along with concrete guides for teachers 
and provision of textbooks (Rivas, 2015).

In the following paragraphs we summarize some educational achievements of 
those countries and describe the consequences for mathematics education, specifi-
cally, in seven of the eight countries listed above. We exclude Argentina, in which 
data were collected only in the city of Buenos Aires.

While Chile has the best overall social indicators among the countries described, 
and Mexico has experienced economic and social stagnation since 2000, both 
achieved the best results in PISA in the region.

The Uruguayan education system is highly centralized, both in terms of distribu-
tion of responsibilities across levels of governance and in terms of geography. 
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Almost all the administrative and pedagogical decisions are taken at the central 
level (Llambi, Castro, Hernandez, & Oreiro, 2015). Uruguayan repetition rates in 
the primary and secondary educational levels are the highest among the surveyed 
countries, although they were reduced in primary education (Rivas, 2015). While 
the quality of educational resources in Costa Rica is among the highest in the PISA- 
participating countries and economies (OCDE, 2016), the country experienced an 
increase in the number of mathematical performers scoring below level 2.

There is nearly one computer for every student in Colombia—a higher ratio than 
that observed across OECD countries (on average), higher than that observed in 
Chile and Peru, and higher than would be expected given Colombia’s level of spend-
ing on education. Colombian schools have less autonomy than the average school in 
OECD countries (OECD, 2016b). For instance, in Colombia, principals and teachers 
have 24% of the responsibility for selecting resources, compared to 42% of that 
responsibility across OECD countries, and they have 31% of the responsibility for 
student assessments, compared to 68% across OECD countries (OECD, 2016a).

Peru presented the worst results in mathematics in Latin America in 2012 but 
improved in 2015. There was a reduction in the number of low performers in 2015 
despite the fact that teachers tend to focus on teaching numbers and arithmetic, 
usually assigning students mechanical exercises with low cognitive demand. Few 
exercises require students to solve problems (Cueto, 2013).

Brazil’s per-capita GDP (USD 15,893 (OECD, 2016a)) is less than half the OECD 
average GDP (USD 39,333). Brazil is the most populous country in the region. Its 
educational structure is decentralized in 27 states and around 5565 municipalities. 
Brazil has introduced some policies aimed at improving teacher training and teach-
ing quality in general, and developing programs for students with special needs in 
some cities in the country. This effort produced a significant result: Brazil obtained 
the greatest improvement in mathematics from 2000 to 2012, considering the 65 
participating countries. At levels 0, 1, and 2 the improvement was 35 points, equiva-
lent to two thirds of a year of schooling, and it especially affected the economically 
poorest and low achievers (Bos, Ganimian, & Vegas, 2014). The OECD indicators 
most related to the improvement observed in the Brazilian results from 2000 to 2012 
were the improvement in teaching resources, the increased number of qualified 
teachers, and the increased use of assessment tests to make decisions, to compare 
the results between schools and students, and to evaluate teachers (Bos et al., 2014). 
We conclude that Brazil’s improved results in mathematics were related to a general 
improvement in education rather than policies specifically designed to help students 
who are low achievers in mathematics. Despite this improvement, Brazil did not 
maintain this tendency in 2015, when there was a decrease in mathematical perfor-
mance and an increase in the percentage of low performers in mathematics, reaching 
70%, the worst performance in Latin America among the countries that participate in 
PISA. Even though the average mathematics score increased by 21 points between 
2003 and 2015 (a significant increase of 6.2 points every 3 years), the most recent 
period (2012–2015) saw a decline of 11 points in the mean performance in mathe-
matics (OECD, 2016a).

The tendency to consider national and international assessments when planning 
national educational policies has been described in various reports. It is worth 
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mentioning that not all countries follow this tendency in the same way. While 
Argentina, Uruguay, and Peru scarcely consider these evaluations in the development 
of their educational policies and do not use the results to apply pressure on schools, 
Mexico and Chile have used student tests to develop economic incentives for schools 
and teachers, and to review the impact of those policies in recent years (Rivas, 2015).

 Theories and Educational Practice

In the 1990s, the Nunes study (1992) analyzed informal mathematical practices 
conducted in specific out-of-school activities among Brazilian street venders that 
may be contrasted with “school mathematics.” This research had a great influence 
on Brazilian and Latin American schools, and helped teachers understand what 
happens when children know how to use mathematical knowledge in everyday situ-
ations and fail to use the same knowledge in school. The dissemination of the results 
of this research is part of an expansion in the influence of the constructivist approach 
vis-à-vis the traditional way of teaching mathematics.

In many countries in the region, there has been a widespread tendency in educa-
tional theory to adopt teaching practices that combine the competence and construc-
tivist approaches (Rivas, 2015). At the same time, there is some local theoretical 
debate about the relative value of adopting the constructivist or social interactionist 
approaches when teaching mathematics in specific groups that show unexpected 
mathematical learning difficulties, such as deaf students (Arnoldo Jr, Ramos, & 
Thoma, 2013; Barbosa, 2013). However, this theoretical academic debate has had 
little impact on schools.

Concerning the use of textbooks, Mexico, Chile, and Brazil have a long history 
of the state providing textbooks at the national level, and Mexico only produces 
one textbook for primary education (Rivas, 2015). By contrast, Brazil has expanded 
the supply and the variety of textbooks in recent years. Peru, Argentina, and 
Uruguay have also significantly increased the number of textbooks, while Colombia 
is an exception, because the state participates less in structuring the curricula and 
recommending books (Rivas, 2015). The expansion in the use of textbooks in 
Brazil has had consequences for learning mathematics, especially regarding the use 
of the textbooks for repeating mathematics exercises, a widely used and well-accepted 
practice in the country.

 Mathematical Learning Disabilities in Latin American 
Countries

There are few prevalence and characterization studies on mathematical learning 
disabilities (MLD) in children in Latin America. A Latin American report (Dudzik, 
Elwan, & Metts, 2002) describing disabilities in general makes no reference to 
MLD.
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Most of the Latin American countries failed to maintain all children in schools and 
to provide good-quality teaching. Hence, if they fail to keep students in schools, it is not 
reasonable to expect them to recognize students with MLD and help them. Some coun-
tries—like Uruguay, Argentina, and Brazil—have recently officially recognized the 
existence of students with learning disability, especially students with dyslexia, who 
are rarely identified in schools. Moreover, they have recognized the need to systemati-
cally provide resources for mainstream schools to integrate students with special needs 
(Santiago, Ávalos, Burns, Morduchowicz, & Radinger, 2016). However, there is no 
reference to MLD. The consequences of this policy are unclear, as few resources have 
been provided to help students with learning disability in schools.

Despite the fact that due to limited space, the Caribbean countries are not 
included in this chapter, it is worth mentioning that a research group from Cuba car-
ried out a prevalence study on MLD. Reigosa-Crespo, Valdis-Sosa and colleagues 
(2012) defend the assumption that individuals with developmental dyscalculia (DD) 
could be a subset of a more extended arithmetical disfluency (AD) group, and sup-
port a definition of DD as a very selective deficit in basic numerical capacities, 
whereas their definition of AD includes a variety of cognitive disabilities related to 
inadequate counting-based and retrieval-based strategies from long-term memory 
(Reigosa-Crespo et al., 2012). The authors found an estimated AD prevalence of 
9.4% in a sample of Cuban children from the second to ninth grades. In that sample, 
AD occurred three times more frequently than DD (frequency 3.4%) in the studied 
population. Despite the fact that the group does not use the MLD nomenclature, to 
our knowledge this is the only prevalence study on MLD in Caribbean countries.

In Brazil we found two recent prevalence studies that included MLD. The first 
(Bastos, Cecato, Martins, Risso, & Grecca, 2016) used the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition (DSM-IV) definition of DD as a spe-
cific disability in learning arithmetic, occurring in students with a normal intellec-
tual level, without neurological, psychiatric, sensory, or emotional disorders, and 
found a DD prevalence of 7.8% in a sample of 2893 first-grade students attending 
public schools in the southeast region of Brazil. The second study (Fortes et al., 
2016) adopted the DSM-5 criterion and definition of specific learning disability in 
mathematics (SLD-M) and found a global prevalence rate of 6.7% among a sample 
of 1618 children and adolescents attending schools in four different Brazilian 
regions. The difference in the prevalence rates could be due to the different tasks, 
ages, and cultural characteristics of the samples. If we consider these three preva-
lence studies in Latin America and Caribbean countries, we can conclude that the 
MLD prevalence varies from 3.4% to 7.8%. However, the tasks, samples, and crite-
ria used to define MLD vary in the prevalence studies mentioned.

 Mathematical Learning Disabilities in Brazil

Brazil is the largest and among the most culturally diverse countries in Latin 
America. Consequently, there are many different situations related to MLD. In public 
schools in big cities like São Paulo and Rio de Janeiro, some resources are available 
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to help children with learning disabilities, and there are many private clinicians who 
help students from private schools. This is not the situation in most of the country. 
Despite the fact that the educational system recognizes some special needs in 
children and adolescents (BRASIL, 2013), in general there is no educational theory 
adopted to help them, no dedicated schools, and no diagnostic tests or special pro-
grams used in the schools. It is also worth mentioning that most teachers are unaware 
of MLD. Despite the fact that reading disabilities are more widely recognized than 
MLD, there are few resources to support children and adolescents with reading 
disabilities.

 Research on Mathematical Learning Disabilities

At the beginning of the twenty-first century, a research group linked to a hospital in 
Brasilia, Brazil, participated in a comparative study in which Brazilian, French, and 
Swiss children were asked to perform 11 number-processing and calculation tasks 
involving knowledge of the written code of numbers, number comparison, mental 
calculation, problem solving, counting dots, counting backward, and estimation. 
The performance varied widely between the countries and within Brazil, the only 
participating country with two sample groups of children in the study. The authors’ 
most important conclusion was that calculation and number processing are rather 
heterogeneous entities that suffer the influence of linguistic, cultural, and pedagogi-
cal “factors on different components of number processing and calculation, such as 
counting, literal number knowledge, calculation or estimation” (Dellatolas, von 
Aster, Willadino-Braga, Meier, & Deloche, 2000, p. 108). The inclusion of a Brazilian 
research group in this study is a rare example of Latin American participation in 
comparative research on the learning of mathematics.

There is some sparse research on reading disabilities (predominately dyslexia) in 
Latin America—especially in Chile, Uruguay, Argentina, Colombia, and Paraguay—
which has been well described by Bravo-Valdivieso, Milicic-Müller, Cuadro, Mejía, 
and Eslava (2009). In that paper there is only one mention of MLD: a publication by 
Azcoaga, Derman and Iglesias (1979), which summarizes the knowledge on the 
subject at that moment. In fact, little specific research on MLD has been conducted 
in Latin America. Two exceptions in this scenario, both in Brazil, are the research 
groups based at the Federal University of Rio Grande do Sul (UFRGS) and the 
Federal University of Minas Gerais (UFMG). The former research group has dedi-
cated considerable efforts to investigating a range of issues related to MLD. Dorneles 
(2009) looks at the kinds of MLD experienced in different groups of children, 
including children with attention deficit hyperactivity disorder (ADHD) and deaf 
students. The efficacy of a brief psychoeducational intervention program for increas-
ing teacher awareness and knowledge about ADHD and learning disabilities, includ-
ing MLD, is described by Aguiar et al. (2014). The lack of tests and the impact of 
the changes in the diagnostic criteria for MLD proposed by the DSM-5 on the prev-
alence of learning disorders is analyzed by Dorneles et  al. (2014). Kieling et  al. 
(2014) seek to identify the best approach for clinicians to get information about 
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symptoms of ADHD from teachers in children with or without learning disorders. 
Recently the group applied working memory and arithmetical reasoning interven-
tions in an effort to improve mathematical performance in children with ADHD 
(Sperafico, 2016).

The UFMG research group analyzed the impact of sociodemographic factors, 
psychosocial competencies, and math anxiety on mathematics and spelling perfor-
mance in school children with and without mathematical difficulties (Haase et al., 
2012). They developed a screening tool for students at risk of mathematical difficul-
ties (Moura et al., 2015), an especially important achievement in a very large and 
diverse country. Some evidence of shared mechanisms in reading and writing words 
and numbers were found (Lopes-Silva et al., 2016) in Brazilian children, suggesting 
phonemic awareness is the cognitive variable that systematically predicts numerical 
and word learning abilities. This finding indicates that the ability might be shared by 
many learning tasks related to both reading and mathematics (Lopes-Silva et al., 
2016). The results corroborate the idea of there being different groups of children 
with MLD, with diverse cognitive patterns and consequences for educational and 
clinical interventions (Júlio-Costa, Starling-Alves, Lopes-Silva, Wood, & Haase, 
2015). This research adds to previous studies conducted by Robinson, Menchetti 
and Torgesen (2002), which together help us understand why mathematical difficul-
ties are so frequently associated with reading difficulties.

Other groups have produced occasional related research; for example, Feldberg 
et al. (2012) used a multiple-case approach and found associations between neuro-
psychological deficits and poor mathematical performance. Moreover, there are 
many papers published in Portuguese (see Vargas and Dorneles (2013), Júlio-Costa, 
Lima and Haase, (2015), and Corso and Dorneles (2015) as examples).

The scarcity of research is reflected in the lack of recognition of MLD by teach-
ers and schools. As far as we know, as with many special groups, there is no research 
available on the composition and profile of students with MLD in Latin American 
countries. Brazilian researchers have used the Arithmetic Subtest (AS) of the School 
Performance Test (SPT, or Teste de Desempenho Escolar (TDE)) (Stein, 1996)—a 
psychometric instrument that detects problems in the fundamental capacities for 
reasonable academic achievement of children and adolescents in the areas of read-
ing, mathematics, and writing—when researching mathematics and MLD, and 
making clinical assessments. The test covers a wide range of levels of arithmetic 
and is widely used, despite the fact that it has only been validated for a small part of 
the country (see Fortes et al. (2016), Moura et al. (2015), and Aguiar et al. (2014) 
for examples).

We can conclude that there is an urgent need for more precise statistics in order 
to describe the extension of the problem and help make well informed decisions 
about MLD policies and programs. The difficulty in finding qualified people who 
can understand the situation of students with MLD is also a problem. In order to 
ensure good quality of disability-related educational programs, local technical 
expertise is required. However, well-qualified personnel with experience of MLD 
can be difficult to find, considering that this is a specific, little-known learning dis-
ability, about which there is scarce research available in Spanish or Portuguese, the 
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predominant languages of Latin America. Another problem refers to the need to 
modify the attitude toward MLD. People with MLD suffer in society and schools 
because of negative cultural and social attitudes—for example, the idea that they are 
not intelligent or are lazy children/adolescents. We know that cultural conventions 
and deeply held beliefs such as these can be extremely difficult to change and lead 
to a lot of suffering for children/adolescents with MLD. So we must begin collect-
ing data about MLD in Latin American countries in order to describe the phenom-
ena and qualify teachers to identify and help these students.

Although there are many different programs designed to foster socioemotional 
skills and improve learning in some Latin American countries (for a recent review, 
see Cunningham, Acosta, & Muller, 2016), we found none that specifically target 
children with MLD. If we consider the aforementioned prevalence studies that indi-
cate an MLD rate of between 3.4% and 7.8% in children and adolescents within the 
high rates (from 49.4% to 70.3%) of poor performers in mathematics, we must rec-
ognize the urgent need to improve the teaching and learning of the latter group while, 
at the same time, making efforts to meet the needs of the former group. This is par-
ticularly true given that many countries in the region are currently experiencing eco-
nomic difficulties and limited resources. While some universities in almost all of the 
countries have offered teachers courses on learning disabilities, based on the neuro-
science paradigm, in recent years there has been a lack of registered research associ-
ated with those courses.

 Future of Mathematical Learning Disabilities in Latin 
American Countries

The future of MLD education in Latin America is uncertain because many countries 
are suffering from economic and political crises and instability, which affect their 
education systems. We have described some recent advances in the region such as 
the carrying out of prevalence studies and the official recognition of children with 
special needs and learning disabilities as a group, despite the fact that MLD is not 
identified as a specific disorder. Changes in educational policies are slow to take 
effect, and sometimes we can observe advances and regression. Within the region, 
there are many problems to solve through research and practice, two of which must 
be highlighted: the urgent need to use standardized tasks to identify children with 
MLD, and the need to raise awareness about MLD in schools and society.

 Conclusions

To be numerate in the twenty-first century requires knowing how to think: to com-
pare, reason, understand, analyze, make relations, and solve problems, which are all 
competencies that learning mathematics can improve. These are essential survival 
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skills that, as shown above, few students in Latin America are developing. Despite 
advances in teaching mathematics in recent decades, the region has poor results in 
the performance of children in mathematics and no documented policies to specifi-
cally cater for children with MLD. The situation in the region as a whole is worse 
than that described in this chapter, considering that most of the countries in the region 
do not participate in PISA and have worse economic indicators than the countries 
included in this description. As a diverse continent, the situation in Latin America 
regarding learning mathematics is complex and there is a complete lack of systematic 
policies to cater for MLD.  A special recommendation, previously proposed by 
OECD/CAF/ECLAC (2016), emerges from this chapter: there is an urgent need to 
improve schools and mechanisms for teachers to identify students who are low per-
formers in mathematics and those who are struggling academically, economically, 
and socially, in order to help them and avoid failure and dropout.
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Chapter 14
Mathematics Learning and Its Difficulties: 
The Cases of Chile and Uruguay

Cristina Rodríguez, Ariel Cuadro, and Carola Ruiz

 Introduction

Mathematics is one of the fundamental subjects of school education, and is proven 
to have a significant influence on the individual’s personal and professional devel-
opment, and on the society of which they are a part. It is therefore reasonable to 
expect academic and cognitive problems as a result of a specific mathematics learn-
ing difficulty (MLD), however these may also be accompanied by psycho-emo-
tional problems which can have a more serious overall effect on the subject. The 
existence of “mathematical anxiety” has been demonstrated in relation to the per-
formance of young children with MLD (Wu, Barth, Amin, Malcarne, & Menon, 
2012), although definite answers have not yet been found as to the causation or 
directionality of the relationship. Coping with MLD has its costs in the long term; 
for example, adults with poor arithmetic skills are at a disadvantage in the employ-
ment market (Kaufmann & von Aster, 2012) compared to those with average levels 
of achievement. However, there is also a cost to society if appropriate action is not 
taken, and there is also evidence that improving poor numerical skills in the popula-
tion amounts to significant expense for countries (Butterworth, Varma, & Laurillard, 
2011; OECD, 2010). Despite all of the above, however, studies into semiotics, 
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diagnosis and intervention in MLD have been overshadowed by studies on specific 
learning difficulties (SLD) in reading (Balbi, Ruiz, & García, 2017; Cirino, Elias, 
Fuchs, Schumacher, & Powell, 2015; Kuhn, 2015).

In Latin America, for example, studies on learning difficulties have only taken 
place from the 1950s onwards, and for the most part address SLD in reading (Bravo, 
Cuadro, Mejía, & Eslava, 2009). The lack of consensus as to the definition of MLD 
in terms of the subjects that it should encompass, whether calculation or mathemati-
cal reasoning, provides a possible explanation as to why studies often yield contra-
dictory results (Balbi et  al., 2017; Murphy, Mazzocco, Hanich, & Early, 2007; 
Rodríguez & Jimenez, 2016; Shin & Bryant, 2015). Its conceptualisation is made 
yet more complex by the comorbidity between MLD and other disorders such as 
reading (Peake, Jimenez, Rodriguez, Bisschop, & Villarroel, 2015; Vucovic & 
Lesaux, 2013) and ADHD (Landerl & Moll, 2010). These problems in terms of 
research into the issue are also reflected in the reported lack of training for educators 
in addressing their students’ difficulties with learning mathematics (Balbi et al., 2017; 
De Almeidas, de Medeiros, & Borsel, 2013; Jiménez-Fernández, 2016; Wadlington & 
Wadlington, 2008; Williams, 2006), an aspect that is of particular concern in Latin 
America considering the low achievement of students in mathematics that has been 
reported by international studies. Identifying learning difficulties in mathematics – 
whether instructional, socio-cultural or neurobiological – at an early stage provides 
greater opportunity for effective prevention, as well as changes in teaching practices. 
This chapter will describe the situation in Chile and Uruguay, covering performance 
in mathematics and the approach taken by each country to respond to specific educa-
tional difficulties associated with these skills.

 Mathematics Learning Achievement

 International Assessment

In recent years, Chile and Uruguay have taken part in a number of international 
studies, including the Programme for International Student Assessment (PISA) con-
ducted by the Organisation for Economic Co-operation and Development (OECD), 
Trends in International Mathematics and Science Study (TIMSS) organised by the 
International Association for the Evaluation of Educational Achievement (IEA), 
and the Third Regional Comparative and Explanatory Study (TERCE) managed by 
the Latin American Laboratory for Assessment of the Quality of Education 
(LLECE). According to the most recent PISA report, Chile and Uruguay’s perfor-
mance in mathematics remained low between 2012 and 2015, with mean perfor-
mance in PISA 2015 coming in at 423 and 418 points respectively, well below the 
mean of 490 points across the 35 OECD countries. PISA 2015 (OECD, 2016) iden-
tified six levels of proficiency in mathematics (as it had with PISA 2003 and 2012). 
Level 2, the category representing scores between 420 and 482, is considered the 
baseline level of proficiency that an individual requires in order to be able to func-
tion fully in modern society. Average Chilean and Uruguayan performance in 
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mathematics is therefore at or below the lower limit of Level 2. Performance scored 
at below 420 points (Level 1) implies that the individual’s abilities are too low to effec-
tively deal with situations encountered in the course of daily life. All of the countries 
participating in PISA have students who scored within Level 1; however, as can be seen 
in Fig. 14.1, the proportion of Chilean and Uruguayan students who scored at or below 
Level 1 is very high – approximately 50% – while a very low percentage of students 
achieved Level 5 or Level 6 (MINEDUC, 2015a; OECD, 2016).

The PISA results also illustrate this disparity. In the most recent assessment, 74% 
of students from very disadvantaged socio-economic backgrounds failed to reach the 
OECD’s minimum proficiency threshold, as opposed to 26% from the highest socio-
economic group. Only 1% of the former fell into the high achievement category. 
When the effect of the socio-economic level of educational institutions themselves – 
based on the socio-economic background of their students – is analysed, major dif-
ferences can be seen between students from different establishments, a finding which 
is clear from both the PISA and TERCE (OECD, 2016; LLECE, 2015) studies, and 
places Uruguay and Chile among the countries with the least social inclusion in 
educational institutions in the region (INEEd, 2017; OECD, 2016).

Another feature of the Chilean and Uruguayan situation is the gender gap 
in mathematics performance; this gap is common to 28 countries, with boys 

Fig. 14.1 Student proficiency in mathematics. (Source: 2016 PISA, mathematics performance in 
15-year-olds according to their level of proficiency. Notes: The graph only includes countries scor-
ing below the OECD average)
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outperforming girls. However, Chile, together with Austria, Brazil, CABA (Argentina), 
Costa Rica, Germany, Ireland, Italy, Lebanon and Spain, showed the most significant 
differences (OECD, 2016), and this disparity among Chilean students has remained 
stable over the past ten years (MINEDUC, 2012a, 2012b, 2015a).

Results from the TIMMS 2015 assessment support the PISA findings, with 
Chilean students (Uruguay did not participate in this study) showing poorer perfor-
mance (478 points in 4th Grade and 454 points in 8th Grade) than the average level 
of achievement by coming in below the TIMSS scale centre point of 500. That said, 
a positive trend was reported between 2003 and 2011  in 8th Grade students 
(MINEDUC, 2013a). The report (Mullis, Martin, Foy, & Hooper, 2016) also showed 
that gender disparities in mathematics achievement increase across year groups; on 
average, the gender gap in 4th Grade was smaller than in 8th Grade, where there was 
a difference of 18 points in favour of boys. As with PISA 2015, when the students 
are classified according to SES, those from the poorest backgrounds show the weak-
est performance, and the proportion of students scoring less than 400 points (below 
the lowest level of proficiency) increases across year groups (30% for 4th Grade and 
55% for 8th Grade) (MINEDUC, 2015a). Thus, disparities in mathematics perfor-
mance according to gender and SES are a source of inequality in Chile, and indeed 
the two factors seem to interact with one another, with the gender gap being wider 
in the lowest socio-economic groups (MINEDUC, 2013a).

Although when compared to other OECD countries there is a clear need for Chile 
and Uruguay to improve the performance of their students in mathematics over the 
coming years, it is worth noting that according to the TERCE report (Flotts, Manzi, 
Jiménez, Abarzúa, Cayuman, & García, 2016), Chile presented the strongest perfor-
mance of the fifteen Latin American countries assessed, followed by Costa Rica and 
Uruguay (see Fig. 14.2). In fact, in the 3rd Grade, Chile presented the smallest pro-
portion of students at Level 1 – the lowest level of performance – and the largest 
proportion at the highest level of performance. Also, Uruguay showed an above-
average proportion of students at the highest level compared to the other participat-
ing countries, and a lower than average proportion of students at Level 1. In the 6th 
Grade, Chile again presented the smallest proportion of students at Level 1, and 

Fig. 14.2 Distribution of 3rd and 6th Grade students by mathematics proficiency levels. (Source: 
2015 TERCE, 3rd and 6th Grade mathematics achievement by proficiency levels. Notes: The graph 
combines figures from the original report for both the 3rd Grade and the 6th Grade)
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the largest proportion at the highest level, although these figures are admittedly 
lower than those for the 3rd Grade. A similar pattern was seen in Nueva León 
(México), México and Uruguay. Once again, however, the report made it clear that 
Chile and Uruguay, along with Argentina, Costa Rica, Mexico and Peru present a 
very significant disparity in scores.

At the same time, the socio-economic background of the students and the type of 
educational institutions that they attend also have an influence on their general 
achievement, and on their performance in mathematics in particular. In the TERCE 
tests, a small proportion of Chilean and Uruguayan students from very disadvan-
taged socio-economic backgrounds achieved the highest performance category in 
mathematics, compared with the proportion of students from the highest socio-eco-
nomic background; the reverse is also true. Furthermore, the disparity between 
average scores achieved by students from favourable socio-economic backgrounds 
and those achieved by disadvantaged students places Uruguay alongside Brazil and 
Peru as the countries with the widest divide in the region  (INEEd, 2017).

 National Assessment

All of the above is supported by studies carried out within each country. In fact, 
according to the results from the Education Quality Measurement System (SIMCE), 
which is Chile’s national curricular objectives assessment mechanism for Mathematics, 
Spanish Language, Social Sciences and Natural Sciences, disparities as a function of 
SES are higher for mathematics than for reading. Moreover,  between 2006 and 2014 
a quadratic trend relationship between performance in mathematics and socio-eco-
nomic status is reported. Between 2006 and 2010 the disparities were very stable, but 
between 2010 and 2014 there was a decrease at the 4th Grade level, especially when 
the highest and lowest SES groups were compared (MINEDUC, 2015b). At 8th Grade 
level, the differences across the groups are greater than at 4th Grade level, revealing 
that over time the effect of SES on performance in mathematics becomes stronger. 
SIMCE 2016 assessed students from Grades 4, 6 and 8, and the SES-based disparity 
decreased in the 4th Grade, but remained stable in Grades 6 and 8. The gender gap 
remained evident in the 8th Grade, although to a lesser degree than in previous years, 
while in the 4th and 6th Grades the performance of girls and boys was similar.

The standardised Uruguayan assessment of performance in mathematics began 
in 1996 with students from the final year of primary education, and there have been 
six to date, with the most recent taking place in 2013. The data obtained to date 
show that there has been no improvement either in performance or in the inequality 
generated by different socio-economic levels over the period (INEEd, 2017), has 
also reflected the shift, at least in legal terms, and Supreme Decree 170, concerning 
specific learning disorders (Decreto 170, 2009), regulates the diagnosis of and edu-
cational response to Chilean students with SLD. The document sets out the require-
ments for identifying students with special educational needs, who will be granted 
subsidies to receive special education, with the concept and identification criteria 
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being largely in line with those proposed in DSM-5 (American Psychiatric 
Association, 2013). According to Article 23 of the Decree, a student is considered 
to present specific learning difficulties when the difficulty is “severe or significantly 
greater than that of the majority of students of the same age in learning to read, 
learning to write, and/or learning mathematics” (Supreme Decree 170, p. 8), and the 
measure is specified as being two standard deviations below the mean score for their 
age group in standardised tests, in spite of normal intelligence and scholastic oppor-
tunity. The Article also indicates that “it should be a difficulty that persists despite 
the application of pedagogical measures applicable to the previously specified sub-
jects, according to the various styles, capacities and rhythms of learning of the stu-
dents in the class” (Supreme Decree 170, p. 8). It also includes traditional exclusion 
criteria. SLD in mathematics is understood as being a variant within the general 
category of SLD, characterised by the presentation of difficulties in the acquisition 
and development of basic arithmetic knowledge (addition, subtraction, multiplica-
tion and division), difficulties with the concept of numbers or difficulties in solving 
prenumerical problems.

In conclusion, an overall improvement in mathematics achievement in Chile and 
Uruguay is very much needed, however particular focus should be put on students 
from a poorer socio-economic background, and on female students. If all of the 
above is to be considered applicable to students with an average level of perfor-
mance, then for those presenting cases of MLD and who are therefore even more 
vulnerable, it is absolutely crucial.

 Educational Policies Addressing MLD and Educational 
Practice

 Chile

According to the Human Development Report (2016), Chile is ranked 38th in a 
group of 51 countries with a very high level of human development. The economic 
situation has been broadly stable in recent years, although on average the national 
gross income (NGI) per capita is far below that of other OECD countries. In fact, 
when NGI is adjusted for inequality per capita, Chile’s figures are similar to those 
of Brazil and Botswana, showing strong income disparity and a high level of 
inequality (PNUD, 2014). This socio-economic context is a major source of segre-
gation in schools, and the OECD (2012) reports that 81% of disadvantaged students 
in Chile attend schools with an overrepresentation of disadvantaged pupils. Chile’s 
educational system is based on a system of vouchers received for each student 
enrolled, and there are three different types of school. Municipal schools (funded 
entirely by the state) presented the lowest performance levels in national and inter-
national studies, in comparison to private subsidised schools (which receive funding 
from the state as well as fees for attendance) and private non-subsidised schools, 
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illustrating the fact that the socio-economic status of a family has a significant influ-
ence on the type of school that the children will attend (Taut, Cortés, Sebastian, & 
Preiss, 2009). Bravo Sanzana, Salvo Garrido and Muñoz Poblete (2015) found that 
the type of school attended is the second most relevant factor in explaining students’ 
performance in mathematics, after the educational expectations of parents.

Special needs education is also influenced by socio-economic status and the type 
of institution attended. According to Law 20.422, which sets out regulations con-
cerning equal opportunities and the social inclusion of people with disabilities 
(Normas sobre Igualdad de Oportunidades e Inclusión Social de Personas con 
Discapacidad), only those schools with a School Integration Programme (Proyectos 
de Integración Escolar, PIE) are permitted to accommodate students with special 
needs. These programmes ensure that all students receive the treatment (educational 
strategies, resources, diagnosis, intervention, etc.) that is prescribed by law accord-
ing to their needs. However, only those schools funded by the State – that is, munici-
pal and private subsidised schools – receive a “special education subsidy” for each 
student with special needs that is enrolled on the programme, and according to a 
report produced by the Ministry of Education in 2013 analysing the effect of the 
implementation of PIEs, of the total schools where a PIE had been introduced, 72% 
were municipals and 28% private subsidised. Assessing this distribution according 
to socio-economic status, 29.4% of the schools with a PIE presented the lowest 
level, 46.6% a medium-low level, 19.2% a medium level, and 4.8% a medium-high 
level (MINEDUC, 2013b). In other words, students with special educational needs 
are distributed disproportionately, being overrepresented in schools with low socio-
economic status and in municipal schools. In order to fully understand the effect 
that the type of school has on the development of academic skills in children with 
special needs, an assessment of the intervention available – which can vary enor-
mously from institution to institution – should be considered. Furthermore, the pro-
tocols for diagnosis are strictly regulated and highly homogeneous, at least in the 
case of SLD, and the law governing diagnosis is generally in line with current inter-
national trends, at least theoretically, as will be explored in the following 
paragraphs.

Over the past decade there has been a paradigm shift in the diagnosis of children 
with SLD, moving from a “wait to fail” model to one of preventive action (Al 
Otaiba, Wagner, & Miller, 2014). Research carried out in the USA into this new 
model known as Response to Intervention (RTI) places at its core the importance of 
early detection and intervention, constant monitoring of progress in learning using 
curriculum-based measures (CBM), and other factors such as the multilevel nature 
of the issue and the importance of data-based decision making, for the diagnosis and 
improvement of students at risk of presenting SLD (Crespo, Jiménez, Rodríguez, & 
Baker, 2018; Compton et  al., 2010; Fuchs & Fuchs, 2007; Good, Simmons, & 
Kame’enui, 2001; Hill, King, Lemons, & Partanen, 2012; Tran, Sanchez, Arellano, 
& Lee Swanson, 2011; VanDerHeyden, Witt, & Gilbertson, 2007). This paradigm 
shift had an impact on an international level, with the subject’s resistance to inter-
vention over a period of at least six months being included as a diagnosis require-
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ment in the latest edition of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-V, 2013).

Chile has also reflected the shift, at least in legal terms, and Supreme Decree 170, 
concerning Specific Learning Disorders (MINEDUC, 2009) regulates the diagnosis 
of and educational response to Chilean students with SLD. The document sets out the 
requirements for identifying students with special educational needs, who will be 
granted subsidies to receive Special Education, with the concept and identification 
criteria being largely in line with those proposed in DSM-V (2013). According to 
Article 23 of the Decree, a student is considered to present specific learning difficul-
ties when the difficulty is “severe or significantly greater than that of the majority of 
students of the same age in learning to read, learning to write, and/or learning math-
ematics” (Supreme Decree 170, p. 8), and the measure is specified as being two stan-
dard deviations below the mean score for their age group in standardised tests, in spite 
of normal intelligence and scholastic opportunity. The article also indicates that “it 
should be a difficulty that persists despite the application of pedagogical measures 
applicable to the previously specified subjects, according to the various styles, capaci-
ties and rhythms of learning of the students in the class” (Supreme Decree 170, p. 8). 
It also includes traditional exclusion criteria. SLD in mathematics is understood as 
being a variant within the general category of SLD, characterised by the presentation 
of difficulties in the acquisition and development of basic arithmetic knowledge 
(addition, subtraction, multiplication and division), difficulties with the concept of 
numbers, or difficulties in solving prenumerical problems.

With regard to the diagnostic procedure, the first paragraph of Article 26 identi-
fies two stages: “detection and referral” and “diagnostic evaluation”. The first stage 
of assessment prescribes various pedagogical steps, including: 1) since the first year 
of Primary Education (5-6 years of age) the student must have been receiving a 
personalised intervention tailored to their needs; 2) implement a programme of con-
tinuous assessment based on the curriculum in order to evaluate the student’s prog-
ress with the applied interventions; and 3) if the student does not show progress as 
a result of the measures taken, it will be necessary to move on to comprehensive 
diagnostic evaluation processes. Ultimately, although the law has not been formu-
lated according to the paradigm of the RTI Model, it does contain all of the elements 
necessary for implementation of a preventive model based on student response.

However, there are various obstacles to early identification of students with MLD 
when following the proposed guidelines. Firstly, the law does not regulate the evalu-
ation instruments to be used, and indeed these instruments are few in number, par-
ticularly those enabling early evaluation of numerical ability (Cerda et al., 2012). In 
fact, there are no CBM-like dynamic measurement instruments that allow for more 
than two annual measures, as is required in Chile, and that permit evaluation of 
progress throughout each year of study (Rodríguez et al., 2017). Secondly, training 
of Special Education teachers who are specialists in SLD diagnosis has not been 
sufficiently thorough when it comes to MLD, as the training puts particular empha-
sis on SLD in reading and writing. This could potentially lead to a lower rate of 
identification of students with this profile, and to the implementation of limited 
interventions. Thirdly, all of these preventive measures would be considered part of 
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the first stage of diagnosis – “detection and referral” – meaning that schools would 
not receive subsidies to support their implementation, as this funding is only made 
available once a diagnosis is given. In conclusion, although the intention is to move 
to a preventive model, there are still many obstacles to be overcome before the law 
can be applied in terms of RTI model.

 Uruguay

Uruguay’s current legislation on the subject, the General Education Law (2008), 
contains no information in respect to dealing with specific learning difficulties. 
Article 8 emphasises the importance of offering educational approaches that respect 
the diverse capabilities and characteristics of those being educated so as to develop 
their potential, and Article 72 states that those being educated are entitled to receive 
specific support in the presence of disabilities or illnesses as a result of which their 
learning process is affected. Furthermore, the protocol for inclusion of individuals 
with special needs in educational institutions (MEC-MIDES, 2017) provides a simi-
lar approach to that of the General Education Law. Here we find a series of measures 
to be taken in order that individuals with any kind of disability are able to enjoy their 
rights and liberties on equal terms. The guidelines include formulation of academic 
support strategies which have been validated by teams of integration support profes-
sionals, accessibility in terms of facilities, materials and study tools, and preventive, 
awareness and training measures for the different parties associated with educa-
tional institutions. There is also a repetition of the idea of promoting universal design 
in education, with the aim of catering effectively to the needs of all students.

In order to achieve all of these objectives, the National Administration for Public 
Education has put in place – in some cases with the support of other state bodies – a 
variety of educational programmes. The Mandela Network is among those pro-
grammes designed to address educational inclusion, and comprises a group of edu-
cational institutions – public preschools and schools – that are implementing a 
variety of inclusion projects with the aim of catering to their specific contexts 
(Consejo de Educación Inicial y Primaria, 2013). The aim is to promote empower-
ment and collaboration between educational entities, stimulating interchange and 
the spread of best practices, and the initiatives are supported by evaluations designed 
to manifest and standardise the achievements and learning brought about by the 
process. The Mandela Network is complemented by the Inter-In Project (ANEP-
CEP-ASSE-INAU-MIDES-INFAMILIA, 2008), an initiative dealing with children 
who are just entering preschool all the way up to those in the second year of school, 
and is in place in many educational institutions. The main objective is the coordina-
tion of measures to detect different learning problems, such as specific learning 
difficulties, developmental disorders and problems of an emotional nature. Following 
detection, socio-therapeutic educational attention is given by interdisciplinary 
teams in order to encourage greater adaptation to the school environment.
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At the secondary education level, the Integrated Student Department (DIE) – part 
of the Secondary Education Council – is responsible for dealing with learning dif-
ficulties, focusing particularly on curricular adaptations. Although the details of 
these adaptations are generally left to the discretion of subject teachers, the DIE 
website offers an adaptation prototype for various difficulties. In the case of difficul-
ties with mathematics, the areas covered are reasoning and the use of strategies for 
problem solving, calculation and geometry. In 2016, a total of 5,500 curricular 
adaptations were registered, however in the same year, a study was carried out of 
public educational institutions across the whole country, which showed that only 
60% of students who had difficulties with calculation reported a curricular adapta-
tion. Besides this, the Ceibal Plan has been launched, with the general objective of 
promoting the integration of technology and using it to support and improve the 
quality of education, drawing on innovation, inclusiveness and growth. Initial stud-
ies into the impact of the Ceibal Plan on mathematics learning have shown mixed 
results. While Ferrando, Machado, Perazzo & Vernego (2011) found the effect to be 
positive, De Melo, Machado, Miranda & Viera (2013) found no evidence of positive 
impact. Nonetheless, over the past few years, this programme has been providing 
access to an adaptive digital platform called PAM (Adaptive Mathematics Platform), 
which offers tools for learning mathematics to both students and teachers, and 
allows each student’s progress to be tracked with a view to tailoring activities 
according to their abilities. According to the Ceibal Plan, during 2016, 41% of stu-
dents between the 3rd Grade of primary and 3rd Grade of secondary school accessed 
PAM (2017).

Besides the implementation of educational initiatives seeking to cater to all 
learning paces and styles, a number of health guidelines have been issued to tackle 
specific learning difficulties, issues relating to settling in at school, and chronic ill-
nesses or disabilities which affect students’ educational process (Ministerio de 
Salud Pública, 2012). However, these guidelines are directed towards the mental 
health of children and adolescents, and not specifically towards intervention for 
learning difficulties. In the vast majority of cases, evaluation and specific interven-
tion for learning difficulties in mathematics occurs outside of the educational con-
text, whether through provisions from the health or social security systems, in 
private clinics, or by independent professionals. While some private educational 
institutions have specialist technical teams that carry out evaluations, offer guidance 
for intervention and promote certain curricular adaptations for dealing with students 
with difficulties, others do not provide access to these benefits. Once again, this 
illustrates the lack of equality of access mentioned previously when it comes to 
mathematics learning.

Besides the need for defining and designing intervention proposals within the 
school system that are tailored to children with learning difficulties, it will also be 
necessary to increase the offering of programmes aimed both at teaching mathemat-
ics and teacher education. According to the current official programme, the teaching 
of mathematics at the preschool and primary education levels promotes the develop-
ment of mathematical thought, enabling critical interpretation of reality, the ability 
to act upon this interpretation, and the ability to modify it (Administración Nacional 
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de Educación Pública, 2008). The findings of national and international evaluations 
have led to the creation by the Preschool and Primary Education Council (CEIP) – 
the branch of the National Administration for Public Education that is in charge of 
provision of the country’s preschool and primary education – of the Commission for 
Curricular Analysis of Mathematics Teaching in Schools. The purpose of this tech-
nical commission is to create a space for reflection on mathematics, and to make 
specific materials available to teachers for use from preschool to the end of primary 
school. Distribution of support materials for children from level 5 of preschool and 
the first three years of primary school began in 2017, with delivery of materials for 
the rest of the primary school period anticipated for 2018. These materials are 
designed to contextualise certain mathematical knowledge, solve problems by com-
municating in mathematical language, and apply individual procedures and strate-
gies (Consejo de Educación Inicial y Primaria, 2016). Some private educational 
institutions have been applying the so called “Singapore Method” of learning math-
ematics, which has been introduced mainly through the “Thinking without boundar-
ies” books from publishers Marshall Cavendish Education (Ho Kheong, 
Ramakrishnan & Choo, 2011). The approach aims for learning mathematics to be 
effective, measurable and open to evaluation.

All this being said, teachers demonstrate very little knowledge of learning diffi-
culties in mathematics. In a national survey of teachers carried out by the National 
Institute of Educational Evaluation (INEEd, 2015), 84% said that they had received 
little or no training in learning difficulties, and similar results were obtained in inter-
views with primary education Masters graduates upon completion of their studies 
(INEEd, 2016). In the public sector, training opportunities beyond seminars and 
short courses are scarce, and postgraduate courses in learning difficulties, particu-
larly in mathematics, are available only at private universities and institutes.

 Research into MLD

 Chile

It is well known that MLD is substantially under-researched in comparison with 
SLD in reading (Gersten, Clarke, & Mazzocco, 2007; Wilson et al., 2015). In fact, 
as shown by Moeller, Fischer, Cress and Nuerk (2012), as of 2009 the number of 
publications found on Web of Knowledge when searching for “dyslexia” came to 
10,880, whereas the term “dyscalculia” yielded only 599 results. Over the past five 
years, there has been a considerable increase in the number of studies published 
about MLD; however it will take several years to accumulate the body of knowledge 
required to bring these two topics into line.

Chile reflects this situation, although with a certain degree of delay. The coup 
d’état saw the country suffer a period of stagnation in the advancement of neuropsy-
chology between 1973 and 1990, and although the period did see growth in research 
into SLD, particularly in reading, Chile did not begin to follow international trends 
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until after 1990, reaching a peak around 2001 (Rosas, Tenoria, & Garate, 2010). It 
is therefore only in recent years that research has begun to emerge (e.g. Cerda et al., 
2015; del Río, Susperreguy, Strasser, & Salinas, 2017), and given this early stage, 
the practical implications of new discoveries will require time to develop, meaning 
that educators in training still lack sufficient knowledge of the subject (Friz Carrillo, 
Sanhueza Henríquez, & Sánchez Bravo, 2009). One reliable indicator of the appli-
cation of research in practice is technological transfer, and while there are projects 
financed by Chile’s Fund for the Promotion of Scientific and Technological 
Development (FONDEF) for the teaching of mathematics (e.g. Projects FONDEF – 
CONICYT D09 I1023, Resources for basic training of Primary Educators  – REFIP), 
it will be a few years before similar results are seen in the area of MLD. There are 
currently no national-level prevalence studies being undertaken, only smaller ones 
at the regional level, however there are some research projects funded by Chile’s 
National Fund for Scientific and Technological Development (FONDECYT) whose 
focus is on MLD (e.g. Proyecto FONDECYT REGULAR 1161213, Identification 
of explanatory factors in the occurrence of comorbidity between learning difficul-
ties in mathematics and reading from a longitudinal perspective). To summarise, 
Chile is currently in a phase of take-off in terms of research into this topic, and the 
application of results to educational practices in the form of development of teacher 
training, diagnosis and intervention will come with time.

 Uruguay

Research at a national level on the learning of mathematics and related difficulties 
is limited and of little significance. There are two main research teams dedicated to 
mathematics and learning. They are associated with the Universidad de la República 
and the Universidad Católica del Uruguay, and their work has focused primarily on 
applied research on educational practices and evaluation.

The Universidad de la República is home to the Centre for Basic Research in 
Psychology, which has been working on a line of research called Numerical 
Cognition, which focuses on the study and analysis of the cognitive processes 
involved in learning mathematics. They have studied, for example, a) the relationship 
between spatial activities and skills, and mathematics performance in children, b) 
analysis of the influence of music on performance in mathematics and, c) the rela-
tionship between engagement in numerical activities at home and mathematics per-
formance in children (Grupo de Investigación en Cognición Numérica., s.f.), as well 
as the effect of the Approximate Number System (ANS) on development of math-
ematical ability (González, Kittredge, Sánchez, Fleischer, Spelke & Maiche, 2016; 
Valle-Lisboa, Mailhos, Eisinger, Halberda, Gonzalez, Luzardo & Maiche 2017, 
Valle-Lisboa, Mailhos, Eisinger, Halberda, Gonzalez, Luzardo & Maiche, 2015). 
The group has taken advantage of the possibilities afforded by the Ceibal Plan by 
performing an intervention study into the approximate number system (ANS), 
assuming its role as an ancient mathematical ability that could be related to MLD. 
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Although they report positive effects of training on mathematical ability, their study 
contains certain methodological problems which currently do not allow for the gen-
eralisation of its results to educational practice. Another important aspect of the 
study that should be taken into consideration is that none of the children involved 
presented MLD (Valle- Lisboa et al., 2015).

The research group at the Universidad Católica del Uruguay is working on the 
acquisition of mathematical calculation skills and the problems relating to it, and 
among other things they have worked on a) the development of evaluation techniques 
for arithmetic calculation (Singer, Cuadro, Costa & von Hagen, 2014; Singer & 
Cuadro, 2014), b) the study of the relationship between arithmetic and reading per-
formance during school years (Singer & Strasser, 2017) and, c) the importance of 
teachers’ ability to identify calculation difficulties (Balbi, Ruiz & García, 2017).

 Conclusions

According to international reports, Chile and Uruguay present similar levels of 
achievement in mathematics. In relation to other Latin American countries, both 
present above average levels, however when compared to the countries that partici-
pate in the PISA or TIMMS evaluations, average performance is less than satisfac-
tory. Furthermore, in both cases, performance in mathematics is affected by the 
socio-economic status and gender of the students, which adds yet another problem 
to that of poor performance. However, the extent to which these trends affect those 
children with general SLD and those specifically with MLD is still understudied. In 
the case of Chile, the School Integration Programmes and the regulations set out by 
Supreme Decree 170 ensure similar diagnostic processes, however the way in 
which intervention is applied is perhaps more heterogeneous. Today, as part of the 
previously mentioned Proyecto Fondecyt Regular 1161213, the CBM method is 
being used to track the progress of around 1,000 pre-school students from different 
types of schools as they advance 2nd Grade. It is expected that at least 5% of them 
will present MLD, and if this is the case we would able to gauge the impact of dif-
ferent types of school upon their progress.

In terms of the education policies around dealing with and diagnosing students 
with MLD, Chile and Uruguay present differing levels of development. Chile has 
already taken the first step towards a preventive model at a legislative level for diag-
nosis of students with SLD, however, further work is required on reinterpretation of 
what the law prescribes, freeing up subsidies for preliminary studies to advance 
prevention strategies, improving the training of education professionals, providing 
co-teaching strategies to facilitate collaboration between general educators and spe-
cial educators, reducing student-teacher ratios, and strengthening intervention pro-
grammes. In the case of Uruguay, evaluation and intervention in specific difficulties 
with mathematics are managed, for the most part, within the health and social secu-
rity systems, and the education system has not yet reached the point of assuming 
learning difficulties as one of its concerns. However, change is on its way, for exam-
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ple, the fledgling proposals within secondary education that seek to promote adapta-
tions of the curriculum as a whole, instead of simple changes to specific evaluations, 
and the involvement of specialist professionals in educational institutions and bod-
ies in charge of education. Another promising development is broader access to and 
use of new technology, which is bringing about the delivery of interventions through 
IT solutions.

In terms of research into MLD, both countries are seeing an increase in research 
projects, although given this early stage in the process, these are still relatively few 
in number, meaning that application of their findings is still some time away. 
However, it is important not to lose sight of the fact that improvements in pedagogi-
cal practices which have the potential to offer more effective solutions to learning 
difficulties in mathematics should always go hand in hand with research and find-
ings based on empirical evidence. With this in mind, large-scale training  programmes 
should be put in place immediately for specialists and for primary and secondary 
educators.

There is still a long way to go before children with general learning difficulties – 
and with difficulties with mathematics in particular – can be guaranteed access from 
an early age to the support they need to secure a successful education, and for this 
possibility not to be contingent upon the economic status of the family and on the 
educational institution that the child attends. It is in the hands of public institutions 
and government, in conjunction with researchers in the field, to ensure the best 
possible treatment of students with MLD. Collaboration between these two groups 
will lay the foundations for improving training for teachers who deal with students 
with MLD, make empirically tested intervention programmes available to schools, 
and develop suitable evaluation instruments for monitoring students’ progress 
throughout their time at school.
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Chapter 15
Mathematical Learning and Its Difficulties  
in Southern Africa

Nicky Roberts, Lindiwe Tshuma, Nkosinathi Mpalami, and Tionge Saka

 Introduction

This chapter opens with brief overviews of four Southern African countries’ 
approaches to mathematics and inclusive education in Zimbabwe, Malawi, Lesotho 
and South Africa. Each outlines the general education context as well as the national 
policy approach to mathematics and inclusion and offers some insight in the enact-
ment of this policy from the perspective of teachers and officials in primary schools.

Having sketched the regional context, a detailed case study of a 4-year interven-
tion study (2012–2015) in a ‘full-service school’ (Department of Education, 2001) 
in South Africa is presented.

This chapter considers two of the domains relevant to special education: environ-
ment and cognition. The socio-emotional domain (of both learners and teachers), 
although of interest, and relevant, is not in focus. The environment is described in 
relation to the socio-economic and policy context of inclusive education in relation 
to mathematics in the Southern African region. The cognition is described in relation 
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to early grade mathematics learning as measured through both standardised national 
assessments and provincially designed and administered assessments at Grade 3 
and Grade 6 levels in the targeted primary school.

There are many factors which impact on mathematical exclusion. At the systemic 
level the resourcing of education, the population demographics and historical 
experiences of marginalised groupings, the policy frameworks in relation to access 
to mathematics, the mathematics curriculum, and special educational needs and 
language policies all play a role. In the resource constrained context of this low- 
income region, there are very limited choices for teachers and government offi-
cials in how to support learners experiencing mathematical learning difficulties. 
With very few options for specialised intervention, the quality of whole-class 
teaching and how ordinary teachers better support all learners – and particularly 
those with mathematical learning difficulties – must necessarily become a focus. 
The main thesis of the case study is that inadequate knowledge for teaching math-
ematics ought to be seriously considered as a barrier to mathematics learning and 
one of the key levers for making mathematics more inclusive.

It is hoped that this chapter provides a glimpse first at a macro level of the condi-
tions under which teachers and government officials in this region work and then at 
a micro level of one primary school. The Foundation Phase teachers (Grades 1–3 and 
including the pre-school year of Grade R) in the focal school of this intervention 
study were supported to improve their knowledge of and approach to mathematics 
teaching through establishing a professional learning community of mathematics 
(Karin Brodie, 2013; Brodie, Molefe, & Lourens, 2014). The effect this intervention 
had on learner cognition (as measured in standardised assessments of learners on 
mathematics) was determined. So alternating the environment (improving the quality 
of whole-class teaching) was conjectured to potentially lead to changes in individual 
mathematical cognition.

 Theoretical Framing

There is apparent tension/divide between the cognitive and environmental domains of 
research in learning difficulties related to mathematics education. Some more cogni-
tive-focused research concentrates on core skills and competencies that are internal to 
the cognition of a particular child (Butterworth, 2015; Dehaene, Piazza, Pinel, & Chen, 
2003; Pirjo & Räsänen, 2015). There is simultaneous acknowledgement that context 
matters and that changes to the child’s environment (particularly their school environ-
ment) can affect their cognitive development (in this case their individual mathematical 
learning trajectory). Researchers in the more didactic or pedagogic school of mathe-
matics education research focus on teaching, and the requisite knowledge for mathe-
matics teaching (such as Rowland, Huckstep, & Thwaites, 2004; Ball & Bass, 
2003; Wright, Martland, Stafford, & Stanger, 2002). There have been some efforts 
to bring these two schools together when research attention is placed on potential 
remediation pathways for mathematical learning difficulties (see, e.g., Wright 
et al., 2002; Wright, Stanger, Stafford, & Martland, 2006; Fritz-Stratmann, Ehlert, 
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& Klüsener, 2014). These bridges are not new between the domains, as much has been 
written which refers to learners with special educational needs (LSEN) as requiring 
adaptive changes to their learning environment in order to better support their 
cognitive development in schools. Some of these adaptations refer to whole-class 
interventions (which may include in-class or caring adult support) and/or pull-out 
support or after-school intervention making use of small-group or one-on-one inter-
ventions to remediate identified mathematical learning difficulties.

Such a suite of ‘special needs’ intervention options (whole class, small group and 
individual) are current in contexts where public schools have resources for such 
learning support opportunities and/or where the families of children diagnosed with 
particular learning difficulties may have the resources to seek out additional after-
school intervention. However, in other contexts such learning support options are 
absent from the majority of public schools and therefore cannot be considered as 
possible special needs interventions.

This chapter outlines the environmental constraints in relation to mathematics and 
primary schooling in four Southern African countries. The intervention study 
reported on is situated in an environmental context of a South African full-service 
school community of very low socio-economic status. Here almost all opportunity 
for learning mathematics takes place during ‘ordinary whole-class mathematics les-
sons’ in a public school, with no or very little access to out-of-class, or out-of- school 
opportunity for small-group or individual specialist intervention, and with very few 
or no opportunities to learn mathematics in out-of-school time. Within such contexts 
the quality of whole-class learning opportunities becomes a key factor in individual 
mathematical cognitive development (or lack of development). The study makes use 
of the theoretical constructs of a professional learning community focused on teacher 
knowledge for mathematics teaching as a promising means to improve the whole-
class teaching of mathematics.

 Identified Problem and Research Questions

As a region sub-Saharan Africa has the lowest human development index (HDI) in 
comparison with other geographic regions. The greatest attention of the state is 
therefore necessarily on basic needs (including health, electrification, access to 
clean water, sanitation, housing and educational access). In terms of education, the 
main focus has been on increasing enrolment.

Having situated work on mathematical inclusion, within a broader regional 
context, a single school in South Africa is described. The focal school for the inter-
vention which is considered as a detailed case is located in an urban South African 
community which is described on the website of an independent trust operating in 
the community as

‘one of the poorest townships in the Western Cape[…]situated 30 kilometres South of Cape 
Town – the area is home to 40,000 inhabitants, many of whom are migrants from across 
Africa. Residents live in shack-like dwellings and healthcare, educational and recreational 
facilities are in short supply.’
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The primary school in this community caters for 700 children (Grade R to Grade 7). 
A problem of systemically poor performance was identified in the focal school as 
the majority of learners were not meeting the grade level requirements of the 
curriculum for mathematics. This was evident in both standardised Annual National 
Assessments (ANAs) set annually by the national Department of Basic Education in 
Grades 1–6 for all primary school learners and administered and marked by 
classroom teachers, as well as in systemic assessments of mathematics at Grade 3 
and Grade 6 set, administered and marked annually by the Western Cape Education 
Department (WCED).

To respond to this identified problem, the Focus on Primary Maths project 
based on a 3-year grant ($37,000 per annum) from a philanthropic trust was estab-
lished. The project was a focused research and development intervention involv-
ing a three- way partnership between a consulting company with expertise in 
mathematics education and the school leadership and teaching staff at Foundation 
Phase level in two government schools in Cape Town. One primary school (the 
‘suburban school’) was an old affluent, suburban school with an established track 
record of excellent attainment in mathematics and language, and the other school 
(the ‘full service township school’) was relatively new located in a poor township 
community which was performing below the provincial average in standardised 
assessments. This partnership was formalised with a contractual agreement out-
lining roles and responsibilities. It was supported by a small reference group 
comprising the project leader (author), school leaders from each school, three 
experts in primary mathematics education as well a representative from the Western 
Cape Education Department (WCED). Reference group meetings were convened 
biannually to agree on annual plans and report on progress against these plans and 
their related annual budgets.

While the research and development intervention was loosely framed at the 
outset, it included several key ingredients focused on creating a professional learn-
ing community relating to mathematics knowledge for Foundation Phase teaching. 
The grant was ring-fenced to pay for the professional consulting time, professional 
development tuition fees, incentives for teachers to share their teaching approaches 
in collegial forums, mathematics learning support materials and equipment as well 
as travel and catering for seminars and conferences.

The research question at the macro level was: What is the policy context for 
access to mathematics and mathematical inclusion in each country, with some 
reflections on how this enabling environment is experienced in practice for a 
mathematics teacher in a primary school. At the micro level of the focal school in 
the intervention study, the following research questions were posed:

• Over the 3-year period (2012–2014), how were Foundation Phase (Grades 1–3) 
teachers supported to improve their knowledge for mathematics teaching?

• Were there any shifts in mathematics learning attainment (as measured in 
standardised systemic assessments administered by the province) from 2012 
to 2015?
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 Methods

The broad context to mathematical inclusion in the four countries in sub-Saharan 
Africa was developed drawing on expert knowledge of each national context and 
desk research.

The case study findings of the focal school were developed drawing on multiple 
sources of data. The implementation of the intervention was monitored making use of 
teacher feedback questionnaires at the outset and close of the intervention, teacher 
surveys following each professional development intervention (seminar or formal 
course), reports and papers on reflective sharing sessions, research output, detailed 
design experiment research interventions for expert interventions (the focus of PhD 
study) and a series of mini-lesson study cycles of reflection of co-teaching interventions 
and collection and analysis of learners scripts for annual national assessment data.

The data used to answer the micro level research question draws on project 
documentation, feedback obtained from teachers through survey and questionnaires, 
experiences of the project leader (who is the corresponding author) and learner 
attainment data as measured in standardised provincial assessments.

 Results and Discussion of Findings

Sub-Saharan Africa is organised into a region comprising 15 countries in the Southern 
African Development Community (SADC): Angola, Botswana, Democratic 
Republic of Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, 
Namibia, Seychelles, South Africa, Swaziland, United Republic of Tanzania, Zambia 
and Zimbabwe. Each country has its own approach to education, mathematics and 
educational inclusion. We offer brief overviews of four of these countries in order to 
sketch the environment and policy frameworks in which teachers of mathematics and 
the learners in primary schools operate.

 Lesotho

In the year 2000, the government of Lesotho introduced free and compulsory primary 
school education. This initiative made it possible for children from economically 
challenged backgrounds to have access to education. Children in Lesotho graduate 
from reception class (Grade R) at the age of 5 and start Grade 1 at the age of 6. 
According to the language policy, learners at Grades 1–3 are to be taught in home 
language (Sesotho). From Grade 4 upwards, the medium of instruction is officially 
English. Children attend public primary school for 7 years and then continue for a 
further 5  years to secondary school where they complete a Lesotho General 
Certificate of Secondary Education (LGCSE) (school leaving certificate).
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The Lesotho gross enrolment ratio (GER) in pre-school enrolment is 33.95%, in 
primary school is 105.52% and in secondary school is 53.77% (Unesco, 2014, 
http://uis.unesco.org/country/Lesotho). In 2008, Lesotho was spending 24.7% of its 
GDP on education, and the expenditure per learner in primary school was $401.1 
(in PPP$, UNESCO, 2014). Current statistics on how much the country spends on 
education are not available.

Mathematics is part of the curriculum from Grade 1 (age 6) on and is integrated 
into other subjects. Mathematics forms part of the integrated curriculum from Grade 
1 up to Grade 6 (age 11) (known as a ‘numerical and mathematical learning area’) 
and emerges as a standalone subject in Grade 7. The Curriculum and Assessment 
Policy (2009) states that the numerical and mathematical learning area is aimed at 
promoting ‘application of numerical and mathematical skills in solving everyday 
problems’ (p. 32) amongst others. All learners must take mathematics until Grade 
10 (age 15). From Grade 11 to Grade 12 (age 17), learners are free to choose 
between Mathematics Core and Mathematics Extended. Mathematics Core is taken 
by students who are not strong in mathematics or choose not to take mathematical- 
related careers beyond secondary school.

The government of Lesotho committed itself in providing equal access to quality 
and relevant education and training opportunities to all Basotho children (Strategic 
Plan, 2005, 2005–2015). In order to achieve this, the government developed an 
Inclusive Education Policy in November 2016 though still in draft form to date. 
The main objective of the policy is ‘to ensure that Learners with Special Educational 
Needs (LSEN) or disability receive quality education which is accessible and 
efficient, education that promotes inclusion, non-discriminatory and caters for 
individualization to ensure participation and progression with high performance at 
all levels’ (p. 13).

In relation to mathematics inclusion issues, the policy highlights temporary 
learning difficulties such as dyslexia, dysgraphia and dyscalculia and argues that if 
appropriate measures are put in place, these could be corrected.

The government aspires to build up a complete inclusive education in Lesotho, 
but there are serious challenges that teachers are faced with. Within the inclusive 
education policy context, a typical teacher in a primary school would be respon-
sible for 80 learners in her class. As such it might be extremely difficult for a 
teacher to identify learners with special needs. A large number of teachers never 
got training on issues relating to inclusive education. Because of lack of resources, 
there are no supporting structures in place for teachers such as teacher develop-
ment programmes. In most old schools, the buildings remain inaccessible for 
learners with special physical needs. Lack of teaching and learning materials 
remains a great challenge for most schools. Up to this day, what seems to be func-
tioning well are a few schools in Maseru and one school in Leribe district that have 
qualified teachers in special education and have resources for learners with special 
needs. We therefore see a need for more teacher empowerment with skills and 
knowledge to handle learners with special needs.
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 Malawi

Children in Malawi start public primary schooling at age 6 in Standard 1. They attend 
public primary school for 8 years which is comprised of infant section (Standards 
1–2), junior section (Standards 3–4) and senior section (Standards 5–8). At the end 
of the formal primary cycle (Standard 8), learners sit for Primary School Leaving 
Certificate of Education (PSLCE) examinations which are administered by Malawi 
National Examinations Board (MANEB), and only those that pass with a higher 
aggregate normative score are selected by the government to public secondary school 
(MoEST, 2014a). Some learners however continue for a further 4 years to secondary 
school where they sit for Malawi School Leaving Certificate examinations to obtain 
a Malawi School Leaving Certificate. Prior to public schooling, some children attend 
early childhood development programmes in form of pre-school, kindergarten or 
child-based care centres (CBCCs). However, access to such centres is limited to 
children in urban areas. The language of instruction in public primary schools is 
the common language or mother tongue of the area for the first four classes of pri-
mary school and English from Standard 5 on. However, according to the government 
of Malawi (2012:42), ‘the medium of instruction in schools and colleges shall be 
English’. But this policy shift is yet to be implemented.

In Malawi, about 70% of eligible children do not access any form of ECD 
(NER = 32%) (MoEST, 2014b). The GER in primary school in 2014–2015 academic 
year was 133% and in secondary school was 24.3% (MoEST, 2016). The GER for 
primary school is greater than 100% because of the enrolment of underaged and 
overaged children. In the 2014–2015 financial year, Malawi spent 23% of the 
national budget on education and 49% of the education budget on primary education 
(MoEST, 2016).

Mathematics is part of the curriculum from 6 years and taught alongside other 
subjects. All learners must take mathematics for the whole of primary and secondary 
school. This is due to the fact that in Malawi, mathematics is considered to be one 
of the core subjects.

Malawi has ratified some essential UN declarations as Universal Declaration of 
Human Rights (1948), International Convention on Civil and Political Rights (1966) 
(ratified in 1994), Convention on the Elimination of All Forms of Discrimination 
Against Women (1979) (ratified in 1987), Convention on the Rights of the Child 
(1989) (ratified in 1991), African Charter on Human Peoples Rights (1981) (ratified 
in 1989), World Programme of Action Concerning Disabled Persons (1982) and UN 
Standard Rules on the Equalisation of Opportunities for Persons with Disabilities 
(1993) (Salmonsson, 2006). The commitment to international declarations resulted 
into production of inclusion/special needs education policies and infusion of such 
issues in several policy documents. Some of these national policy documents include 
National Policy on Special Needs (Ministry of Education and Vocational Training 
Malawi, 2007) with its corresponding Implementation Guidelines for the National 
Policy on Special Needs Education (Ministry of Education, 2009). Some of the 
objectives of the special needs education policy include:
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• Provide the education and training to learners with special needs.
• Ensure for all learners with special needs equitable access.
• Provide educational facilities with needed supportive provisions.
• Ensure accommodating learning environments for all learners with special needs.
• Increase provisions of SNE services by all education stakeholders.
• Improve coordination and networking amongst school and related personnel.
• Enforce adherence to standards and ethical practices in providing SNE services 

(Ministry of Education and Vocational Training, 2007).

Further, Malawi had a broad education policy which considered special educa-
tional needs reflected in the following priorities/strategies: promote early detection, 
intervention and inclusion for children with special health and education needs, 
develop appropriate tools for special needs such as sign language and Braille and 
move towards the recommended teacher-pupils ratio of one teacher to ten pupils in 
special schools and one teacher to five pupils in resource centres by the end of the 
plan period (MoEST, 2008:6, 11–12).

However, recently (July 2017), the Malawi government has launched a National 
Inclusive Education Strategy aimed at giving quality education to the marginalised 
children who are mostly excluded and secluded in mainstream education.

Yet, there are no subject specific approaches to inclusive education. As such, 
when learning mathematics, learners are treated in the same way as when learning 
other subjects. This is also reflected during national examinations where extra time 
is given to some learners with special educational needs like visual impairment.

Within this policy context, a qualified teacher in primary school would on aver-
age be responsible for 75 learners in his/her class (MoEST, 2016). However, in 
some schools in rural areas, the enrolment is much higher with more than 100 learn-
ers per class in the early grades (Saka, in progress). In Malawi, learners with special 
needs are dealt with differently depending on the type and severity of the impair-
ment. Learners with severe impairments like deafness or blindness are mostly taught 
in designated special schools by SNE teachers, while those with mild impairments 
are integrated in mainstream schools. In such cases, there is a special teacher at the 
school who provides support to such learners. One such teacher normally serves up 
to 15 schools (Salmonsson, 2006). In some schools where these learners are inte-
grated in main stream classrooms, a resource centre unit is usually established that 
the special/itinerant teachers use after pulling out the learner(s) with special educa-
tional needs.

 South Africa

Children in South Africa start compulsory public schools at age 5 (the year they turn 6) 
with Grade R. They attend public primary school for 8 years which is comprised of 
Foundation Phase (Grade R-3), Intermediate Phase (Grades 4–6) and the final year 
or primary school Grade 7 which is a transition year and part of Senior Phase 
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(Grades 7–9). Learners may leave school at Grade 9 and either continue with 
schooling in Grades 10–12, enrol in a further education and training college in the 
technical and vocation education sector or enter the world of work or unemployment. 
There is a school leaving certificate at Grade 12 level referred to as the National 
Senior Certificate. Prior to public schooling, there is a range of early childhood 
development centres (pre-school or kindergarten) although this is not universally 
accessible. The language of teaching in public primary schools most commonly 
involves home language teaching (in 1 of 11 official languages) for the Foundation 
Phase and transition into teaching in English or Afrikaans from Grade 4 onwards.

The South African gross enrolment ratio (GER) is 77.37% in pre-schools, 
99.72% in primary schools and 98.82% in secondary schools (UNESCO, 2014, 
http://uis.unesco.org/country/ZA). South Africa spends 6.06% of its GDP on educa-
tion, and the expenditure per learner in primary school is $2,270.81 (in PPP$, 
UNESCO, 2014).

Mathematics is part of the South African curriculum from age 5. In the Foundation 
Phase, mathematics is taught alongside language (comprising both home language 
and first additional language) and life skills. From Grade 4 onwards, mathematics is 
a compulsory subject and taught alongside other subject areas. All learners must 
take mathematics until Grade 9 level (age 15). Thereafter, in Grades 10–12, learners 
are offered a choice between mathematics and mathematical literacy. While the 
former is preparation for higher learning in mathematics-related degrees, the latter 
is preparation to be a numerate citizen and scholar.

The South African constitution includes a provision of the right education and 
the right to be free from discrimination including disability. This right is legislated 
in the South African Schools Act of 1996 (RSA 1996) which refers to learners with 
‘special educational needs’ being served in the mainstream with the provision of 
relevant support ‘where this is reasonably practicable’ and physical amenities being 
made accessible to disabled learners. This was extended in 2001 with the Department 
of Education (DoE) White Paper 6: Special Needs Education. Walton (2014) indi-
cates that this 20-year strategic plan aims to:

• Reach more of the children and young people who are not in the school system.
• Improve special schools and convert them into resource centres.
• Convert 500 ordinary primary schools to be full-service schools that are capable 

of responding to the full range of learning needs.
• Establish district-based support teams providing support service to schools.

As such the South African policy recognises educational inclusion as a human 
right and makes available special schools offering a continuum of inclusive 
education practices for learners with moderate to high support needs. At the same 
time, South Africa aims to improve the services at ordinary public schools so that 
learners with barriers to learning are adequately supported through mainstream/
regular schools. Resources have been targeted at 500 ‘full service’ schools which 
are designated ordinary schools but are expected to become examples of good inclu-
sive practice (ultimately paving the way for all schools to become inclusive).
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While mathematics is compulsory in all grades of the South African  
curriculum, neurological barriers to learning (including mathematical calculations 
and numeracy skills) are recognised. ‘Learners with special needs’ are identified 
in policy frameworks where it is expected that ‘measures should be taken in ordi-
nary as well as special schools’. Provision is made at the Grade 12 exit level 
examination to assist with learners with special needs. In relation to mathematics, 
there is explicit mention of learning difficulties relating to mathematics in the 
promotion requirements for the national curriculum for Grades 10–12: ‘Learners 
who have been diagnosed to have a mathematical disorder such as dyscalculia 
may be exempted from the offering of Mathematical Literacy or Mathematics’ 
(Department of Basic Education, 2013, p.39).

Aunio et al. (2016) report that the public schools in their South African study 
were supported by only few professionals in the local school district office, who 
have to serve more children than they can accommodate properly. They explain that 
within school-based learning support teams, there are difficulties in ‘guaranteeing 
that all of these professionals have the necessary background to assist children in 
public schools sufficiently’.

Within this policy context, a typical teacher in a primary school would be respon-
sible for about 35 learners in an urban context, although class sizes may be far higher 
(up to 60 or extreme cases of 80 learners per class) in some rural areas. Mathematics 
will be taught in English or Afrikaans after Grade 4, and in many contexts these lan-
guages dominate mathematics in earlier grades. The teacher in an ordinary school 
would be likely to have very limited knowledge of mathematical learning difficulties, 
and although there would be access to district support, this would not be sufficient for 
meaningful engagement about particular children. In a full-service school, a teacher 
may be supported by a learning support teacher who has more specialised knowledge 
(however much of this would be in relation to language learning difficulties and other 
learning barriers, with little awareness of barriers specific to mathematics learn-
ing). In some provinces, learners not meeting grade expectations in languages and/
or mathematics would be included in after-school ‘intervention’ lessons convened 
by the class teacher. The other option for addressing learners not meeting grade 
expectations would be to allow the learner to repeat a grade (which may occur only 
once in each phase).

 Zimbabwe

The ordinary school education in Zimbabwe is divided into four main levels, 
namely, pre-primary, primary, secondary and tertiary education. Pre-primary educa-
tion is offered to children aged 3–5 through the early childhood development system 
(ECD) which is provided at primary schools. Ninety-eight percent of primary 
schools have ECD centres for ages 4–5, while 60% of primary schools have ECD 
centres for ages 3–4 with trained teachers. Primary education is offered for children 
aged 6–12 for 7  years encompassing Grades 1–7. For example, some primary 
schools use English as language of instruction throughout the primary years; 
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township and rural primary schools use home language instruction (predominantly 
Shona and Ndebele) from Grade 1 to 2, and then from Grade 3 onwards the 
language of instruction changes to English. At the end of Grade 7, learners sit for a 
national examination in mathematics, English, Shona or Ndebele, the General Paper 
broadly covering the following learning areas: social sciences, environmental sci-
ence and religious education. Secondary education is offered for children aged 13–18 
and is made up of two cycles, namely, the General Certificate of Education, or 
Ordinary Level, encompassing Forms I–IV, and the General Certificate of Education 
Advanced Level, or Advanced Level, encompassing Forms V and VI. This structure 
was adopted from the British system of education. Progression from ordinary to 
advanced level is not automatic; it is by merit; and many learners exit the school educa-
tion system after Form IV to enter the competitive world of work or vocational training, 
often competing with advanced level graduates who do not attain qualifying grades for 
university entrance. Tertiary education is offered to children aged 18–23 at various 
universities, technical, polytechnic and teacher training colleges and various voca-
tional training centres. Pre-primary and primary education in government schools is 
subsidised by the government, while secondary and tertiary education is not.

Zimbabwe’s school age population by education level is as follows: pre-primary 
school, 1,456,907; primary school, 2,902,600; secondary school, 2,069,539; and 
tertiary level, 1,607,620 (UNESCO, 2014, http://uis.unesco.org/country/ZA). 
Zimbabwe spends 8.43% of its GDP on Education, and the expenditure per learner 
in primary education is $385.36, in secondary education is 612.28 and in tertiary 
education is 4443.08 (in PPP$, UNESCO, 2014).

Mathematics is part of the Zimbabwean curriculum from age 5 in the ECD and is 
taught alongside literacy and life skills. From Grades 3–7 of the primary school, math-
ematics is compulsory, taught alongside English, Shona or Ndebele and General 
Paper. In the secondary school (up to Form IV), mathematics and English are compul-
sory and taught alongside a home language and a variety of subjects chosen from 
commercials, humanities (Ex Model C schools also offer foreign languages like 
French), practical subjects and sciences depending on the selection of subjects offered 
at the particular school. Generally, mathematics is a compulsory subject up to the 
ordinary level, and it is one of the selection criteria for accessing education beyond 
this level. However, recent examination statistics also show that many learners do not 
fare well in mathematics, as the pass rate is almost always low. In 2014, only 24% of 
the students who sat for the ‘O’ Level Mathematics examination passed. The Ministry 
of Primary and Secondary Education is currently revamping the mathematics curricu-
lum to improve Zimbabwe’s quality of mathematics teaching and learning and test 
scores through the Education Sector Technical Assistance (TA). The TA is intended to 
support the government’s efforts to improve test scores and spending efficiency, 
strengthen capacity and update practices in specific policy areas aimed to address gaps 
in education (World Bank, 2016, http://www.worldbank.org/en).

To support the declaration of education as a basic right to every Zimbabwean 
school-going age child, relevant legislation was put in place. Although Zimbabwe 
does not have an inclusive education-specific policy, the country has a number of 
legislations with inclusive education-related policies. These legislations include 
The Constitution of Zimbabwe, Article 2 of the United Nations Convention on the 
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Rights of the Child (1989), the Convention on the Rights of Persons with Disabilities 
(2008), World Declaration for Education for All (1990), the Education Act (1996), 
the Zimbabwe Disabled Persons Act (1996), the UNESCO Salamanca Statement 
and Framework for Action (1994) and the Dakar Framework for Action (2000). 
Of these legislations, the Education Act of 1996 and the Zimbabwe Disabled 
Persons Act of 1996 advocate for non-discriminatory provision of education and 
non- discrimination of people with disabilities in Zimbabwe. In spite of these leg-
islations, special education in Zimbabwe still lags behind the entire educational 
system (Chitiyo, 2006).

In an assessment of primary and secondary schools conducted by the National 
Education Advisory Board, Chakanyuka, Chung, and Stevenson (2009) estimate 
that, in Zimbabwe, as many as 469,000 children may require special needs educa-
tion. They further estimated that only 30% of these children were able to access 
special needs education by 1998. Thus, 70% of children with disabilities and other 
special educational needs were and possibly still are being denied access and their 
right to education (Ncube & Hlatywayo, 2014). On the backdrop of the fact that 
these statistics fall within the period when the country’s overall literacy levels were 
pegged at over 97%, the picture painted is a cause for serious concern.

According to Ncube and Hlatshwayo (2014), special needs education provision 
in Zimbabwe has until recently been double thronged, curing and segregating learn-
ers with special needs. In curing, special educational needs are effectively diag-
nosed and cured, while in segregation children with particular special challenges are 
taken out of mainstream schools and placed in special classes, special departments 
within the school or in special institutions. The curing is considered a short-term 
intervention, while the segregation is considered a  long- term intervention. Although 
these curing and segregation provisions are still widely practised in many schools in 
Zimbabwe, numerous challenges arise from their implementation. It has only 
recently dawned on some schools in Zimbabwe that, to counter these challenges, 
there is a need for combining the short- and long-term arrangements to better serve 
children with special needs. To accommodate these new developments, it is impera-
tive that new legislation repositions which redefines the purpose of special needs 
education in ordinary schools and moves towards inclusive education. Thus, in line 
with provision of quality education to all, it is inadequate for ordinary schools in 
Zimbabwe to plan for programmes that only cure short-term difficulties with the hope 
of passing on the long-term ones and expecting them to be solved by other institutions 
elsewhere (Ncube & Hlatywayo, 2014).

Zimbabwe’s first 10 years of independence focused on increasing the number of 
schools so that the majority of learners could easily access formal education within 
their communities (Kapungu, 2007); however, the newly established schools did 
not have qualified staff to work in them. This resulted in the recruitment of unquali-
fied personnel as temporary teachers to serve in the increased number of schools 
(Mutambara, Phoshoko, & Nyaumwe, 2016). In the following 10 years, policy- 
makers’ drastic changes were put in place to improve teacher quality in the coun-
try. These changes included the Zimbabwe-Cuba teacher education programme 
where school leavers were sent to Cuba, a 4-year teacher education programme in 
mathematics and sciences.

N. Roberts et al.



243

To supplement the Cuban trained teachers, local initiatives, like the Degree in 
Mathematics Education, increased enrolments in the Graduate Certificate in 
Education and the Science Education In-service Teacher Training (SEITT) were 
offered at the University of Zimbabwe. In addition, a university was established in 
each of the country’s ten provinces to complement the existing teachers’ colleges 
for the purposes of increasing university graduates teaching in schools. The Bindura 
University of Science Education replaced the Cuba-Zimbabwe programme and 
became a university mandated with the responsibility of providing the nation’s 
mathematics and science teachers in the country, while the University of Zimbabwe 
transformed itself into a postgraduate centre offering postgraduate diplomas, 
masters and PhD studies in order to produce academics to staff the new universities 
(Mutambara et al., 2016).

Albeit all these commendable efforts to improve mathematics education in 
Zimbabwe; particular integration of special needs education still requires attention. 
A study conducted by Chireshe (2013) revealed that the implementation of inclusive 
education in Zimbabwe was perceived to be presently affected by lack of resources. 
Previous studies conducted in Zimbabwe (Chireshe, 2011; Mpofu, 2000; Mpofu, 
Kasayira, Mhaka, Chireshe, & Maunganidze, 2007; Peresuh, 2000) cited the short-
age of resources as a huge challenge towards the implementation of inclusive educa-
tion. The lack of resources is aggravated by the high teacher-pupil ratio (1 to 40) in 
many Zimbabwean primary schools. Because of this high teacher-pupil ratio, teach-
ers have limited room to effectively cater for children with disabilities. In addition, 
the negative attitudes towards children with disabilities still prevailing in the country 
also negatively affect the provision of resources to them. The funding provided for 
education in the country in general and inclusive education in particular is insuffi-
cient (Chireshe, 2013).

Therefore, if quality mathematics education is currently inadequate for the main-
stream learners in Zimbabwe, the situation is even direr for learners with special 
needs. By extrapolation if mathematics is used as a selection criterion for accessing 
higher levels of education, learners with special needs are distanced even further 
from this access.

 Case Study of Mathematical Inclusion in a Full-Service School 
in South Africa

In order to support teachers in this focal, the Focus on Primary Maths project had 
the following aims:

 1. Support ‘focus on maths’ teams, involving interested staff at each school, which 
focused attention on numeracy teaching and learning.

 2. Provide staff professional development in mathematics education through:

 (a) Offering mini professional development seminars on topics of interest 
related to mathematics education.
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 (b) Seeking out appropriate professional development interventions for 
interested staff.

 (c) Collaborative co-teaching interventions which allow the realisation in 
classroom practice of the groundwork laid though training/professional 
development.

 3. Identify areas of particular weakness as evident in the Annual National 
Assessment (ANA) and systemic assessment results from each school and work 
on classroom level interventions for these problem areas.

 4. Share the lessons learnt and approaches used in trying to improve numeracy 
results in particular case study schools with a wider evidence drawn from project 
documentation as well as teacher feedback on particular interventions to outline 
the project inputs in creating a professional learning community focused on 
Foundation Phase mathematics.

 What Was Done to Support Teachers?

The original intention to work with interested staff was changed by school leaders 
to incorporate all Foundation Phase staff. As such, each school used their grade 
structure to create small groups of teachers (four teachers in each grade). Grade 
meetings were scheduled weekly, and all the teachers met to discuss their weekly 
plans and experiences for all of the subjects. A mathematics-focused grade meeting 
(referred to as mini-seminar) was held approximately once per term for the first 
three terms of the year, was attended by the project leader and lasted approximately 
40 min to 1 h. The focus of discussion was on how mathematics was being taught 
across the grade and sharing ideas for teaching identified areas of difficulty. In 2012 
and 2013, approximately 36 mini seminars per year were held (18 at each school). 
In 2014 the grade meetings continued at each school; however, the project leader no 
longer attended these sessions. The teachers in the full service school did not offer 
comments on the grade meetings, but for the majority of teachers in the suburban 
school, these meetings were the most useful component of the intervention:

‘Many discussions happened after meeting with [the project leader] on a specific topic. 
Very good for all teachers in grade.’ (suburban school teacher, 2014)

Once per term (in terms 1–3), the Foundation Phase staff from both schools were 
brought together for a 2-hour seminar session. These sessions were facilitated by the 
project leader and focused on topics of relevance to Foundation Phase mathematics 
(e.g., ‘functions patterns and algebra in the early grades’ or ‘addition and subtraction’). 
These seminars opened with a short mental math activity, followed by some expert 
input which included facilitation of mathematical problem-solving tasks. The seminars 
were intended to engage the participating teachers in thinking mathematically themselves 
and to support the grade teams in discussing and sharing their ideas:

‘Enjoyed all seminars and little discussions with [the project leader] - most valuable of all. 
Enjoyed working through issues experienced when trying out what [the project leader] had 
shared previously.’ (suburban school teacher, 2014)
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‘Enjoyed the interaction with FOPM [the project] and [the suburban school]. Definitely made 
me more confident in teaching mathematics.’ (full service township school teacher, 2014)

Through the seminar discussions, the lack of a productive learning environment was 
frequently identified as hindering mathematics learning at the full service township 
school. Teachers complained of disruptive behaviour from learners that was exacer-
bated when attempting to use concrete materials and mathematics equipment. The 
deputy principal at the full service township school therefore innovated to allocate 
one of the CPS classrooms to be a dedicated ‘maths hub’. This venue was staffed by 
a teaching assistant who was tasked with managing all the mathematics equipment 
and stock for Foundation Phase. Concrete materials used daily in classrooms (such 
as number lines, bead strings and plastic bottle top counters) were kept in each 
classroom, but all specialised equipment (metre rulers, bathroom scales, bottles and 
cups for measuring fluids, maths-related games such as snakes and ladders, puzzles, 
card games, etc.) were all centrally stored in the maths hub. From 2013 this venue 
was timetabled to allow each class an hour session once a week, within the maths 
hub with their class teacher. Half of the class came to the maths hub for a ‘practical’ 
mathematics lesson, and the other half were occupied in class (often with depart-
mental numeracy workbooks), supervised by a teaching assistant. The full service 
township school teachers commented on the equipment being useful:

‘Materials donated really helped with lessons and teaching. Resourcing our maths hub. 
Thanks. Teachers make use of it in the classes as well.’ (full service township school 
teacher, 2014)

From 2014 this maths hub venue was also used for afternoon maths clubs at the 
full service township school. The top 10 attaining learners in Grade 2 were invited 
to join a once-a-week maths club, where they spent 40 min engaging in mental 
maths and game-based mathematics activities. This was led by the head of 
Foundation Phase of the suburban school who modelled a club session with a 
teaching assistant. A teaching assistant then replicated the model lesson with three 
other club groups.

 Staff Professional Development

Over the 3 years, a total of 18 teachers (2 from the suburban school and 16 from the 
full service township school) completed an intensive mathematical thinking course 
facilitated by the African Institute for Mathematical Sciences School Enrichment 
Centre (AIMSSEC). This course comprised an intensive 10-day residential course 
during the school holidays and was followed by a 3-month period during which two 
assignments were completed. The assignments directed teachers to plan, teach and 
then write a reflection on one mathematics lesson. The course focused on mathe-
matical thinking skills, making use of content areas that were particular to the South 
African primary mathematics curriculum. The course included a diagnostic pretest 
as well as summative written test of primary school level mathematical content. 
Teachers on the course were supported in completing their assignments by the 
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project through joint planning and reflection sessions facilitated by a project men-
tor who came to visit them at their schools. In addition all of the Foundation Phase 
staff in each school participated in a 2 h ‘I Hate Maths’ seminar facilitated by Prof 
Mike Askew.

For the suburban school, in 2014 where there were few teachers enrolled on the 
formal mathematical thinking course, the teachers in each grade engaged in two 
cycles of mini-lesson study process. At a seminar they identified an area of teaching 
need (making use of the ANA analysis) and then jointly planned, taught and reflected 
on their lessons on this topic. However, their lesson reflection was oral and not 
always formally written. Mini-lesson study topics included collaborative lessons on 
position in space, analogue time, grouping the tens, ‘I am thinking of a number’ and 
‘1 more than/1 less than’.

In 2014 each teacher was paired with a ‘buddy’ from the other school who taught 
in the same grade. Collegial exchanges, where a buddy could observe and support a 
mathematics lesson in a different school environment, were arranged. There were 
mixed reactions to this initiative:

‘Learned good techniques from my buddy which I implemented in my class as well.’ 
(full service township school teacher, 2014)

‘I really enjoyed having a [buddy] visit my classroom and to spend time there. I feel I had 
my eyes opened to a whole new world and learnt different teaching methods.’ (suburban 
school teacher, 2014)

‘[Buddy exchange] was a great idea but was not beneficial as my visit to [the full service 
township school] did not involve Maths. My buddy did not come when she was scheduled 
to. When she did come it was for 20 min.’ (teacher, 2014)

‘[Buddy exchange] was very beneficial & interesting; a different person's interpretation 
of the same curriculum.’ (suburban school teacher, 2014)

 Responding to Annual National Assessments (ANAs)

The ANA results were captured annually using a spreadsheet that captured question- 
by- question responses from each learner. The data capture of these ANA responses 
was conducted at each school with project data capturers, while the teachers marked 
the ANAs. The data capturers had academic backgrounds in mathematics education 
and were also available to support the internal moderation processes.

The ANA results were then analysed and the analysis circulated to all Foundation 
Phase staff and school managers. This process resulted in the identification of key 
topic areas, specific to each grade, which were prioritised for additional teaching 
and support during the fourth term, and identified as seminar topics.

‘Thank you for the format of how to analyse question paper/answers.’ (suburban school 
teacher, 2014)

‘I liked the help with marking ANA's and making it easier for us to understand [areas of 
common difficulty].’ (full service township school teacher, 2014)

‘[We are] Still using [the spreadsheet] programme for analysis of termly assessments for 
collecting data.’ (suburban school teacher, 2014)
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Several co-teaching interventions were undertaken relating to areas of particular 
need. These involved the project leader leading classroom interventions (over 
approximately 10 consecutive teaching days, with the normal classroom teacher 
present) to explore and test approaches to the teaching of particular ‘hard to teach’ 
topics. These co-teaching interventions included additive relations word problems, 
division, fractions and models of subtraction.

 Sharing Lessons

There were several ways in which lessons emerging from the project were shared.
Firstly, a series of termly parent seminars were held at the suburban school, 

which were referred to as ‘Keeping up with the Kids’. The first author facilitated 
these sessions to ensure that the approaches and methods being adopted in the 
school were understood and not resisted by parents.

Secondly, the teacher’s assignments (completed for the mathematical thinking 
course) and/or mini-lesson study reports and/or discussions held during mini semi-
nars were further polished and refined for presentation at Association of 
Mathematics Educators of South Africa (AMESA) conferences. Over the 3 years 
of the project, 15 How I teach papers or workshops were presented at AMESA 
national congresses, and 21 presentations were facilitated at AMESA regional 
conferences.

Thirdly, both schools responded to requests to facilitate sessions with Foundation 
Phase teachers organised either with their district (via the WCED curriculum 
advisor) or as arranged with other districts in the Western Cape by AMESA.

Finally, towards the end of the project (in September 2014), a mini-conference 
was held at the two project schools. The first afternoon of this mini-conference 
included series of presentations by teachers addressed to their school-based 
colleagues on how they approached the teaching of a particular mathematics topic. 
On the second afternoon of the mini-conference, colleagues from other schools in 
their districts joined the project teachers, and a series of presentations and workshop 
ideas on key Foundation Phase topics were offered by the teachers. The following 
comment captures a teacher’s personal reflection on how their approach to mathe-
matics teaching changed and integrates several of the project aims:

‘I am more confident at teaching maths. Presenting at conferences wasn’t my thing but got 
the confidence to present. Doing the AIMSSEC course also made me reflect all the time and 
research better ways to teach a topic. Number line: I never ever used a number line ever! So 
much more confident using it thoroughly in my lessons.’ (full service township school 
teacher, 2014)

 Were There Any Changes in Mathematics Learner Outcomes?

Considering ANA data from a low baseline of 25% of learners passing in 2011, the 
full service township school saw annual improvements in mathematics attainment 
in relation to the percentage of children passing, which culminated with 84% of 
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learners passing in 2014. The improvements were also evident in the mean results 
for the ANAs. The full service school moved from passing percentages that were 
below the national average to well above it.

Similar evidence of improved mathematics attainment were evident in the 
WCED systemic results, from 25.3% of Grade 3 learners passing in 2011 to 67% of 
learners passing in 2014. Of particular interest were the sustained improvements 
within the school environment evident in 2015 and 2016, where both the ANA pass 
rates and the WCED systemic results were retained – despite the professional 
support to the school being withdrawn. Of further interest was the apparent impact 
of improving whole- class teaching of Foundation Phase learners (Grade 1–3) on the 
future learning trajectory of these learners in higher grades. This was evident in 
changes in Grade 6 standardised assessments. The provincial curriculum advisor in 
the department of education offered the following congratulations:

‘Congratulations to all concerned for improving the [full service township school’s] pass 
rate in Gr 6 Mathematics from 10% to 50% over three years while the provincial pass rate 
rose by 12%. The school is focused on getting the foundation right for these high-risk learners. 
It has drawn half of them into a space where success is possible. I am deeply moved by the 
evidence of substantial improvement from this independent test.’ (Cameron, February 
2016, curriculum advisor, personal communication)

It is worth noting that the school staff, learner intake, learner selection and school 
management team remained invariant over the intervention period and that the 
significant improvements in mathematics attainment were not as stark in language 
attainment (in either ANAs, or WCED systemic results) over the same period. 
This supports the conjecture that the improvements in mathematics were a result 
of the intervention and not of other changes in the school environment.

 Conclusion

The regional context for mathematical inclusion in the four countries considered in 
this paper is significantly constrained by lack of resourcing, access to mathematics 
learning (in terms of enrolment) large class sizes, language issues as well as an 
identified lack of teacher knowledge for teaching mathematics and particularly for 
teaching children with mathematics learning difficulties. Within such a context, it is 
imperative to target resourcing so that approaches and models for more inclusive 
practices can be developed and scaled. A South African example of prioritising 
investments and capacity building at only 500 schools  – to create ‘full-service 
schools’ which can model more inclusive pedagogies – is one possible response.

This intervention study in the South African full-service primary school provides 
an example of working on a context where there are very limited options available 
relating to special needs intervention for mathematics. The high proportions of learners 
not meeting grade-level expectations, along with the lack of resourcing for small-
group and / or individual intervention, meant that the key opportunity for change 
was in addressing whole-class Foundation Phase teaching as a barrier to learning. 
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There remain many challenges within this environment – some of which may only be 
changed with more resourcing to allow for deeper intervention using the wider suite 
of available special needs interventions (including small-group and individual inter-
ventions). However, the teacher development intervention through a professional 
learning community focused on knowledge for mathematics teaching at Foundation 
Phase appears to have succeeded in putting the school onto a new trajectory with 
improved attainment in mathematics.
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Chapter 16
Mathematical Learning and Its Difficulties 
in Australia

Robert A. Reeve

 Australia: The Big Picture

The purpose of this chapter is to describe current perspectives on math learning 
difficulties in Australia. It draws on official government documents and research 
papers. In June 2016 Australia had a population of 25 million, of which 30% were 
born overseas, and many immigrants do not speak English on arrival (Australian 
Census, 2016). Moreover, 180 separate Aboriginal languages are spoken by dif-
ferent groups of Australian indigenous people, the original inhabitants of the con-
tinent. Nevertheless, English is the language of instruction in all schools for all 
students.

Australia comprises six states and two territories. Education is primarily the 
responsibility of the states and territories because the federal government in 
Canberra does not have constitutional powers to enact laws on education. However, 
the federal government’s Department of Education and Training helps fund inde-
pendent and private schools. The Australian Curriculum, Assessment and Reporting 
Authority (ACARA, 2017), a federally funded, independent statutory authority, 
however, is responsible for crafting a national curriculum, including a mathematical 
curriculum. Nevertheless, the states and territories may have different curricula, 
education policies, and terminology. As noted below, these differences are evident 
in the math curricula.

The UN’s Human Development Education Index (2013) indicates that Australia 
has the second highest number of students who complete secondary education in 
the world. Reports on mathematical achievement of Australian students are some-
what mixed. The Programme for International Student Assessment (PISA) data, 
for example, suggests there has been a decline in Australian students’ math literacy 
over the last 12  years (Thomson, De Bortoli, & Underwood, 2016). Students 
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achieved an average score of 494 points in mathematical literacy, slightly higher 
than the OECD average (490 points). According to the PISA data, only 44% of 
students achieved the national proficient standard. In contrast, the Australian 
National Assessment Program  – Literacy and Numeracy (NAPLAN, 2016) data 
shows an overall pattern of stability in students’ numeracy ability, with approximately 
95% of students meeting the national minimum standard (ACARA, 2017). Indeed, the 
Trends in Mathematics and Science (TIMMS, n.d.) data shows math abilities have 
remained relatively stable over time. However, 21% of Grade 4 students and 25% of 
Grade 8 students achieve at the low international benchmark (Thomson, Wernert, 
& O’Grady, 2016). And 9% and 11% of Grade 4 and 8 students, respectively, perform 
at or below the low international math benchmark.

While the TIMMS data could be interpreted as showing 10% of Australian stu-
dents have MLD, this inference should be treated with caution since it is based on a 
test cut point score, rather than a definition of MLD per se. In fact, there has been 
little emphasis on identifying or defining the meaning of learning disabilities in 
Australia (Elkins, 2001). Australia has only recently begun to collect data on LDs, 
including MLD (Education Services Australia, 2016). The first Nationally Consistent 
Collection of Data on School Students with Disability occurred in 2015. Initial find-
ings suggests about 10% of students have some form of disability. As yet however, 
there is no specific information about the prevalence of different LDs, including 
MLD, in Australia (Education Services Australia, 2016).

 Australia: Educational Policies and MLD

While some attempt has been made by state and religious education authorities to 
estimate the prevalence of different forms of learning disabilities in children, these 
estimates vary significantly. For example, the state of New South Wales estimated 
4.7% of their students receive indirect funding for teaching specialists and a further 
7.3% require support from specialists at some point in their schooling (NSW DEC, 
2011). In contrast, the Catholic Schools Diocese of Sydney, NSW, indicated that 
approximately 18% of children likely have some specific learning difficulty. 
Interestingly, it has been suggested Catholic schools tend to have the lowest preva-
lence of students with disabilities, compared to government and independent 
schools (Education Services Australia, 2016; Senate Standing Committee on 
Education and Employment, 2016). The latter committee noted that it is likely these 
difference are attributable to differences in LD definitional criteria (the committee 
itself, however, did not offer a definition of LDs).

With some exceptions (e.g., children diagnosed with autism), schools do not 
receive direct funds for children with special learning needs. Schools, however, may 
assign funds to specialist teachers (e.g., reading specialists) from their own budget. 
In addition, schools most often refer children with learning difficulties, including 
MLD, to a state-funded educational psychologist, attached to the school or groups 
of schools in an area.
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Educational psychologists in Australia complete a 4-year undergraduate degree 
in psychology, followed by a 2-year certificated professional master’s degree in 
educational psychology. The latter degree provides specialist training in the identi-
fication and treatment of developmental and behavioral disorders more generally 
(from anxiety disorders to some learning difficulties). Educational psychologists 
may work with parents and/or classroom teachers to implement remedial math pro-
grams. As far as can be determined, math intervention programs are pragmatic in 
nature, tend to be based on practice and do not appear to be based on a program-
matic or specific model of MLD learning difficulties. For example, no distinction is 
made between math learning deficits (including dyscalculia), and developmental 
differences due to developmental delays in designing intervention programs.

While relatively little attention has been paid to MLD or dyscalculia in Australian 
educational psychology training programs, this is beginning to change, albeit some-
what slowly. Several specialist groups (e.g., the Learning Differences Convention, 
(n.d.) AUSPELD) have invited renowned international specialist in math difficulties 
(e.g., Butterworth and Chinn) to give public lectures on MLD/dyscalculia and its 
treatment. These presentations have led to a high inclease of interest in MLDs and 
have been extremely well attended.

There is a growing awareness in Australia of a need to differentiate students with 
LDs from those experiencing difficulties in learning. It is acknowledged that there 
are many reasons for students being poor at math (see Butterworth, 2005; Reeve & 
Waldecker, 2017). And it is occasionally noted that most assessment methods may 
detect students with low achievement, rather than students with a LD. With respect 
to MLD, it has long been argued Australian education authorities need to distin-
guish dyscalculia from math learning difficulties per se (Peard, 2010). It is worth 
noting that AUSPELD, a highly respected, nationwide, independent organization 
that supports people with learning disabilities, estimates that at least 20% of 
Australian children currently experience some form of learning difficulty, of which 
80% have dyscalculia (AUSPELD, 2015). Interestingly, AUSPELD is one of the 
few national groups in Australia to recognize dyscalculia as a specific learning 
disability and has begun to offer workshops on dyscalculia assessment and treatment 
on this from of MLD (see below).

 Australia: Theories and Educational Practice

Curricula and state-based policies form the basis of teacher training, educational 
practices, and ipso facto teacher knowledge about mathematics in Australia. Insofar 
as “learning theory” guides educational practices, pedagogical theory appears to be 
implicit than explicit in curricula documents.

As noted above, the Australian Curriculum, Assessment and Reporting Authority 
(ACARA, 2017) is responsible for a national curriculum and assessment program. 
ACARA characterizes numeracy as understanding the role of mathematics in the 
world and having the capacities to use mathematical knowledge and skills 
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 purposefully (2013, p. 31). And mathematics is described as providing students with 
the skills and knowledge in number and algebra, measurement and geometry, and 
statistics and probability. These descriptions distinguish a content and a functional 
view of numeracy as the capacity to interact with situations involving mathematics. 
This distinction is illustrated in Table 16.1 which describes abilities to be acquired 
at the first level (within a year of beginning school) of numeracy and mathematics 
(ACARA, 2016).

The behaviors described in Table 16.1 may be classified as the ability to follow 
an instruction. Some behaviors, for example, could occur in play (e.g., following the 
actions of pouring liquid into two containers), while others require use of specific 
mathematical language or symbols (i.e., sorting numbers into ascending order). 
However, most behaviors require a receptive understanding of numeracy language. 
The skills listed in the mathematics column (column two) of Table 16.1 rely on stu-
dents using expressive language (e.g., providing the names of days, using counting 
words, describing fractions, explaining a classification system). In the latter case, the 
use of language is more specific to mathematics content and is less likely to be used 
in everyday life and thus potentially more challenging for the young student.

Table 16.1 First level of numeracy (ACARA, 2016)

Numeracy capability Mathematics learning

Estimating and calculating whole numbers
Sorting numbers into ascending order; 
showing anticipation that something will 
happen on the count of 1, 2, 3; and 
recognizing that a pile of books is getting 
bigger when adding to it

Number and algebra (including money)
Count by naming numbers in sequence to and 
from 20, connect number names to numerals, 
subitise small collections, recognize, describe, 
and order Australian coins according to their 
value

Recognizing patterns and relationships
Recognizing patterns in games or music, 
continuing an alternating pattern

Number and algebra
Copy, continue, and create patterns with objects 
and drawings, sort and classify familiar objects, 
and explain the basis for these classifications

Using fractions, decimals, percentages, 
ratios, and rates
Folding a piece of paper into equal parts, 
pouring liquid into two containers

Number and algebra
Recognize and describe one-half as one of two 
equal parts

Using spatial reasoning (including shape)
Sorting objects by features of shape, size, 
and color, grouping 2D shapes

Measurement and geometry
Describe position and movement, sort and name 
2D shapes and 3D objects in the environment

Interpreting statistical information (and 
chance)
Recognizing that it might or might not rain 
tomorrow, follow actions to a song or dance

Statistics and probability
Answer yes/no questions to collect information, 
identify outcomes of familiar events involving 
chance, and describe them using everyday 
language such as “will happen”, “won’t happen”, 
or “might happen”

Using measurement (including time)
Comparing the length of two objects and 
indicating which one is longer, associating 
familiar activities with times of the day or 
days of the week using pictures or technology

Measurement and geometry
Connect days of the week to familiar events and 
actions, measure and compare the lengths and 
capacities of pairs of objects using uniform 
informal units
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From a theory perspective, it could be argued that the focus in the early years is 
consistent with an embodied model of cognition which suggests knowledge is 
derived from action; however, the curriculum appears more pragmatic than 
informed by theory. ACARA focuses on three broad strands of mathematics (num-
ber and algebra, measurement and geometry, and statistics and probability). These 
strands are rooted in historical education practice and have been interpreted in the 
context of different theoretical perspectives (Piaget and Vygotsky), rather than 
motivated by developmental theory. As yet, there is little evidence that contempo-
rary research from the neurosciences on the basis of mathematical understanding 
has impacted the ACARA math curriculum or other curricula in Australia.

As noted earlier, education is the responsibility of the Australian states, each of 
which may have a different educational perspective to ARCARA. As an example, 
the Victorian State Curriculum (VCAA, 2017) has adapted ACARA’s curriculum 
for its own purposes. While the content of the Victorian curriculum is similar, 
VCAA combines numeracy and mathematics content into a single content area. 
Moreover, VCAA (2017) explicitly describes the learning skills of diverse learners 
and students with disabilities. The focus progresses from a pre-intentional level 
(i.e., where students are reliant on support of their teachers) to intentionally engage 
in learning with decreasing teacher support to become a more independent learner 
(VCAA, 2017). VCAA describes levels of increasing participation expected in the 
early years of schooling (see Table 16.2).

It could be argued the VCAA’s focus is more consistent with a Vygotskian model 
of learning. Further, the Victorian curriculum levels were written specifically to sup-
port the educational needs of students with disabilities. The VCAA explicitly states 
evidence for improved learning outcomes through early, supportive and interactive 
numeracy practices for students with disabilities.

The influence of developmental theory is perhaps more explicit in the state of 
Victoria’s early education curriculum documents. The Victorian Department of 
Education and Early Childhood Development (2014) document “Mathematics 
learning pathways for children from birth to five year,” for example, draws explic-
itly on the work of Clements and Sarama (2007, 2009) to illustrate expected pro-
gressions in preschool numeracy skills (see Table 16.3). While typical developmental 
changes from birth to primary school entry are described, the authors acknowledge 
developmental changes and developmental pathways are highly variable. Moreover, 
the document implies math ability rests on early understanding of cardinal and mag-
nitude concepts. This implication is consistent with a neurocognitive model of 
mathematical development (Gelman & Butterworth, 2005).

 Definitions in MLD in Australian States and Territories

There is no consistent definition of learning disabilities across the Australian States. 
As Skues and Cunningham (2011) note: “Identification of students with learning 
difficulties is often left to the individual classroom teachers and other professionals 
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(e.g., speech pathologists, psychologists), who are encouraged to select from a 
range of informal and formal test methods [to identify a learning difficulty].” 
Moreover, as is evident from the following examples, the Australian states differ 
markedly in reference to MLD and or dyscalculia in official documents.

The Australian Capital Territory’s Department of Education and Training 
Taskforce on Students with Learning Difficulties Final Report (2013) reflects the 
concerns about LD more generally in Australia:

The use of inconsistent terminology added to the complexity of the work of the Taskforce. 
Nationally and internationally, learning disability, specific learning disability, learning 
difficulty and to a lesser extent learning disorder and learning difference are used to 
describe the same things and also different things. Prevalence rates therefore vary due to 
differing definitions. There has been little debate around the definition in Australia and 
the inconsistent use of the terms learning disabilities and learning difficulties is a signifi-
cant issue for educators and families. Until the issue of terminology is resolved, ambigu-
ity and resultant implications for support remain, as does clarity concerning the definition 
in respect to the Disability Discrimination Act 1992 (DDA) and the Disability Standards 
for Education 2005.

The Victoria Department of Education and Training Review of the Program for 
Students with Disabilities (2016) does not define learning disabilities but neverthe-
less refers to programs for students with learning disabilities, specifically dyslexia. 

Table 16.2 Mathematics content from the A–D levels of the Victorian Curriculum (VCAA, 2017)

Sub-strands Statements of achievement

Number and place 
value

Respond to objects 
being counted and 
distributed

Explore the concept of 
“none”, “one”, and 
“more”

Compare and order two 
collections according to 
their quantity

Money and 
financial 
mathematics

React to everyday 
financial situations 
involving money

Respond to everyday 
financial situations 
involving money and 
match notes and coins

Use money in everyday 
financial situations and 
match coins to two- 
dimensional images

Patterns and 
algebra

Respond to the 
identification of 
objects

Pair identical objects 
from a small collection, 
and recognize simple 
repeated patterns

Identify repeated routines 
and sequences in everyday 
events

Using units of 
measurement

Respond to objects 
based on length

Compare objects using 
direct comparison

Compare two objects 
based on measurement 
attributes of length

Shape Respond to familiar 
everyday shapes and 
objects

Identify whether two 
shapes or objects are the 
same sort or not

Match two familiar 
two-dimensional shapes 
and three-dimensional 
objects

Location and 
transformation

Respond to the 
movement of an 
object

Respond to a simple 
statement about location 
or direction

Locate familiar three- 
dimensional objects in the 
classroom when they are 
named

Data 
representation and 
interpretation

Respond to objects 
relevant to the given 
context

Experience data display 
being interpreted

Experiencing data being 
used for decision-making 
in everyday situations
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Victoria offers a language support program for schools to assist supporting students 
with language disorders. MLD and/or dyscalculia is not mentioned.

The South Australia Department of Education and Child Development (2016) 
refers to learning disabilities as applying to a small group of learners who have more 
difficulty with schoolwork than expected for their age and ability. Factors which 
imply a learning disability include dyslexic-type confusion of letters or numbers, or 
confusion of letters or numbers within a sequence, as well as sequencing and short-
term  memory difficulties, both auditory and visual. The document explicitly men-
tions dyscalculia as a difficulty understanding or using mathematical concepts and 
symbols. Nevertheless, while there are general policy/practice recommendations for 
dyslexia, there are no similar policy documents or set of recommendations for 
dyscalculia.

New South Wales and Queensland support students with disabilities (see http://
www.schools.nsw.edu.au/studentsupport/programs/disability.php; and http://edu-
cation.qld.gov.au/students/disabilities/adjustment/pdfs/eap-handbook.pdf, respec-
tively); however, neither state classifies MLD as a learning disability.

Table 16.3 Math pathway progressions (DEECD, 2014)

Learning 
pathway Milestones along the learning pathway

Number 
skills

Subitising Learning number 
words, first the 
order to ten, then 
beyond

Enumerating 
objects

Mastery of the 
cardinality 
principle

Comparing Puts objects, 
words, or actions 
in one-to-one or 
many-to-one 
correspondences

Puts objects in 
rigid one-to-one 
correspondence

Compares and 
selects the largest 
of two differently 
sized collections

Puts objects into 
one-to-one 
correspondence but 
may not fully 
understand that this 
makes equal groups

Counting Names some 
number words, no 
sequence

Verbally counts 
with separate 
words, not 
necessarily in the 
correct order over 
five

Verbally counts to 
ten, with some 
correspondence 
to words

Keeps one-to-one 
correspondence 
between counting 
words and objects

Pattern and 
structure

Recognizes a 
simple pattern

Fills in missing 
element in a 
pattern, first with 
ABAB patterns

Duplicates 
ABABAB pattern 
in a different 
location

Extends AB 
repeating patterns

Length 
measurement

Identifies length as 
an attribute

Physically aligns 
two objects to 
determine which 
is longer

Uses a third 
object to measure 
and compare the 
length of two 
objects

2D shape Comparing real 
world objects

Matching familiar 
shapes

Recognizing 
circle and square

Recognizing and 
comparing a wider 
variety of shapes of 
different sizes
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The above review should not be regarded as a lack of interest in LD more  
generally. The federal government’s Senate Education and Employment 
References Committee Report (Australian Senate Standing Committee on 
Education and Employment, 2016) discussion on the needs of students with LD 
highlights this point (even though MLD is not mentioned explicitly):

One dimension of the problems with data[…] is that current funding models have failed to 
adequately fund the education of students with disabilities because they have taken too nar-
row a definition of disability. If a student’s disability is not recognised as such in the funding 
model, that model clearly cannot provide the financial assistance necessary to properly 
assist that child’s access to education.

Due to the inadequate support in the current school environment families are required to 
repeatedly advocate for their child’s needs. This is particularly true for students who do not 
qualify for a diagnosis of intellectual disability (or any of the other specific funding catego-
ries) and hence must attend mainstream classes without teacher’s aide support. The impact 
of this in practical terms is that even if an Individual Education Plan (IEP) is formulated by 
the school based on the child’s individual needs, it is not always possible to implement 
recommendations due to lack of support staff. The end result is a maintenance or worsening 
of the child’s behaviour and a stagnation of the learning process, resulting in unsatisfactory 
outcomes for all.

The committee was concerned by evidence suggesting that many students have fallen 
through funding cracks because of limited information or narrow definitions of disabil-
ity used in school systems, resulting in a failure to recognize need. An appropriate level 
of funding for students with additional needs in schools begins with adequate data on 
those students.

Of particular interest is that the committee recognized the lack of research on the 
education of students with disabilities and its relationship with school practices. 
They acknowledged that while research exists on the best practices in teaching 
mainstream students, little research has focused on how best to teach students with 
disabilities.

Moreover, it has long been recognized that many Australian teachers view 
numeracy and literacy difficulties as reflecting a common underlying deficit (Milton, 
2001). While some schools identify numeracy difficulties through state-wide tests 
or national assessments, others used their own measures. Indeed, the report of the 
Numeracy Education Strategy Development Conference (AAMT, 1997) highlighted 
a lack of suitable assessment measures for assessing math difficulties, as well as a 
need to identify potential numeracy difficulties early in a child’s education.

More recently, Skues and Cunningham (2011) noted that Australian teachers 
receive little or no formal training in identifying and treating children with LDs 
more generally. Indeed, White and Elkins (2000) examined the content of pre- 
service primary education programs across Australia and showed that, while such 
programs provided limited literacy training, very few programs included any infor-
mation about other LDs. This observation is consistent with Rohl and Greaves’ 
(2005) findings that only one-quarter of beginning teachers felt prepared to teach 
students with LDs and only 10% of experienced teachers felt beginning teachers 
had sufficient training to teach students with LDs. The question of how students 
with LDs should be taught was not addressed.
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The relative absence of pre-service and in-service teacher training on LDs is 
evident in the limited understanding among Australian teachers about the causes 
and characteristics of LDs. Watson and Bond (2007), for example, found over half 
of the teachers interviewed were unaware that students with LDs’ intelligence is not 
below average. This limited understanding has implications for the support of 
students with LDs in mainstream classrooms.

 Neuroscience and MLD/Dyscalculia in Australia

The last 20 years has seen a burgeoning interest worldwide in the neuroscience of 
mathematical cognition. This growth has been spurred by many factors (e.g., from 
an interest in neurobiological genetic origins and development of quantitative abili-
ties, to claims about the domain specificity and/or generality of mathematical 
abilities, to the neurocognitive factors associated with atypical numerical cognitive 
development, and to the availability of brain scanning methodologies). With some 
exceptions, this contemporary neuroscience focus has had relatively little impact on 
perspectives on MLD in Australia or indeed the assessment of MLD (excepts see 
AUSPELD, 2015; Reeve & Gray, 2015, Reeve & Waldecker, 2017).

AUSPELD (2015) characterizes MLD and dyscalculia as a neurodevelopmental 
disorder and suggests clinicians (preferably with educational and/or developmental 
training) take into account a student’s educational experiences, as well as his perfor-
mance on a range of standardized tests. They recommend following the DSM-5 
guidelines for assessing a learning disability, which specifies that learning disorders, 
including impairment in reading (dyslexia), and/or impairment in written expression, 
and/or impairment in mathematics (dyscalculia), are diagnosed through (1) a clinical 
review of the individual’s developmental, medical, educational, and family history; 
(2) reports on test scores and teacher observations; and (3) evaluation of the response 
to academic interventions.

AUSPELD’s assessment approach is consistent with recent changes to the defini-
tion of specific learning disabilities presented in the DSM-V (American Psychiatric 
Association, 2013), which has broadened its definition of LDs to include deficits 
associated with persistent difficulties in mathematical reasoning, arithmetic skills, 
reading, and writing. Markers of math learning impairment include, among other 
issues, (1) difficulties remembering number facts, (2) inaccurate mathematical 
reasoning, and (3) the speed with which individuals solve math problems.

Moreover they recommend a conventional clinical phased approach to identify-
ing MLD, which they distinguished from general math learning difficulties. In par-
ticular, they recommend (1) assessing a child’s response to math instruction within 
a classroom setting over an extended period (e.g., 6 months), (2) assessing perfor-
mance on the DSM-V (American Psychiatric Association, 2013), and (3) using a 
specific assessment measure of MLD. They also suggest using the “Dyscalculia 
Screener” (Butterworth, 2003) for identifying a specific math learning disability. 
The screener is based on neurocognitive research findings, and its authors claim 
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that dyscalculia is a persistent congenital condition (see Butterworth, 1999). 
Butterworth argued research strongly points to the existence of a brain-based num-
ber module that is based in the parietal lobe of the brain (Butterworth, 1999), spe-
cialized for dealing with numerical representations. He proposed that dyscalculia is 
probably associated with a dysfunction in this system. The screener comprises 
three timed tests: (1) dot enumeration, (2) number comparison, and (3) addition and 
multiplication (performance on these tests is standardized and age adjusted to pro-
vide a mean of 100 and standard deviation of 15). Difference in dot enumeration 
and number comparison abilities have been found to be related to math differences 
and, indeed, neurological functions.

Reeve, Reynolds, Humberstone and Butterworth (2012) analyzed Australian 
data for Dyscalculia Screener tests. They tracked 250 children, beginning at the age 
of 5, over the 6 primary/elementary school years on the screener and other cognitive 
and math measures. Because of large within-age and between-age variability in 
children’s performance on the dot enumeration and number comparison measures, 
Reeve et al. used latent class analysis to identify different patterns of performance 
in measures. This analytic approach allowed the authors to identify the predictive 
significance of different dot enumeration patterns over time. On the basis of reaction 
times to different dot arrangements, Reeve et al. found three different patterns of 
performance could be identified, differences which persisted over primary/elemen-
tary school years. Moreover, these patterns were strongly linked to math perfor-
mance and unrelated to standard cognitive measures (IQ, working memory, etc.). 
One of the dot enumeration patterns was specifically related to persistent poor math 
performance. Reeve et al.’s research confirm the validity of Butterworth’s (2003) 
Dyscalculia Screener and show that it is possible to identify children with MLD on 
the basis of their dot enumeration profiles.

In a series of recent papers, Reeve and colleagues have confirmed the signifi-
cance of different dot enumeration profiles in predicting preschool children’s 
emerging math abilities (Gray & Reeve, 2014, 2016) and to use the identification of 
different profiles in a clinical assessment regime (Gray & Reeve, 2014; Reeve & 
Waldecker, 2017). Similar to AUSPELD, Reeve and colleagues suggest contempo-
rary neuropsychological accounts on the origins and development of MLD have 
much to offer clinician and educators. Reeve and Waldecker (2017) in particular 
review the effectiveness/ineffectiveness of commonly used assessment techniques 
in identifying deficits known to be associated with developmental  MLD/dyscalcu-
lia. They also outline the components of effective interventions that might be 
included in an effective assessment of MLD.

The question of what constitutes an effective intervention for children with MLD 
is difficult to answer, and, indeed, there might be different solutions, depending of 
the form of MLD. Reeve and Waldecker (2017) suggest an assessment regime, simi-
lar to the AUSPED regime, outline above. Reeve and Waldecker argue math inter-
ventions must be fit for purpose. In their review, they note many interventions 
involve practice on math tasks children find difficult in the hope children will 
improve. Evidence suggest brute force intervention methods rarely work and may, 
indeed, be counter-productive. More precise math diagnostic methods are required 
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if we are to offer evidence-based intervention programs. As worthy as this goal 
might be, changing conceptualizations of the basis of math difficulties poses chal-
lenges for those interested in the diagnoses and treatment of students with MLD.
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Chapter 17
Mathematical Learning and Its Difficulties 
in Taiwan: Insights from Educational 
Practice

Ting-Ting Chang, Jun Ren Lee, and Nai-Shing Yen

 Introduction

Mathematics is a cognitive domain crucial for academic and professional success, 
and hence it is highly emphasized in formal education worldwide (Geary, 2013; Ko, 
2005; Richland, Zur, & Holyoak, 2007). However, a large proportion of the world 
population—including school-aged children, adolescents, and even young adults—
have suffered from severe problems of mathematical learning difficulties (MLD) 
(Butterworth, Varma, & Laurillard, 2011; Geary, 2004; Shalev, Manor, & Gross- 
Tsur, 2005), a serious psychiatric disorder characterized by specific deficits in 
numerical and mathematical abilities while their intelligence and other cognitive 
skills remain intact or even beyond normal (Butterworth et al., 2011; Geary, 2004). 
Estimates of the prevalence rate of MLD are comparable to those regarding reading 
difficulties (RD) (Geary, 2004; Shalev, 2007). However, much less attention has 
been paid to MLD relative to RD, particularly in East Asian countries such as 
Taiwan, possibly due to limited knowledge on the part of parents, teachers, and 
educators. Given that mathematics is a learned product highly affected by cultural 
factors, understanding the cross-national differences can provide valuable insights 
into characterizing the cognitive and educational profile of MLD. In this chapter, we 
review the main issues of mathematical learning, including students’ academic 
achievement, learning difficulties, MLD identification, and placement in East Asia, 
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with a specific focus on Taiwan, taking a distinctive educational perspective. We first 
briefly discuss the cultural background of Taiwan, which deeply influences parents’ 
perception of raising children (Tzeng, 2007). We then address the national differ-
ences in students’ mathematical performance by summarizing the statistics on inter-
national comparative data—in particular, the recently released Trends in International 
Mathematics and Science Study (TIMSS) data. Next, because the current local 
educational authorities only recognize the general category of learning difficulties 
(LD), we introduce the educational policies used for diagnosis and determining chil-
dren identified with LD. Finally, we close the chapter by summarizing the assessment 
tools predominantly used to diagnose MLD in Taiwan. Within each section, we raise 
issues crucial for researchers and educators to consider when conducting local MLD 
research. Through this chapter, we seek to not only emphasize the specific national 
profile of MLD but also highlight the consequences of the divergent cultural factors 
that have a bearing on the shaping of human learning and cognition.

 The Cultural Background

Over the long course of Asian culture, parents have believed that it is necessary for 
their children to study ultra-diligently to achieve future success (Phillipson & 
Phillipson, 2007; Shek & Chan 1999). There is a strong belief that the ultimate per-
sonal achievements are dependent on having well-paid jobs or a high academic 
degrees. This has contributed to a unique Asian parenting style such that parents 
expect their children to study extremely hard during their school years and continue 
to pursue higher education as much as possible. In Taiwan, the compulsory educa-
tion policy used to require only 9 years of school, from 7-year-olds in elementary 
school to 15-year-olds in middle high school (Primary and Junior High School Act, 
1979). Not until 2014 did the government provide three extra years of tuition and 
entrance exam–free senior high school education (The Senior High School 
Education Act, 2013). However, more than 80% of students continue to pursue 
higher degrees (Ministry of Education, 2015b). This has led to a percentage of 73% 
of 20-year-old young adults being enrolled in colleges or universities—a much 
higher proportion than the rates of 51.8% in the USA, 38.7% in the UK, and 37.7% 
as the OECD average (Ministry of Education, 2015b). Having a higher degree—
even better, from a top school—profoundly fulfills Asian parents’ expectations.

Those lofty expectations on the part of Asian parents also affect children in 
choosing their major fields. As expertise in science, technology, engineering, and 
math (STEM) is typically considered to lead to a higher chance of obtaining the 
best-paying jobs, Asian parents tend to encourage children to choose these fields as 
majors in college. This trend is international in scope. According to one survey con-
ducted by Georgetown University (https://cew.georgetown.edu/cew-reports/whats-
it-worth-the-economic-value-of-college-majors/), nine out of the top ten major 
fields of undergraduate degrees for Asian Americans were in STEM. Asians also 
constitute a great proportion of the individuals in STEM-specialized schools and 

T.-T. Chang et al.

https://cew.georgetown.edu/cew-reports/whats-it-worth-the-economic-value-of-college-majors
https://cew.georgetown.edu/cew-reports/whats-it-worth-the-economic-value-of-college-majors


267

industry positions. Given that expertise in STEM fields greatly requires mathematics 
and reasoning skills, mathematics has become one of the subjects to which Asian 
parents and students devote most of their efforts.

The unique Asian parenting style has led to a learning environment filled with 
high pressure and extreme endeavor. Under the stress and demand from the whole 
society, Asian students are required to strive throughout their school years. In 
Taiwan, there are more than 10,000 licensed cram schools providing academic 
training for language and mathematics after regular school hours (Education Bureau, 
2016). This number is comparable to that of the formal schools and is still growing 
each year, suggesting that most of the students spend their after-school time on 
studying or supplementary learning. How parents evaluate these cram schools and 
teachers is generally based on how many students succeed in college and high 
school entrance.

Given that parental perception has such an impact on Asian culture, it is worth 
noting how much parents’ expectations can influence children’s academic perfor-
mance. In one empirical study of 158 Hong Kong parents of primary school stu-
dents, Phillipson and Phillipson found a strong positive correlation between parents’ 
expectations and students’ language and mathematics achievements. This suggested 
that those students with higher parental expectations do perform better at school 
(Phillipson & Phillipson, 2007). Parent perception is indeed a robust and unique 
predictor of students’ academic achievement. Consistently, over the long trend of 
national comparative studies, such as TIMSS and the Programme for International 
Student Assessment (PISA), East Asians typically outperform their Western coun-
terparts in mathematics (Mullis, Martin, Foy, & Hooper, 2016; OECD, 2016).

The Asian parent power does not lead to a perfect environment for learning. 
Rather, it produces an atmosphere of high pressure and competition in East Asian 
countries. In the TIMSS results, the East Asian students consequently displayed low 
learning motivation and low self-confidence, and placed a low value on mathematics 
even though their mathematical performance generally outperformed that of their 
non-Asian peers (Mullis et al., 2016). In the next section, we review the results of 
the recently published TIMSS and discuss the possible reasons contributing to the 
unique Asian profile.

 National Differences in Mathematical Learning

In past decades, cross-cultural comparison of mathematical skills has been of great 
interest to psychologists, cognitive scientists, and educators (Campbell & Xue, 
2001; Mullis et al., 2016; Tang et al., 2006). Normative global surveys evaluating 
the classroom performance of 10- to 15-year-old adolescents every 3–4 years, such 
as PISA and TIMSS, have provided a close look at the cross-national differences in 
students’ mathematical learning worldwide. According to the newly published 
TIMSS results, the countries in the top 5 chart of fourth grade (Fig. 17.1) and eighth 
grade (Fig. 17.2) mathematical achievements are Singapore, South Korea, Hong Kong, 
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Taiwan, and Japan (Mullis et  al., 2016), all of which are East Asian countries. 
Notably, there is a massive gap—as large as 23 points—between the top 5 and the 
next highest countries (see Figs. 17.1 and 17.2), suggesting that East Asians signifi-
cantly surpass other parts of the world. The fact that East Asian students excel in 

Fig. 17.1 Average scores and rankings of achievement and students’ liking for mathematical 
learning among fourth graders worldwide. (Data retrieved from Mullis et al. (2016))

Fig. 17.2 Average scores and rankings of achievement and students’ liking for mathematical 
learning among eighth graders worldwide. (Data retrieved from Mullis et al. (2016))
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mathematical performance is a long-term effect (Mullis, Martin, Foy, & Arora, 2012). 
The possible reasons contributing to East Asians’ superiority can be discussed, 
ranging from the educational environment to cognitive mechanisms.

One issue on which there is a consensus is that Asian teachers and parents are 
well-known for their high expectations of children (Aunio, Aubrey, Godfrey, 
Luejuan, & Liu, 2008; Leung, 2006; OECD, 2013a), as described in the previous 
section. Asian parents genuinely have high demands, causing students to fear failure 
to achieve success in school. In Western culture, in contrast, parents are more prone 
to teach their children to learn individualism and self-discipline. They typically 
show less control over their children’s education. The cultural differences in par-
ents’ perception have been considered critical factors in the worldwide diversity of 
students’ learning and performance. However, the price that Asian students pay for 
their mathematical superiority is overly low learning motivation. Across all TIMSS 
participating countries, both fourth graders (see Fig. 17.1) and eighth graders (see 
Fig. 17.2) in East Asian countries—including Hong Kong, Japan, Korea, and 
Taiwan—show tremendously low scores for students’ self-reported liking for learn-
ing mathematics, even at the very end of the ranking chart (Mullis et al., 2016). 
These results have suggested that the major mathematical learning difficulty of 
Asian students is possibly their learning motivation, rather than their actual perfor-
mance and competence. Lack of a self-initiated incentive for learning can likely 
cause great harm to school success and can result in students feeling reluctant to 
spend time on advanced math study.

A key interrelated question is the negative emotion toward schoolwork elicited 
by the highly demanding learning environment. Across individuals and countries, 
there is a trend for specific negative emotional reactions toward math—i.e., math 
anxiety (Ashcraft, 2002)—to impair students’ math performance (Ashcraft & 
Krause 2007; Foley et al., 2017; Passolunghi, 2011). This tendency holds true in 
East Asian countries such that the negative relationship between nation-wise math 
performance and math anxiety is salient (Foley et al., 2017; OECD, 2013b). Within 
a country, several studies have attempted to investigate student math anxiety. In one 
large-scale behavioral study of 968 elementary and middle high school students in 
Taiwan, Wei confirmed that students do display high math anxiety (Wei, 1991). 
Furthermore, individual differences were observed in these tested students. 
Specifically, upper-level elementary school students, including fifth and sixth graders, 
exhibited higher levels of math anxiety than students at junior high school, i.e., 
seventh and eighth graders. Math anxiety was also found to differ between genders. 
Consistently with the findings in other countries (OECD, 2013b), girls in Taiwan 
experienced greater math anxiety than boys of the same age (Wei, 1991). Although 
these previous efforts have provided useful knowledge for preliminary understand-
ing of math anxiety in Taiwan, still very little is known about how emotional factors 
actually influence mathematical cognition. Further studies of how math anxiety 
impacts math performance, along with longitudinal tracking, are needed.

Another educational factor the countries topping the PISA and TIMSS ranking 
charts have in common is a high standard of teacher selection and training (Jerrim, 
2015; OECD, 2013a). Considering Taiwan as an example, even certified primary 
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and high school teachers who are officially trained by a teacher training program 
have to pass a stringent recruitment process to obtain a tenure-track position. 
According to the latest Yearbook of Teacher Education published by the Taiwan 
Ministry of Education (2015a), out of the 40,000 certified teachers who apply for 
teacher recruitment for public primary and secondary schools each year, fewer than 
10% pass the recruitment examination and are employed. Those who fail in the 
yearly recruitment can only work as substitute teachers and continue applying in 
subsequent years. The rigorous teacher selection processes have made teacher 
employment highly competent and have likely enhanced the quality of newly 
recruited teachers.

Asian students do not surpass their non-Asian peers only in conventional school- 
setting learning. Numerous cognitive–behavioral studies have shown that Asian 
students respond faster and more accurately to a basic level of numerical problems, 
such as naming digits and solving single-digit arithmetic problems (Campbell & 
Xue, 2001; Huntsinger, Jose, Liaw, & Ching, 1997; Miller, Smith, Zhu, & Zhang, 
1995), even at the preschool age when formal education has not yet been introduced 
(Aunio et al., 2008; Cheng & Lorna, 2005). One factor often implicated is the lan-
guage structures of number naming, which favor Asian students (Göbel, Shaki, & 
Fischer, 2011; Zhou & Boehm 2001). Unlike many of the alphabetic languages, 
such as English and French, most East Asian languages have systematic mapping 
between number words and number concepts using the base-10 system. For exam-
ple, the number “twelve” is represented as “ten–two” in Chinese and Japanese. The 
number naming is more complicated in Western languages such as German and 
Dutch, in which the number “forty-five” is named “five-and-forty.” The regular 
number word system is helpful for Asian students to learn counting and retrieve 
number facts, leading to less error-prone and faster calculation (Aunio et al., 2008), 
even before children are able to understand the base-10 system and place value 
(Cheng & Lorna, 2005). The linkage between fraction naming and the fraction con-
cept is also more transparent in East Asian languages. For example, the fraction 
“3/5” is called “three fifths” in English, whereas the Chinese name is “out of five 
parts, three,” which directly conveys the part–whole relationship between the 
numerator and denominator (Siegler, Fazio, Bailey, & Zhou, 2013). In this frame-
work, when being taught to identify fraction numbers using “out of five parts,” three 
US children were able to perform as well as their Korean peers (Paik & Mix, 2003). 
These results support the concept that a transparent naming system is indeed helpful 
for young children to comprehend abstract numerical concepts that are not 
intuitive.

The phonological structure is another characteristic that gives East Asians an 
advantage in processing numbers. For example, Chinese has a distinctively mono-
syllabic structure. Each digit, therefore, has a one-syllable name. This means that 
Chinese-speaking students can utter more numbers than multisyllabic language 
speakers within a certain period of time. This suggests that Chinese language has a 
built-in reduced working memory load, which is a unique predictor for children in 
the early stage of learning arithmetic (De Smedt et al., 2009) and even adults (Imbo 
& LeFevre, 2010). Consistently, Chinese are less vulnerable to extra phonological 
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and executive loading while solving two-digit addition problems in comparison with 
Belgians and Canadians (Imbo & LeFevre, 2009). These results have suggested that 
Asians seem to have a number retention advantage, inherited from their language 
system, over Westerners in mathematical learning.

Although the national populations have shown general superiority in comparison 
with other countries in mathematical content domains, there are individual differ-
ences within countries. The latest PISA and TIMSS results have demonstrated that 
across all the participating countries, the mathematics achievement of East Asian 
students—such as those in Taiwan, Hong Kong, and Singapore—demonstrated 
large standard deviations (see Figs. 17.1 and 17.2) (OECD 2016). This means that 
there is a huge gap between the high and low achievers, suggesting that not every 
student undergoes effective learning. A high percentage of Taiwan students did not 
acquire mathematical skills at an adequate level of proficiency. Take the actual 
TIMSS test items for example: when given a three-dimensional object, 26% of 
Taiwanese eighth graders are not able to make a two-dimensional drawing of it from 
a specific viewpoint. One out of ten eighth graders is not able to solve two-place 
plus three-place decimal addition problems (Mullis et al., 2012). Even worse, nearly 
30% of fourth graders cannot figure out the correct number following the sequence 
of 6, 13, 20, and 27 (Mullis et al., 2016). The Taiwan local examination used for 
school admission within the country has provided even more insights into the pro-
file of low-achiever students. In the yearly Comprehension Assessment Program 
(CAP)—a standardized test administered to all ninth grade students for high school 
entrance in Taiwan—30% of the participants only responded to multiple-choice 
problems, which allow random guessing, and left constructed response questions 
completely blank; 33% of testees were officially categorized as “below the basic 
level.” These findings suggest that in countries with superior mathematical skills, 
the key issues of mathematical learning should be a focus at the lower end, i.e., 
those with particularly low achievement or classified as having disabilities.

 Educational Policies for Learning Difficulties in Taiwan

In this section, we discuss the local education policy and special education resource. 
Because only general LD are officially recognized by educational authorities, we 
will emphasize the government-issued classification and placement of LD in this 
section. Although there is a well-established system for identifying and locating 
students with LD in Taiwan, very few teachers and parents realize that learning dif-
ficulties can occur specifically in a single academic domain, such as reading or 
mathematics. In the past few decades, many researchers have actively advocated 
understanding the core deficits and intervention in dyslexia and RD. MLD, in con-
trast, has received very limited attention in the local community, even though the 
prevalence rate is reported to be equivalent to or even higher than that of dyslexia in 
the Western literature (Butterworth et al., 2011). Immediate action should therefore 
be taken to promote public knowledge of MLD.
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In Taiwan, the government provides a very organized hierarchical system for LD 
assessment, identification, and placement. Each local city and municipality are 
required to set up a special education consultation committees formed by research-
ers, school teachers, and parents to provide planning and development of special 
education services. LD identification in Taiwan is very tightly connected to that in 
the Western literature. According to The Disabilities and Gifted Students Diagnosis 
Criteria Regulations issued by the Ministry of Education (MOE, 2013), diagnosis 
of individuals with LD is manifested by severe deficits in listening comprehension, 
verbal expression, word identification, reading comprehension, writing, or arithme-
tic calculation, and must meet all of the following criteria: (1) IQ normal or above 
normal; (2) discrepancy between aptitude and achievement; and (3) persistence of 
the deficits even after provision of interventions in formal school settings; the inter-
ventions shall be 3 hours per week and last for at least 6 months. The diagnosing 
process typically starts from parents and teachers identifying suspicious students 
with learning problems based on their academic performance (Hung, 2014). These 
students then go through general remediation provided by general teachers or 
volunteers to ensure that their learning difficulties have not been elicited by an inap-
propriate learning or teaching environment. If this does not succeed, the students 
then continue with a successive diagnosing process.

The formal diagnosing processes are executed by a group of special education 
teachers, who are specifically trained to administer neuropsychological tests, 
interpret results, and make decisions according to whether the suspected cases 
are LD or not (Tzeng, 2007). The most commonly used neuropsychological 
assessments for identifying LD include the following three assessments: the 
Chinese Character List (Hung, Wang, Chang, & Chen, 2008), the Reading 
Comprehension Screening Test (Ko, 1999b), and the Basic Arithmetic Skill Test 
(Ko, 1999a).

The Chinese Character List tests phonological and lexical knowledge at the 
single character level. The most basic unit of Chinese script is character rather than 
word. A character can be a word in itself, but it can also be combined with other 
characters to form different words. During the assessment of the Chinese Character 
List, participants are first required to write down the pronunciation of each test item, 
using Zhuyin, a phonetics-based alphabet system predominantly taught to children 
before they learn to read and write Chinese characters. Participants are also required 
to generate a multiple-character word using the given test item. The numbers of 
correctly answered items are used to estimate how many Chinese characters each 
participant knows.

The Reading Comprehension Screening Test measures participants’ reading skills 
in semantic integration and text inference at passage levels. During the assessment, 
participants are required to answer questions based on a short passage.

Mathematical skills are assessed using the Basic Arithmetic Skill Test. During 
the assessment, participants solve numerical problems, such as judging number 
magnitude and simple arithmetic operations. Except for the Basic Arithmetic Skill 
Test, all the other tests provide national norms for each grade of the academic year. 
At the diagnosing stage, these assessments are administered in a one-to-one manner 

T.-T. Chang et al.



273

so that the assessors can closely observe the students’ behavioral performance 
and response strategies to make further decisions and suggestions accordingly. 
Finally, the diagnosis report is sent to the special education consultant committee to 
close the case.

Once diagnosed as having LD, identified students are reported to the government 
and are mandatorily treated with special education care (The Special Education Act, 
1984). Up to senior high school level, all educational institutions are required to set 
up on-site special education classes either by teaching all of the students with LD 
in the same designated classroom or by distributing them into regular classes 
(The Special Education Act, 1984). These students then undergo remediation tutori-
als such as extra practice using regular school materials, training in cognitive strate-
gies, multisensory learning, or digital learning. The responses to the given 
interventions are monitored throughout the remediation.

Although the government provides a well-established system for LD referral, 
diagnosis, and placement, the current system identifies LD in fewer than 1% of 
students each year (Ministry of Education, 2016)—a much lower rate than those in 
other countries, such as the reported 5% rate in the USA (Cortiella & Horowitz, 
2014). One of the likely reasons is that Asian parents feel reluctant for their children 
to be categorized as low achievers or as having disabilities (Tzeng, 2007). Some 
parents may send children to cram schools for special training in cognitive skills 
tests such as reading, mathematics, and even IQ tests. Heavy academic training and 
practice using a matured test-taking technique might keep students from becoming 
low achievers. Another possibility is that LD could respond to effective intervention 
(Iuculano et al., 2015) and the low prevalence of LD in Taiwan likely reflects poten-
tial LD responses to intervention (Tzeng, 2007).

Another major problem in Taiwan is the inadequacy of diagnosing LD subtypes. 
In the past several years the Ministry of Education has requested the local LD 
classification committee to notify which subtypes the LDs are on their diagnosing 
reports. However, there is no standard for which subtypes should be considered, and 
no clear cutoff criteria for identifying LD subtypes have been provided. Since each 
specific LD is found to show distinct deficits in cognitive and neural mechanisms 
(Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013), it is necessary to better char-
acterize the distinct profile of each specific LD subtype so that schools and teachers 
can provide appropriate placement and remediation for those who are in need of 
special education resources. In the next section, we illustrate the current MLD 
diagnosis and assessment tools recently developed by local researchers.

 Diagnosis and Assessment Tool for Mathematical Learning 
Difficulties

As mentioned above, identifications of LD, particularly in students who show 
deficits in mathematical skills, were never required to specify the subtypes until the 
past few years. Even now, only in some cities and municipalities is it required to 
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specify the LD subtype in the current diagnosis protocol. The MLD classification is 
tightly connected to the Western literature. Take Taipei City for example: 
government- recognized MLD is characterized by severe deficits in the following 
cognitive behavior: (1) concepts of number magnitude; (2) simple arithmetic prob-
lem solving; (3) relying on insufficient problem-solving strategies, such as finger 
counting; (4) overly slow calculating speed; (5) ability to solve math problems in 
the daily life context but not to transform them into mathematical formulas; and (6) 
difficulties in learning simple geometry and visuospatial skills.

Currently there are two tests with national norms that are mainly used for diag-
nosing MLD: the aforementioned Basic Arithmetic Skill Test (Ko, 1999a) and the 
Basic Mathematical Core Skill Test (Hung & Lian, 2015). The Basic Arithmetic 
Skill Test provides a comprehensive measure of mathematical abilities from the 
second to the sixth grade in school-aged children. This test has been widely used to 
assess Taiwan children’s mathematical skills and for diagnosis of children with 
mathematical disabilities. The test battery involves items that cover distinct cogni-
tive components for each grade, from basic mathematical knowledge of number 
magnitude comparison to simple arithmetic calculation, including addition and sub-
traction with and without carries. Multiplication problems are added for testees in 
the third grade and beyond. Beyond the fourth grad, the test items include arithmetic 
problems with mixed operations and word problems. Coupled with discrepancy cri-
teria, this test together with other reading assessments have identified a 3.18% rate 
of LD among school-aged children in Chiayi, a city in South Taiwan, where the 
development of socioeconomics, politics, and education is not as advanced as in the 
north. Among these identified students with LD, 28% were classified as having RD, 
12% were identified as having MLD, and 60% were comorbid with both disabilities 
(Ko, 2005). The researchers then continued to remediate the MLD-specific students. 
They found that although the intervention can increase accuracy performance in 
these students, their response times for math problems continue to show severe defi-
cits (Ko, 2005). These results have suggested that with valid assessment, LD can be 
classified into distinct subcategories, and each subtype is in need of specialized 
tutorial remediation.

The Basic Arithmetic Skill Test has recently been revised and updated with the 
latest Taipei and New Taipei City norms (Lee & Hsieh, 2016). In the revised ver-
sion, more schools have participated and hence provided a larger scale of recent 
norms. The revised version mainly focuses on simple arithmetic operation problems 
that require procedural calculation and exclude number magnitude comparison, as 
well as word problems. In order to identify children who show real deficits, perfor-
mance below 3% has been used as the cut-off criterion for identifying suspected 
MLD. This assessment has been used as an official assessment tool for MLD clas-
sification in many of the local municipalities.

The Basic Mathematical Core Skill Test (Hung & Lian, 2015) is another recently 
published test item with national norms. This test includes a broader range of math-
ematical knowledge, including number identification, number comparison, and 
serial order, as well as vertically and horizontally presented calculation problems. 
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Word problems are included in the test items for third graders and beyond. In order 
to provide a more appropriate diagnosis, this test requires the assessors to write 
down the testee’s problem-solving strategies by observing the testee’s physical indi-
cations. If counting during the assessment is overt (such as counting verbally or 
with fingers) or if the testee takes time to respond, the assessor will record this as a 
counting strategy. If immediate responses are given, the assessor will mark it as a 
retrieval strategy. After completing each session, the assessor will randomly choose 
a few test items to ask participants how those problem answers were derived. 
Previous studies have indicated that the combination of participant self-reporting 
and experimenter observation can provide a useful measure of children’s arithmetic 
problem-solving strategies (Cho et al., 2012; Geary, Hamson, & Hoard, 2000), in 
which children with MLD have shown severe deficits (Geary, 2004).

 Summary and Conclusion

Numeracy is a learned skill undergoing complex and experience-dependent changes 
throughout the schooling years, resulting in proficiencies over time. This process 
vastly depends on interactions between the individual and society. Cultural factors 
can therefore highly influence mathematical learning—for example, learning moti-
vation (Mullis et  al., 2012; Mullis et  al., 2016), parent perception (Phillipson & 
Phillipson, 2007; Shek & Chan, 1999; Tzeng, 2007), cognitive skills such as arith-
metic problem strategies (Campbell & Xue, 2001), and even digit reading (Tang 
et al., 2006). Scrutinizing cultural constraints is therefore crucial for advances in 
understanding the learning mechanism of building specialized long-term mathemat-
ical knowledge. In this chapter, we have reviewed how cultural specificity might 
impact mathematical learning. The existing evidence reveals a dynamic interplay 
between individual cognitive mechanisms and external environmental features, sug-
gesting that cultural factors should be taken into account when conducting research 
in understanding MLD. Within the East Asian part of the world, such as Taiwan, 
research on LD has undergone significant progress in the past few decades (Hung, 
2006). The focus of research on LD has shifted from laying out the general cogni-
tive profile of LD toward systematic understanding of identifying each specific sub-
type. Among each subcategory, mathematical learning has steadily attracted more 
public attention. Although the identification, classification, and remediation of 
MLD is not yet fully mature in Taiwan, emerging endeavor and advocacy have been 
increasingly devoted to the field. Future development and progression in better 
classifying and characterizing children with MLD concerning the features shaped 
by culture in the East Asian culture are needed.
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Chapter 18
Mathematical Learning and Its Difficulties  
in Israel

Sarit Ashkenazi, Hannah Restle, and Nitza Mark-Zigdon

 Introduction

Adults and children with low numerosity experience disadvantages both in the 
classroom and in day-to-day life. They have trouble making financial and medical 
decisions and evaluating risks (Agarwal & Mazumder, 2013; Gerardi, Goette, & 
Meier, 2013; Reyna, Nelson, Han, & Dieckmann, 2009). Their career choices are 
limited by their weakness in math, and their chance of being unemployed is 
increased (Henik, Rubinsten, & Ashkenazi, 2011). However, not until recently has 
the educational and academic field recognized math difficulties as a stand-alone 
learning disability. Until now, math learning disability (MLD) has been neglected 
both in educational and academic fields compared with other learning disabilities 
such as reading disability (Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013).

There is a debate in numerical cognition research on the nature of the cog-
nitive weaknesses underlying MLD (also known as developmental dyscalcu-
lia) and the most effective diagnostic tools for identifying MLD (Träff, Olsson, 
Östergren, & Skagerlund, 2017). While the core deficit approach suggests that 
school math is strongly influenced by innate preverbal number sense abil-
ity (the ability to intuitively understand approximate quantity and relations 
between quantities) and, hence, MLD originates from weakness in number sense 
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(Butterworth, Varma, & Laurillard, 2011; Dehaene, Piazza, Pinel, & Cohen, 2003; 
Halberda & Feigenson, 2008; Halberda, Ly, Wilmer, Naiman, & Germine, 2012; 
Halberda, Mazzocco, & Feigenson, 2008), other theories suggest that MLDs 
originate from cognitive abilities that are not unique to math, such as impair-
ments in working memory or executive functions (Ashkenazi, Rosenberg-Lee, 
Metcalfe, Swigart, & Menon, 2013; Szűcs, 2016; Szucs, Devine, Soltesz, Nobes, 
& Gabriel, 2013).

Due to this worldwide debate regarding MLD (Träff et  al., 2017), locally in 
Israel, there are inadequate definitions and a deficit of acceptable diagnostic tools 
for assessing MLD. As a result, currently there is not even a single standardized 
normed tool to diagnose MLD in children in Israel.

This chapter aims to examine the Israeli case of MLD and mathematics edu-
cation. First, we will briefly discuss the cultural background of Israel, which has 
deeply influenced the educational system. We will then describe the mathematics 
education policy in Israel. Afterward, we will address the international differences in 
math abilities tested by the Programme for International Student Assessment (PISA). 
Next, we will look at the definition of MLD in the primary and secondary educa-
tional system of Israel, future changes in the policy of diagnosis, and remediation of 
MLD in children and current remediation programs for children with MLD. Lastly, 
we will discuss the diagnosis of MLD in institutes of higher education in Israel.

 General Description: Population and Diversity

The state of Israel is relatively young, 70 years old (it was founded in 1948). It is 
defined as a Jewish and democratic state, and it has been constantly changing 
(Masri, 2017). One of the most significant and ongoing changes is the immigration 
of new Jewish population into Israeli society (Zangwill, 2017). This resulted in a 
large number of immigrants from different socioeconomic backgrounds who immi-
grated to Israel during the years 1948–2000. Most of the founders of Israel arrived 
from European countries. However, during the years 1948–1960, the population of 
Israel increased 9.2% and diversified due to immigration. Over half of the new 
immigrants arrived from Africa and Asia (53%), and the remainder arrived from 
Europe and the United States. During the years 1990–1995, another wave of immi-
grants arrived from the former Union of Soviet Socialist Republics yielding a popu-
lation increase of 3.2% (Eckstein & Weiss, 2004).

Another important change in Israeli society is related to the relatively high reli-
gious diversity in Israel. The Israeli population is comprised of religious minorities 
including Arabs (Muslim, Christian, and Druse) and the Jewish majority. For exam-
ple, during the first years of the country, the Arab population was 18% of the general 
population and decreased to 11% during the 1960s. Currently (2017), the religious 
composition is 74.9% Jews, 20.9% Arabs, and 4.5% others. Hence, the Israeli popu-
lation is very diverse, both culturally and socioeconomically. The complexity of 
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Israel’s diversity poses great challenges to its education system (“Statistical Abstract 
of Israel 2017,” 2017).

Due to the common observance of traditional customs, the average fertility rate 
of Israel is one of the highest in all of the Organization for Economic Cooperation 
and Development (OECD) countries. Specifically, in 2015, 45.7% of the population 
of Israel was younger than 15 years of age; in a comparison of 185 countries, Israel 
ranks 110 in fertility. The high fertility rate stems from the observant religious sec-
tors (ultra-Orthodox and Arab). In line with the heterogeneous fertility rates in 
Israel, there is a significant wealth gap. Generally, Israel’s gross domestic product 
(GDP – a score representing the economic performance of an entire country) was 
83.2, ranking 48 out of 155 countries. However, in contrast to the heterogenic socio-
economic status in Israel, the government expenditure on education (% of GDP) is 
medium to high. Specifically in 2013 the government expenditure on education was 
5.9, ranking 17 out of 75 countries (see Table 18.1). The government expenditure on 
education was higher than 6 between the years 1990 and 2000, decreased to 5.5 in 

Table 18.1 *Government 
expenditure on education 
(GEOE, % of GDP) by 
country

Country GEOE* Rank

Malawi 7.7 1
Sweden 7.7 2
Finland 7.2 3
Ukraine 6.7 6
Mozambique 6.5 7
Malaysia 6.1 11
Ghana 6 12
Honduras 5.9 15
Israel 5.9 16

United Kingdom 5.7 18
Austria 5.6 19
Bhutan 5.6 20
Netherlands 5.6 21
Barbados 5.5 22
Australia 5.3 25
Rwanda 5 29
Colombia 4.9 30
Niger 4.9 32
Saint Lucia 4.7 33
Benin 4.6 34
Chile 4.6 35
Japan 3.8 48
Mauritius 3.7 49
Albania 3.5 50
Philippines 3.4 53
Iran (Islamic Republic of) 3.2 56

Notes. Data from the United Nations 
Development Programme (2016)
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2010, and since then has been increasing (see Fig.  18.1) (United Nations 
Development Programme, 2016). These statistic data further emphasize the 
heterogeneity in Israel (cultural, religious, and socioeconomic). Providing equal 
educational opportunities in such a heterogeneous society is one of the greatest 
challenges facing the Israeli educational system. The relatively high expenditure on 
education in Israel aims to achieve this goal.

 General Education and Mathematics Education in Israel

From the early years of the country, due to the cultural diversity and the high num-
ber of immigrants in Israel, the local education system has dealt with two main 
contrasting principles: (1) the education system of Israel should serve as a melting 
pot, a tool to educate new immigrants and assimilate them to the foundational cul-
ture, and (2) acknowledging the cultural diversity of minorities and providing auton-
omy to schools to make their own educational choices (e.g., particular textbooks for 
each minority) (Zameret, 2012). In the first years of the country, the education sys-
tem in Israel emphasized the first principle (i.e., melting pot) and mostly ignored the 
second one (i.e., cultural diversity) (Zameret, 2012). However, currently the two 
principles (i.e., melting pot and cultural diversity) are being emphasized simultane-
ously in the education system of Israel (State of Israel, Ministry of Education, 2003). 
The Ministry of Education developed a core educational program (including a 
detailed curriculum for each subject) that should be applied to all subjects in the 
schools in Israel while providing flexibility to minorities to help achieve specific 
additional educational goals (State of Israel, Ministry of Education, 2003).
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Today there is a compulsory education law in Israel. The law determines that 
every child in Israel must be in the framework of education (kindergarten or school) 
from the age of 3 through kindergarten until the 12th grade. This law obliges the 
child’s parents to enroll in the educational institution and to ensure the regular atten-
dance of the child. The duty of the state is to provide free education from kindergar-
ten to the end of high school (The Knesset, 2007). The Israeli educational system 
can be classified into schools that are under the full supervision of the Ministry of 
Education and schools that are not. This latter category consists mainly of the ultra- 
Orthodox Jewish school system and comprises approximately 20% of all students in 
the Israeli school system. According to governmental regulations, these unofficial 
schools must also uphold a set of standards, including administrative, pedagogical, 
physical, and social that are similar to the standards of official schools (State of 
Israel, Ministry of Education, 2003).

Math education in Israel begins at the age of 3 and continues throughout primary 
and secondary schooling. Each age group has a specific math curriculum. The math 
curriculum details what should be taught in each class level and how many hours 
each subject should be taught (see Table  18.2 for the curriculum for elementary 
school) (State of Israel, Ministry of Education, 2003). In general, there are five to six 
math lessons a week in the main educational system. However, due to the guiding 
principle of cultural diversity, the core educational program obligates the study of 
math for 3, 4, or 5 h a week in schools that are not under the full supervision of the 
Ministry of Education, in effect defining a standard but allowing variance based on 
school administrative choices (State of Israel, Ministry of Education, 2005). National 
tests are conducted by the Ministry of Education which monitors students’ level of 
achievement in different areas of the country and in the various population sectors.

Various teaching methods are allowed by the Ministry of Education, as illustrated 
by the number of authorized math textbooks in Israel. Each school can choose their 
preferred textbooks. All textbooks are written in Hebrew and Arabic and include 
digital versions with hyperlinks to additional math activities.

Table 18.2 Math curriculum in elementary schools in Israel by grade

1st grade 2nd grade 3rd grade 4th grade 5th grade 6th grade

Natural numbers X X X X X X
Operation in natural numbers X X X X X X
Fractions X X X X X X
Decimals X X
Percentages X X
Ratio X
Units of measurements X X X X X X
Data research X X X X X
Measurements X X X X X X
Geometry X X X X X X
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 International Educational Tests in Math in Israel

One way to evaluate math ability in Israel compared with other countries is with 
international educational tests. Israel has participated in a large number of these 
international tests including Trends in International Mathematics and Science Study 
(TIMSS) and PISA. On these early tests (1960s), Israel was ranked among the first 
12 countries in mathematical achievements. However, only part of the Israeli popula-
tion was permitted to take part in these tests: the Arab pupils as well as new Jewish 
immigrants from underdeveloped countries were excluded (Cohen 2007, taken from 
Feniger, Livneh, & Yogev, 2012), improving the relative performance of Israel on 
those international tests. To this day some Israeli students are still excluded from 
these international tests, however, to a lesser extent than previous years: (1) The 
strictly Orthodox Jews, which are not obligated to participate in the general math 
curriculum, and (2) the Arab students in Jerusalem, of whom approximately 90% are 
studying according to the Palestinian curriculum. These two categories of students 
could reach 20% of the students in Israel, yielding an overestimation of Israel’s 
national average on these international tests.

One of the most updated published scores of international tests in Israel is the 
PISA. The PISA is administered to 15-year-old students from all the OECD coun-
tries, and it tests mathematics, among other subjects. In 2015, Israel received a score 
of 470 points in PISA in the mathematics section, a score that is 20 points lower 
than the average OECD score, ranking Israel 42 out of 70 countries (see Table 18.3) 
(OECD, 2017). Questions on the PISA mathematics section can be categorized into 
Levels 1–6. Level 1 proficiency identifies students that can answer questions with 
familiar contexts (e.g., about money) where all relevant information is present and 
the questions are clearly defined. Level 6 proficiency includes students that can 
draw on a range of interrelated scientific ideas. 32% of the students scored at Level 
1 on the PISA (considered low achievers), compared with 23% on average for OECD 
(see Table 18.3). Israel’s mathematics scores on the PISA have improved every year 
since 2006 (OECD, 2017). However, mathematical achievement in Israel still remains 
below average and a large percentage of students still exhibit weakness in mathemat-
ics. This can partially be explained by the low economic status of Israel and the high 
fertility rate in Israel (Feniger et al., 2012).

 Diagnosis of Mathematical Learning Disabilities in the Israeli 
School System

The current diagnosis of MLD in the Israeli school system is founded on the 
definition of the Diagnostic and Statistical Manual of Mental Disorders (DSM) 
IV (1994). MLD should be diagnosed if one can prove two observed learning dis-
parities: (1) within students, a gap between the expected level of math abilities 
according to intellectual level and actual performances, and (2) between students, 
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a gap of 2 or more years between math abilities that are expected from the student 
according to grade level and actual performances. There is a fundamental problem 
related to the second gap in Israel: currently, there is no normed diagnostic tool 
for assessing MLD for Israeli children. Therefore, a reliable gap between observed 
math level and expected math level according to grade level cannot be accurately 
tested in Israeli children. Instead, most of the MLD diagnostic tests in Israel are 
local curriculum- based tests including grade level math test, similar to those admin-
istered in schools. Curriculum-based tests are examinations of math subject mat-
ter that should be learned in each grade level, according to the Israeli Ministry of 
Education. Please see Table 18.2 for the subject matter in the mathematical cur-
riculum in Israel according to grade level. Table 18.4 presents an example for an 
Israeli curriculum- based test that was developed by e.g. the authors of this section 

Table 18.3 PISA Scores on 2015, by country, mean score, and rank of scores and percentage of 
low achievers in math (Below Level 2) and rank of low achievers

Country Mean score Percentage of students below Level 2
Mean S.E. Percentage of students Rank

Hong Kong (China) 548 (3.0) 2 9.0 3
Macao (China) 544 (1.1) 3 6.6 1
Korea 524 (3.7) 7 15.5 11
Switzerland 521 (2.9) 8 15.8 12
Canada 516 (2.3) 10 14.4 9
Denmark 511 (2.2) 12 13.6 8
Finland 511 (2.3) 13 13.6 7
Belgium 507 (2.4) 15 20.1 25
Germany 506 (2.9) 16 17.2 17
Poland 504 (2.4) 17 17.2 18
Norway 502 (2.2) 19 17.1 16
Sweden 494 (3.2) 24 20.8 26
Australia 494 (1.6) 25 22.0 32
France 493 (2.1) 26 23.5 37
European Union total 493 (0.8) 27 22.1 33
United Kingdom 492 (2.5) 28 21.9 31
Czech Republic 492 (2.4) 29 21.7 29
Portugal 492 (2.5) 30 23.8 39
OECD average 490 (0.4) 31 23.4 36
Italy 490 (2.8) 32 23.3 35
Iceland 488 (2.0) 33 23.6 38
Spain 486 (2.2) 34 22.2 34
Hungary 477 (2.5) 40 28.0 43
Slovak Republic 475 (2.7) 41 27.7 42
Israel 470 (3.6) 42 32.1 48
United States 470 (3.2) 43 29.4 46
Greece 454 (3.8) 46 35.8 50
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(Ashkenazi, Mark-Zigdon, & Henik, 2009, 2013). Although Israel’s population is 
highly heterogeneous, the math curriculum serves as a guideline for each grade 
level. However, due to the various permutations of the curriculum used across 
different schools, the use of non-normed curriculum- based tests is insufficient. 
Alternatively, normed tests from other countries have been applied. This method is 
also flawed due to international differences in math curricula. Therefore, a normed 
tool is urgently needed to correctly diagnose MLD.

Students in Israel who are diagnosed with MLD are entitled to receive appropriate 
school accommodations, including special assistance in school (personalized teaching 
methods and out-of-classroom interventions) and testing accommodations. Currently 
the Ministry of Education places an emphasis on the latter, i.e., testing accommoda-
tions (see the next section for a full explanation). In order to receive testing accom-
modations throughout schooling and during the final high school exam, two MLD 

Table 18.4 Israeli curriculum-based test subdivided into subtest and content

Subtest Content Example

Part A. Knowledge of numbers
Number-word 
sequence

Counting forward
Counting backward

Count from 793 to 801
Count from 506 to 498

Numerical system Understanding of the base-ten 
system

Build biggest/smallest number from a 
given set of written digits (e.g., 3, 7, 4, 8)

Equation transformation from 
horizontal to vertical position

Write: 340 + 3+ 5706 = 6049

Recognition of a numerical 
place value within a written 
number

What is the value of the digit 5 in the 
number: 1252?

Series of numbers Number series completion Complete the following series:
463, 473, 483, ___, ___, ___

Part B. Knowledge of number operations
Equation Addition

Subtraction
200 + ___ = 550
____ – 100 = 600

Simple multi-digit 
arithmetic

Addition
Subtraction
Multiplication
Division

20 + 50 =
70–30 =
40 × 30 =
90/30 =

Written word 
problems

Arithmetical operation 
presented in verbal format

In each class there are 25 children. How 
many children are there in 5 classes?

Arithmetic 
algorithm

Addition 24
+37

Subtraction 56
−43

Multiplication 45
×3

Division 94
6

Estimation of 
written math 
problems

Multiplication Is 32 × 19 bigger or smaller than 400?
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diagnostic evaluations are authorized: (1) didactic evaluation, including testing of 
learning processes, such as math, and the building blocks of these learning processes, 
such as numerical comparison, and (2) psycho-didactic evaluation, including the 
didactic assessment, in addition to testing cognitive abilities and emotional difficulties 
that may impair learning. While a specialized psychologist is allowed to perform a 
psycho-didactic evaluation, the law regarding how didactic diagnosis is to be per-
formed is less clear. However, there are very clear rules in the educational system 
about the evaluation (didactic or psycho-didactic) required to receive specific testing 
accommodations especially during the final high school exam.

Testing accommodations were divided into three levels in Israel according to their 
potential to benefit students without learning disabilities. Level 1 – testing accommo-
dation does not change the content of the test and will not benefit children without 
learning disabilities (such as providing an extended formula page during the math 
test). Level 2 – testing accommodation might change the content of the test. Level 
3 – testing accommodation will change the content of the test; hence they will be 
granted with extra caution and only to students with very severe cases of learning dis-
abilities. For example, students diagnosed with severe MLD, accompanied by weak-
ness in understanding basic numerical quantity mechanisms, receive the opportunity 
to replace the final high school math exam with another scientific subject such as 
biology or chemistry. While the testing accommodations of Levels 1 and 2 are 
approved by an in-school committee based on a didactic or psycho- didactic diagnosis, 
Level 3 testing accommodations are approved by an out-of- school district committee, 
according to the recommendations of a psycho-didactic evaluation only.

Please note that the diagnosis of MLD in Israel, based on the DSM-IV, has not 
been updated following the release of the new DSM-V in 2013. In the DSM-V, two 
major changes have been made in relation to the DSM-IV. Firstly, the in-student gap 
(discrepancy between intelligence level and math performance) is no longer neces-
sary for the diagnosis of learning disability. Secondly, the separated diagnoses of 
dyslexia, dyscalculia, and dysgraphia are all united as one category of specific 
learning disabilities (one can specify particular weakness in an individual’s reading, 
writing, or mathematical performance). Hence, major changes should be made in 
the diagnosis of learning disabilities in Israel and across the world. The next section 
will address the future plan, announced by the ministry of education, to change the 
diagnostic process.

 Current Changes in the Diagnosis and Treatment of MLD 
in Israel

The percentage of students that are diagnosed as suffering from learning disabilities in 
the Israeli educational system increases every year. During the year 2000, 14% of the 
students in the education system were diagnosed with learning disabilities. The per-
centage of diagnosed students increased each year, and during 2013, it reached 41.3% 
(Psychological Consultation Services, 2017); this percentage is much higher than 
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expected in reference to different studies examining prevalence rates of learning dis-
abilities. Specifically in Israel, in 1996, the prevalence rate of MLD was found to be 
6.4% (Gross-Tsur, Manor, & Shalev, 1996), the prevalence rate of MLD worldwide is 
between 3 and 6% (Reigosa-Crespo et al., 2012; Shalev, Manor, Amir, & Gross-Tsur, 
1993; Von Aster & Shalev, 2007), and similar prevalence rates can be found in dyslexia 
(between 5% and 17% in different studies (Shaywitz, 1998)) and a similar prevalence 
rate of ADHD (the ADD/HD worldwide-pooled prevalence was 5.29%) (Guilherme, 
Maurício, Bernardo, Joseph, & Luis, 2007). Due to the inconsistency between the 
expected prevalence rate and the observed number of students that receive a diagnosis 
of learning disabilities, and as a result receive test accommodations, in addition to 
worldwide changes in the view that related to learning disabilities (moving to the diag-
nosis criterion of DSM-V, see the above section), a professional committee was called 
by the Israeli Ministry of Education during 2014 to discuss current changes in the 
policy toward students with learning disabilities: “Margalit Committee II” (Margalit 
et  al., 2014). This committee included both professors from the Israeli universities 
investigating learning disabilities and policy- makers from the Ministry of Education. 
The main recommendation of the committee was to increase the resources devoted to 
remedial teaching in the school system while decreasing the resources devoted to diag-
nosis. Accordingly, the Ministry of Education created a new program that is now being 
piloted; according to the new program, the diagnostic process of learning disabilities 
will follow the model of response to intervention (RTI). Hence, the model of diagnosis 
of MLD will focus on a few in-school processes:

 1. Mapping the math achievements of the entire school population by administer-
ing an in-class test. The children with the lowest achievements on the test will 
then be tracked and provided with in-class personalized teaching strategies.

 2. Follow-up assessment of math achievement consisting of an in-class test and 
identifying students that still exhibit low achievement in class. These students 
will be provided with evidence-based remedial teaching in small groups, by a 
teacher who is specifically trained for that purpose.

 3. Follow-up assessment of math level using a special tool (assessing MLD) and 
tracking the lowest achieving students. These students will be given personalized 
intervention by educators specialized in learning disability.

 4. If a student did not reach the needed level after the personalized intervention, 
then a full diagnosis will be given to the student outside of school by a profes-
sional examiner with knowledge of learning disability (Psychological 
Consultation Services, 2017).

 Teaching Accommodations for Children Suffering from MLD 
in Israel

The current theoretical approach of the ministry of education in Israel is to increase 
the resources devoted to remedial teaching in the school system while decreasing 
the resources devoted to diagnosis. Hence, it is important to set guidelines to create 
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a customized intervention program according to the individual abilities and needs 
of each student. The intervention program should follow the general math curricu-
lum. Teachers can create accommodations for each student by modifying the math-
ematical material: reducing or expanding it according to the child’s strengths and 
weaknesses identified by the in-class diagnosis or providing an alternative math 
topic that requires application of the same mathematical principles (see Ministry 
Protocol, November 1, 2005, Amendment 3.1). To facilitate this process, the 
“Accommodations Document of the General Math Curriculum for Special 
Education Students” was published (Ministry of Education, 2014). This document 
is organized by mathematical topics and notably not by grade level. Each topic is 
broken down into specific math sub-topics and goals, recommending the appropri-
ate teaching methods and didactic clarifications related to typical difficulties in the 
teaching of mathematics for students with MLD.

For example, for the goal of “acquisition of the multiplication tables,” three sub- 
goals were suggested, aimed at students with different cognitive styles of learning:

 1. Understanding-based multiplication table learning. The recommended activities 
for this sub-goal require that the children rely on an understanding of the connec-
tion between addition and multiplication or on mathematical laws such as com-
mutative and distributive laws and use known facts to solve new problems.

 2. Memorization-based multiplication tables learning. Here, games, songs, patterns, 
and cards were suggested.

 3. Combination-based multiplication tables learning.

In order for the teachers to choose the appropriate goals for the learner’s charac-
teristics, they should bear in mind: (1) the assessment results, which provide infor-
mation on the student’s numerical knowledge and cognitive skills and (2) awareness 
of the required math knowledge for the student’s age and grade level curriculum. 
Based on these considerations teachers may choose the appropriate goals and sub-
goals to initiate. By referring to the relevant documents, they can administer the 
appropriate accommodations and activities to use. This program was designed for 
students in the special education system. Students in the general education system 
with the diagnosis of MLD are expected to learn according to the curriculum’s 
requirements (see Table 18.2).

 Diagnosis of MLD in Universities in Israel

On 2008, a law determining the rights of students with learning disabilities that 
are studying in post-secondary educational institutions was signed by the Knesset 
(Israel’s parliament). The law included a few main requirements: every post- 
secondary educational institute should build a support center for students with 
learning disabilities and provide customized testing accommodations for students 
with learning disabilities and follow the recommendation of an approved diagnosis 
tool (derived from the law for the rights of students with learning disabilities that 
are studying in above high school institutes (Olmert, Tamir, Yishai, Peres, & Itzik, 
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2008). However, most of the diagnostic tools in Israel at that point were inadequate. 
For example, there was not even one single standardized norm tool to test math abili-
ties. To fill this void, the MATAL was developed by Israel’s National Institute for 
Testing and Evaluation. The MATAL assesses proficiency in mathematics, reading, 
writing, and English (as a second language), as well as ADHD (Ashkenazi & Danan, 
2017; Ashkenazi & Silverman, 2017). The diagnostic battery includes 2 question-
naires and 20 tasks to test reading, writing, math abilities, and English as a second 
language. The diagnostic battery includes three mathematical or numerical tasks:

 1. Calculation automaticity. The goal of the task was to measure retrieval of arith-
metic facts. The task included 80 simple arithmetic equations (e.g., 2 × 3 = 6) 
that were presented sequentially on the computer screen; the participant needed 
to answer if the equation was correct or incorrect by keypress. The equations are 
divided equally into addition, subtraction, multiplication, and division problems.

 2. Procedural knowledge. The participants needed to ascertain if the equation was 
correct or incorrect by keypress. The equations included numbers that ranged 
from one to four integers. All the equations required logarithmic, simple calcula-
tions. The equations were divided equally into addition, subtraction, multiplica-
tion, and division and evenly into correct and incorrect solutions within each 
category (e.g., 45 + 25 = 70 or 1850 – 350 = 1550).

 3. Number line knowledge. This task measured understanding of the mental num-
ber line. For each trial, different values appeared at the anchors of the number 
line, below the line. Two target points marked with the same value are presented 
on the number line, and the participant needs to ascertain which of the target 
points were marked correctly. The distance between the target points was 20% or 
40% of the length of the whole line. The number lines included natural numbers, 
fractions, and negative numbers.

Based on the result of these tests, computerized algorithms will determine 
whether a student is suffering from MLD and, if so, its severity: light, moderate, or 
severe. According to the evaluation results, the support center for students with 
learning disabilities might suggest specific testing accommodations and specialized 
academic assistance to the student.

 Conclusion

This chapter introduced the complexity of the Israeli educational system and 
MLD. Confronted by a diverse influx of new immigrants (e.g., European and North 
African) and composition of residents (e.g., Muslim, Christian, and Jewish), the 
educational system mediated between two contrasting principles of assimilation to 
uniform educational standards and providing autonomy to schools to make their 
own educational decisions based on their unique cultures. To this day, this dichotomy 
exists (with greater emphasis on autonomy), and the burden on the educational sys-
tem is further compounded by a growing young population.
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Regardless of the type of schooling, math is one of the core subjects in Israel. 
The Israeli math curriculum starts at the age of 3 and includes a very detailed plan 
accompanied by national evaluation of math ability in each grade level. However, in 
comparison with other OECD countries (using international performance tests), 
Israeli students receive relatively low math scores. One of the explanations for these 
lower scores may be the high socioeconomic diversity in Israel. This indicates a 
need to examine new ways to promote math education in Israel.

Two areas of future growth for math education in Israel are the diagnosis of MLD 
and the development of appropriate interventions. There is still worldwide debate 
regarding the most effective diagnostic and remediation processes for MLD.  In 
Israel, no standardized normed tool has been developed to assess MLD.  Instead, 
local curriculum-based tests are used to test MLD. Difficulties in MLD diagnosis 
may be related to the assessment process of learning disabilities in Israel in general. 
Current diagnostic procedures have resulted in a relatively high percentage of Israeli 
students who receive test accommodations on their final high school exams, in rela-
tion to the expected prevalence rates found in literature. Future plans by the Ministry 
of Education to diagnose learning disabilities according to RTI are expected to 
greatly change MLD assessment in Israel, among other learning disabilities, and 
impact intervention plans. This will further the current Education Ministry’s aim to 
reduce the resources dedicated to diagnosis and increase the resources devoted to 
remedial teaching.

Notably, MLD diagnosis in Israel is most advanced in institutes of higher learn-
ing. By law, every post-secondary educational institute is obligated to establish a 
support center for students with learning disabilities. In these support centers, a 
standardized normed tool was developed to assess MLD, among other learning 
disabilities.

The development of a standardized normed tool to diagnose MLD in institutes of 
higher learning, but not yet in primary and secondary schools, demonstrates one of 
the complexities and discrepancies in the case of MLD in Israel. However, current 
plans are underway in the creation of a standardized normed tool for assessing MLD 
in students under the age of 18.

Another weakness in the assessment process of learning disabilities in Israel is 
the assessment and treatment of MLD on the basis of outdated definitions. Following 
the new definition of specific learning disability in the DSM-V, the Ministry of 
Education in Israel has created a detailed plan to change the diagnostic process and 
treatment of MLD. This program will promote tailored in-school interventions. In 
parallel, the out-of-school diagnostic process will be postponed to allow students 
remediation through in-school interventions. Delayed assessment will be carried 
out by authorized out-of-school diagnostic centers in the case of lack of improve-
ment following in-school remediation.

As reflected by this chapter, the most appropriate assessment of MLD and subse-
quent remedial plans are still under debate. Plethora of new endeavors, including 
emphasis on attempts at in-school early remediation and development of standard-
ized normed assessment tools, indicate current and future progress in the treatment 
of MLD in Israel.

18 Mathematical Learning and Its Difficulties in Israel
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Chapter 19
Learning Difficulties and Disabilities  
in Mathematics: Indian Scenario

S. Ramaa

 Introduction

The diversity in India is unique. It is a large country with a huge population. 
According to provisional census data, the total population of India was 
1,210,193,422 in 2011. India has more than 50% of its population below the age of 
25 and more than 65% below the age of 35. It is expected that in 2020 the average 
age of an Indian will be 29 years. India has varied physical features and cultural 
backgrounds. It is a country with many languages. In short, India can be considered 
the “embodiment of the world.”

The salient feature of Indian heritage is the coexistence of many languages, 
races, and religions. However, all these factors influence the learning and perfor-
mance of students in different academic subjects especially at the school level. 
Linguistic diversity has a greater impact than other factors.

As per the census of 1961, as many as 1652 languages and dialects are spoken by 
the people of India. Since most of these languages are spoken by very few people, the 
subsequent censuses regarded them as spurious. The eighth schedule of the constitu-
tion of India recognizes 22 languages. Hindi in Devanagari script is recognized as the 
official language of the Indian Union by the constitution. Hindi and English are used 
for official purposes such as parliamentary proceedings, judicial proceedings, and 
communications between the central government and state governments. Further 
complexity is contributed by the great variation that occurs across this population in 
social parameters such as income and education. In India, the medium of instruction 
in the schools may be English, Hindi, or the respective states’ official languages. 
Private schools usually prefer English, and government (primary/secondary education) 
schools tend to go with one of the last two.
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 Education in India—New Initiatives

There are many initiatives in the Indian education system that are influencing the 
development and learning of students. They have given importance to the education 
of all children including those with special needs. The national policy for education 
(1986), which is in force even now, recommends a common core component in the 
school curriculum throughout the country. In the school curricula, science and 
mathematics have been incorporated as compulsory subjects till school grade X. 
Since many students were out of school, to realize the “Education for All” mis-
sion, certain educational schemes were implemented from 2000 onward initially at 
elementary level and later at secondary level. As a result, all children and youth, 
including those with disabilities, have been brought into the school system. The 
central government and all state governments had the responsibility of retaining all 
the children in the schools and creating a conducive learning environment. Under 
these schemes, regular in-service training has been provided to all government 
school teachers to improve the quality of education.

 Initiatives for the Education of Children with Special Needs

Many initiatives have been taken in the country toward the education of children 
with special needs (CWSNs).They are important milestones in the history of Indian 
education. The Rehabilitation Council India Act of 1992, Persons with Disabilities 
Act of 1995, and National Trust for Welfare of Persons with Autism, Cerebral Palsy, 
Mental Retardation and Multiple Disabilities Act of 1999 developed awareness 
among teachers, parents, and the community about the rights and welfare of indi-
viduals with disabilities. Many welfare measures were taken to give a dignified life 
to persons with disabilities. This also had a positive impact on the education of 
CWSNs. Education of these children was given mainly in residential schools or 
special day schools. Later emphasis has been given to mainstreaming. The Right to 
Education Act of 2009 emphasized inclusive education for all children. This has 
resulted in conducting regular in-service teacher training programs on inclusive 
education for government school teachers. The acts mentioned above did not include 
all disabilities. Learning disabilities were not covered by any of them. It was only in 
2016 that the Rights of Persons with Disabilities (RPWD) Bill was introduced. 
Under this bill the types of disabilities have been increased from the existing seven 
types of disability to 21 types of disability. Speech and language disability, as well 
as specific learning disabilities (SLD), have been included as benchmark categories 
of disabilities for the first time.

Since SLD was not recognized as a separate disability in India, the efforts to 
provide appropriate education and other support services have been very much 
limited. Whatever efforts were made to help these children so far were mainly because 
of the concern and determination of some of the parents, parents’ self-help groups, 
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and some of the professionals interested in the field. Only now has it become a 
professional obligation.

 Definition of Specific Learning Disability

In the RPWD Act of 2016, “specific learning disabilities” means a heterogeneous 
group of conditions wherein there is a deficit in processing language (spoken or 
written) that may manifest itself as a difficulty to comprehend, speak, read, write, 
spell, or do mathematical calculations, and it includes such conditions as perceptual 
disabilities, dyslexia, dysgraphia, dyscalculia, dyspraxia, and developmental aphasia. 
However, separate definitions are not given for different types of SLD.

As a consequence of the RPWD Act of 2016, the central government has issued 
guidelines for the purpose of assessing the extent of specified learning disabilities. 
A battery of tests developed by the National Institute for Mental Health and 
Neurosciences (NIMHANS) in Bangalore shall be applied for diagnostic tests for 
SLD. The teachers at public and private schools shall carry out the screening in 
grade III or when the child is 8 years of age, whichever comes earlier. The child 
should be referred for further assessment if required as per the guidelines. The med-
ical superintendent, chief medical officer, or civil surgeon—or any other equivalent 
authority as notified by the state government—shall head the certification authority. 
The certification will be done for children aged 8 years and above only. The child 
will have to undergo repeat certification at the age of 14 years and at the age of 
18 years. The certificate issued at 18 years will be valid for life.

At present, parents and students with SLD have to face a lot of hurdles to 
determine whether a child has a learning disability (LD) or not, as there are only a 
few certification centers in the country. In fact, linguistic diversity is a major hurdle 
for assessment of SLD.

 Prevalence of Children with Special Needs in India

The National Sample Survey (NSS) released a report saying that the incidence of 
disability in India is declining. It gives reason for optimism with the overall decline 
in disability, but there is also a reason for concern about rural areas where the inci-
dence of disability has been found to be higher than in urban areas. More than 10% 
of the country’s population suffers from some form of disability. The NSS, for the 
purpose of the survey, categorized disabilities into locomotor (lame/crippled), 
visual, hearing, and mental disabilities. The results show that locomotor disability is 
the most prevalent, followed by hearing and visual disabilities. Mental illness, 
including retardation, is seen among many people (Tables 19.1 and 19.2).

This shows so far in India that no national-level surveys have been conducted to 
estimate the prevalence of SLD.

19 Learning Difficulties and Disabilities in Mathematics: Indian Scenario
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 Teacher Preparation Courses in the Area of Learning 
Disabilities

In India the Ministry of Social Justice and Empowerment has established five 
national institutes and their regional centers for mental retardation, visual handicap, 
hearing impairment, orthopedic handicap, and multiple disabilities. There is an All 
India Institute of Speech and Hearing, and a National Institute of Mental Health and 
Neurosciences. Some of these institutes and centers offer services to students with 
learning disabilities and conduct research and training programs. The National 
Council of Educational Research and Training (NCERT) and its constituent units—
regional institutes of education (RIEs)—provide pre-service and short-term in- 
service training for teachers and teacher educators on learning disabilities as part of 
an inclusive education program. The NCERT and RIEs prepare instructional materials 
on learning disabilities. Ramaa (1989, 1992) has prepared handbooks and manuals 
on SLD for the benefit of teacher educators, teachers, other related professionals, 
and parents. Some of the state institutes of education have also prepared instructional 
materials on LD in their regional languages.

Table 19.1 Proportions of disabled population by type of disability in India, 2011

Serial No. Type of disability Persons (%) Males (%) Females (%)

1 Total 100.0 100.0 100.0
2 In seeing 18.8 17.6 20.2
3 In hearing 18.9 17.9 20.2
4 In speech 7.5 7.5 7.4
5 In movement 20.3 22.5 17.5
6 Mental retardation 5.6 5.8 5.4
7 Mental illness 2.7 2.8 2.6
8 Other disability 18.4 18.2 18.6
9 Multiple disabilities 7.9 7.8 8.1

Source: Punarbhava (2011)

Table 19.2 Differences in enrollment according to the type of disability

Serial No. Type of disability
Grades (%)
I–V VI–VIII I–VIII

1 In seeing 20.79 32.87 24.02
2 In hearing 11.69 11.04 11.52
3 In speech 13.04 8.28 11.77
4 In movement 27.28 32.09 28.56
5 Mental retardation 19.68 8.62 16.73
6 Other disability 7.51 7.10 7.40
7 % of total enrollment 0.79 0.80 0.80

Source: Compiled from the District Information System for Education (DISE) database, 2006–
2007 (Nidhi Singal, 2009)
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For preparing teachers, regular and distance-mode diploma, bachelor’s degree, 
and master’s degree (D.Ed., B.Ed., and M.Ed.) courses in special education are 
offered by various institutions, which are recognized by the Rehabilitation Council 
of India (RCI) (http://www.rehabcouncil.nic.in/writereaddata/List22May2013.pdf)

In total there are 456 institutes offering RCI-recognized courses in India, out of 
which only three institutions offer courses for bachelor’s and/or master’s degrees in 
special education for learning disabilities [B.Ed.Spl.Ed.(LD) and/or M.Ed.Spl.Ed.
(LD)]. This clearly indicates that the numbers of trained teacher educators and 
teachers with specialization in SLD in India are very much limited. Hence, prepara-
tion of teacher educators and teachers with specialization in SLD should be the 
topmost priority in India if the RPWD Act’s directives are to be realized.

 Management of Specific Learning Disability in Schools 
in India

There are no specific interventions provided in schools. However some provisions 
have been made. In 1996, the Maharashtra government was the first in India to 
formally grant children with SLD the benefit of availing themselves of the neces-
sary provisions (“accommodations”) to enable them to complete education in 
regular mainstream schools. These provisions comprised (i) extra time for all 
written tests, with spelling mistakes being overlooked; (ii) employment of a writer 
for children with dysgraphia; (iii) exemption from the need to study a second 
language (Hindi or Marathi in an English-medium school) and substitution with a 
work experience subject; and (iv) exemption from the need to study algebra and 
geometry and substitution with a lower grade of mathematics (standard VII) and 
another work experience subject. These provisions were made initially only for 
the grade IX and X examinations. Later they were extended to grades I to XII and 
even to college courses. Seats were reserved for these adolescents in the handi-
capped category.

It has been noticed that students with SLD who are availing themselves of the 
benefit of these provisions are showing a significant improvement in their academic 
performance at secondary schools.

 National Institute of Open Schooling

The National Institute of Open Schooling (NIOS), formerly known as the National 
Open School (NOS), was established in November 1989 as an autonomous organi-
zation in pursuance of the National Policy on Education of 1986 by the Ministry of 
Human Resource Development (MHRD), Government of India. The NIOS pro-
vides a number of vocational, life enrichment, and community-oriented courses 
besides general and academic courses at secondary and senior secondary levels. 
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Students who benefit from this initiative include sportspersons who have to train 
and travel all through the academic year, students with a physical handicap, and 
students with chronic medical illness. In addition to that, a large number of candi-
dates with learning disorders or psychiatric conditions register with the NIOS 
board. Regular schools require students to study all the subjects in the curricu-
lum—two/three languages, science, mathematics, and social studies—and each 
subject may include more than one paper. The students have to complete them 
within an academic year.

In contrast, the NIOS requires students to study a minimum of five and a maxi-
mum of seven subjects. They choose from a very wide range of subjects, which are 
offered according to their ability to attempt an examination. Students are also 
allowed to change subjects midway through the course if they are not satisfied with 
their choice. Thus, if a student has a mathematical disability he need not take math-
ematics at secondary level. A lenient time limit of 5 years is given to students of 
the NIOS to complete each of the secondary and senior secondary courses (which 
are either academic or vocational, or both), with as many as nine possible attempts. 
This makes it much easier for students with learning disabilities to complete the 
courses. There are study centers in the country that prepare students with SLD for 
NIOS examinations.

Table 19.3 shows that the numbers of students with SLD who have enrolled in 
the NIOS are increasing every year. However, the numbers of students utilizing the 
benefit are a lot smaller (Table 19.3).

Students with SLD also receive services from the National Institute of the 
Mentally Handicapped (in Secunderabad), the All India Institute of Speech and 
Hearing (in Mysore), the National Institute of Mental Health and Neurosciences, 
and child guidance clinics run by professionals. They provide remedial instruction, 
counseling, and mental health services. Since comorbid disorders are common 
among students with SLD, they are taken care of by these centers and by psychiatric 
hospitals and clinics.

Thus, supportive services for students with SLD are available outside the schools, 
but most of these services are available only in the urban areas and some of them are 
very expensive. Students hailing from suburban and rural areas are deprived of these 
support services. Even in urban areas there are practical difficulties. The remedial 
services are provided by these centers during school hours only. The students are 
permitted to go to them by the schools, but the parents have to arrange private 
vehicles for that purpose. This may be difficult for some parents. Moreover, they 
should be free during those times or some other family members should be able to 
attend to this responsibility. Hence, the best option is to equip and empower the 
schools to provide the support services for students with SLD.

Table 19.3 Enrollment of students with specific learning disabilities (SLD) in the National 
Institute of Open Schooling from 2007 to 2012

Year 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012
Number enrolled 770 992 1199 2406 2083
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In most of the state-run schools, students with SLD will reach grade IX without 
much difficulty. With the introduction of continuous and comprehensive evaluation 
in the schools, students can get marks through a variety of tasks and through many 
formative tests. During grade X, there is a board examination. Hence their promo-
tion to the next grades depends upon their performance. Considerable percentages 
of students fail in English, science, and mathematics due to various reasons; one of 
them may be SLD.

The National Achievement Survey conducted by the NCERT in 2017 helps in 
understanding the difficulties experienced by students at different grades of elemen-
tary and secondary schools.

 Learning Indicators/Outcomes and National Achievement 
Survey

For the first time, the NCERT has come out with an exhaustive list of learning indi-
cators for students in grades I to VIII. The indicators aim to standardize the param-
eters used for measuring the learning curves of students. To start with, learning 
indicators have been finalized for eight subjects: English, Hindi, Urdu, mathemat-
ics, environmental science (EVS), science, social sciences, and art education. 
Though it is a common practice globally, this is the first time learning indicators 
have been used in India to assess children.

The National Achievement Survey (NAS) was conducted throughout the country 
in November 2017 for grades III, V, and VIII in government and government-aided 
schools. The survey tools used were multiple-choice test booklets with 45 questions 
in grades III and V and 60 questions in grade VIII in mathematics, language, sci-
ence, and social sciences. The competence-based test questions that were developed 
reflected the learning outcomes developed by the NCERT, which were recently 
incorporated into the Right of Children to Free and Compulsory Education (RTE) 
Act by the Government of India. Along with the test items, questionnaires pertaining 
to students, teachers, and schools were also used.

The learning levels of 2.2 million students from 110,000 schools across 701 dis-
tricts in all 36 states/union territories (UTs) were assessed. The findings of the sur-
vey are helpful to guide education policy, planning, and implementation at national, 
state, district, and classroom levels for improving learning levels of children and 
bringing about qualitative improvements.

Tables 19.4, 19.5, and 19.6 give the percentages of students who demonstrated the 
selected learning outcomes correctly. They are from four randomly selected states. 
The names of the states are not disclosed here. The results of only those learning 
indicators that were attained by 75% or less than 70% of students in all four states are 
given in Tables 19.4, 19.5, and 19.6.

In India there are unaided schools. Though they charge more fees, upper middle 
class and high–socioeconomic status (high-SES) parents prefer them to government 
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Table 19.4 Percentages of students from four states of India (states A–D) who demonstrated 
learning outcomes (LOs) of grade III mathematics

Serial 
No. LO of grade III

Students (%)
State A State B State C State D

1 Reads and writes numbers up to 999, using place 
values

72 60 73 49

2 Solves simple daily life problems by using addition 
and subtraction of three-digit numbers with and 
without regrouping

70 54 67 43

3 Analyzes and applies an appropriate number 
operation in the situation/context

73 45 74 46

4 Explains the meaning of division facts by equal 
grouping/sharing and finds it by repeated subtraction

69 59 68 48

5 Fills a given region, leaving no gaps, by using a tile 
of a given shape

55 49 65 39

6 Estimates and measures length and distance by using 
standard units like centimeters or meters, and 
identifies relationships

39 26 36 33

7 Extends patterns in simple shapes and numbers 67 54 68 47

Table 19.5 Percentages of students from four states of India (states A–D) who demonstrated 
learning outcomes (LOs) of grade V mathematics

Serial 
No. LO of grade V

Students (%)
State 
A

State 
B

State 
C

State 
D

1 Applies operations of numbers in daily life situations 66 40 64 31
2 Explores the areas and perimeters of simple geometrical 

shapes (triangle, rectangle, square) in terms of a given 
shape as a unit

60 42 61 46

3 Reads and writes numbers bigger than 1000 being used in  
his/her surroundings

74 66 70 50

4 Estimates the sums, differences, products, and quotients  
of numbers, and verifies the same by using different 
strategies like using standard algorithms or breaking a 
number and then using an operation

69 50 63 39

5 Finds the number corresponding to part of a collection 59 51 74 51
6 Identifies and forms equivalent fractions of a given  

fraction
48 40 56 36

7 Classifies angles into right angles, acute angles, and  
obtuse angles, and represents the same by drawing and  
tracing

70 41 58 47

8 Relates different commonly used larger and smaller units 
of length, weight, and volume, and converts larger units to  
smaller units, and vice versa

74 37 66 42

9 Estimates the volume of a solid body in known units 49 33 44 30
10 Applies the four fundamental arithmetic operations in 

solving problems involving money, length, mass, capacity, 
and time intervals

64 42 55 34

11 Identifies the patterns in a triangular number and a square 
number

63 42 59 38
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and aided schools. Thus, in urban and suburban areas, children with a low SES or a 
lower middle SES only attend government and government-aided schools. A sizable 
percentage of the children attending these schools are first-generation learners and 
are from socially disadvantaged sectors of the society. These are some of the  reasons 
for the results shown in Tables 19.4, 19.5, and 19.6. In addition to these, there may 

Table 19.6 Percentages of students from four states of India (states A–D) who demonstrated 
learning outcomes (LOs) of grade VIII mathematics

Serial 
No. LO of grade VIII

Students (%)
State 
A

State 
B

State 
C

State 
D

1 Solves problems involving large numbers by applying 
appropriate operations

55 29 48 28

2 Solves problems in daily life situations involving addition 
and subtraction of fractions/decimals

54 29 48 29

3 Finds out the perimeters and areas of rectangular objects in 
the surroundings like the floor of the classroom, surfaces of 
a chalk box, etc.

50 31 48 30

4 Arranges given/collected information in the form of a table, 
pictograph, and bar graph, and interprets them

52 28 48 24

5 Interprets the division and multiplication of fractions 40 43 49 32
6 Solves problems related to daily life situations involving 

rational numbers
50 36 53 27

7 Uses exponential forms of numbers to simplify problems 
involving multiplication and division of large numbers

47 24 37 19

8 Adds/subtracts algebraic expressions 60 35 53 37
9 Solves problems related to conversion of percentages to 

fractions and decimals, and vice versa
38 21 40 21

10 Finds out the approximate areas of closed shapes by using a 
unit square grid/graph sheet

36 31 43 31

11 Finds various representative values for simple data from 
his/her daily life contexts like means, medians, and modes

67 47 57 41

12 Interprets data, using a bar graph, e.g., consumption of 
electricity is greater in the winter than in the summer

52 28 48 24

13 Generalizes properties of addition, subtraction, multiplication, 
and division of rational numbers through patterns

35 25 32 27

14 Finds rational numbers between two given rational numbers 52 37 48 29
15 Proves divisibility rules of 2, 3, 4, 5, 6, 9, and 11 61 40 42 41
16 Finds squares, cubes, square roots, and cube roots of 

numbers by using different methods
56 32 45 28

17 Uses various algebraic identities in solving problems of 
daily life

61 49 52 44

18 Verifies properties of a parallelogram and establishes the 
relationship between them through reasoning

36 27 50 28

19 Finds the surface areas and volumes of cuboidal and 
cylindrical objects

35 32 46 23

20 Draws and interprets bar charts and pie charts 50 44 54 34
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be children with learning disabilities, mild intellectual disability, below- average 
intelligence, attention deficit hyperactivity disorder (ADHD), underachievement, or 
other disabilities. It is required to assess all these children who have specific problems 
or who are at risk of developing problems. It is essential to understand the reasons 
for learning difficulties and employ proper interventional strategies for overcoming 
the difficulties in the respective grades, otherwise the gaps in knowledge will be 
increased, which will hinder further learning. As in the case of the achievement tests 
in the NAS, grade-appropriate learning outcomes have to be tested among the stu-
dents, but during the diagnosing process the learning outcomes of lower grades are 
also needed to be tested to identify the gaps and difficulties.

The listings of grade-appropriate learning outcomes (National Achievement 
Survey, 2017) are good initiatives in identifying the learning difficulties and 
disabilities in the country. They are helpful in constructing diagnostic tools.

 Research on Learning Disabilities in India

As discussed in the opening paragraphs of this chapter, India is a vast country with 
linguistic diversity. Conducting research on learning difficulties and disabilities 
depends upon the availability of achievement and diagnostic tests in all the official 
languages of the country. Nonavailability of assessment instruments is a major hur-
dle in carrying out the research. In addition, the number of professionals with ade-
quate knowledge and understanding about SLD is limited in the country. Hence, in 
India the number of studies in the area of SLD is limited.

However, some researchers have attempted to conduct research studies on SLD 
with different objectives and research questions. Since special schools/classes/
remedial education centers for SLD are not common in India, these studies were 
conducted in general schools. A brief account of the research studies is given below.

On the basis of an intensive review of current practices in India, Thapa, van der 
Aalsvoort and Pandey (2008) commented that the entire area of learning disabilities 
in India is confronting fundamental and basic issues pertaining to assessment and 
interventions. Further, they remarked that many promising leads and initiatives have 
been taken in India.

 Identification of the Prevalence of Learning Disabilities 
in Mathematics in India

In a review of studies on learning disabilities in India, conducted from 1980 to 2000 
by Ramaa (2000), a 3–10% prevalence of different types of SLD was reported 
among the elementary school population. This review included major findings of 
studies conducted by different investigators to diagnose elementary and secondary 
school students with dyslexia, dyscalculia, language disabilities, and writing disabili-
ties, and to try out remedial instruction programs, in the states of Karnataka, Kerala, 
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and Tamil Nadu. Students with dyscalculia/mathematical disabilities may also have 
dyslexia and writing disabilities. Hence, studies on other types of SLD also help in 
conducting research on dyscalculia/mathematical disabilities. The paper based on 
such a review described a range of research studies relating to learning disabilities 
in India from 1980 to 2000. Attention is called to the existence of many different 
languages within India. Standardized and teacher-made tools have been developed 
for assessment and remediation purposes. The paper ends by making some sugges-
tions for future research.

Mogasale, Patil, Patil et al. (2012) attempted to study the prevalence of SLD such 
as dyslexia, dysgraphia, and dyscalculia among primary school children in a South 
Indian city. A cross-sectional multistaged stratified randomized cluster sampling 
study was conducted among children aged 8–11 years from grades III and IV. The 
observed prevalence of SLD was 15.17%, while 12.5%, 11.2%, and 10.5% of the 
children had dysgraphia, dyslexia, and dyscalculia, respectively. On the basis of this 
study the investigators inferred that the prevalence of SLD is on the higher side 
compared to previous estimations in India.

Priti Arun et al. (2013) conducted a study to find out the prevalence of a specific 
developmental disorder of scholastic skills (SDDSS) in students in grades VII to XII 
and to assess the feasibility of a screening tool in Chandigarh, India. They observed 
an SDDSS prevalence of 1.58% in 12- to 18-year-old school students. The investiga-
tors attributed the apparent low prevalence of SLD to nonavailability of standardized 
psychological tests in the vernacular language. Further, they noted that information 
from parents is crucial in studies pertaining to academic problems in view of the fact 
that many causes of scholastic backwardness require a complete work-up including 
social, emotional, and physical factors.

In a review of research work done on SLD in the Indian context Annie, Akila 
et al. (2013) noted that while there have been studies on different aspects of SLD, 
there has been no sustained, rigorous research done on LD with other comorbid 
disorders like ADHD among Indian children and adolescents. Suresh and Sebastian 
(2003) attributed the limited epidemiological data on the prevalence of LD to many 
of the inherent difficult situations in India.

Ramaa (1985), Srimani (2000), Gowramma (2000), Prema (2002), and Jagathy 
(2006) conducted doctoral-level studies on dyslexia, language disabilities, dyscal-
culia, writing disabilities at elementary level, and writing disabilities at secondary 
level, respectively. They attempted diagnosis and remediation of SLD. The details 
are available in Gowramma (2005), Ramaa, Miles and Lalithamma (1993), Ramaa 
(1993), Ramaa (2000), Ramaa (2017), and Srimani (2012).

 Research on Learning Difficulties and Disabilities 
in Mathematics in India

As in the global scenario, there is much less research on mathematical disability 
than  onreading and writing disabilities in India. A brief account of this research is 
given below.
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Ramaa (1990) conducted a study on neuropsychological processes and logico-
mathematical structure among students with both dyscalculia and reading/writing 
problems. Since there was no appropriate diagnostic tool in arithmetic for primary 
school children, she constructed such a tool. The test is diagnostic and criterion 
referenced in nature, and it is available in both English and Kannada versions. 
The Kannada version was used in this study. The test covers three major areas of 
arithmetic: number concepts, arithmetic processes (fundamental operations)—
addition, subtraction, multiplication, and division—and also arithmetic problem 
solving. In each of these areas, a series of basic understandings and skills (crite-
rion measures) expected to be mastered by children in grades I to IV are covered. 
The items helpful in assessing different criterion measures are varied in number. 
The numbers of items for grades III and IV are more or less the same; the differ-
ence is only marginal. The list of criterion measures are available in Ramaa (2015). 
Students with dyscalculia who were free from dyslexia and dysgraphia were identi-
fied among 251 children studying in grades II, III, and IV in primary schools by 
using a set of exclusionary and inclusionary criteria. Out of 251 children, 15 stu-
dents (5.98%) were diagnosed as having dyscalculia. This figure is exactly the same 
as that noted by Kosc (1974). For details of the identification procedure, see Ramaa 
and Gowramma (2002).

In order to identify the difficulties in each of the criterion measures appropriate 
to the grades, the relevant items in the Arithmetic Diagnostic Test developed by the 
investigator were administered to all 15 children. The presence or absence of mas-
tery by the students with reference to each of the grade-appropriate criterion mea-
sures were analyzed and tabulated. The items/criterion measures that were not 
attempted by the students were considered as not achieved (NA). Thus, the data 
obtained for each of the students was analyzed qualitatively and separately. The 
errors committed by the students while solving different arithmetic problems were 
also analyzed. The numbers of students who committed such errors were also cal-
culated. Multiplication and division sums were found to be more difficult for children 
with dyscalculia even in grades III and IV.

In the study it was attempted to find out whether the children who had only dyscal-
culia were deficient in the specific neuropsychological processes of auditory sequen-
tial memory (memory for auditorily presented digits) and visual sequential memory 
(memory for shapes in sequence) and in the different components of logicomathe-
matical structure—seriation, conservation, and classification. For this purpose, visual 
sequential memory and auditory sequential memory subtests of the Illinois Test of 
Psycholinguistic Abilities (ITPA) (Kirk, and McCarthy, & Kirk, 1968) and the 
Mysore Cognitive Development Status Test (Padmini and Nayar, unpublished) were 
administered to all 15 children with dyscalculia. The data obtained from each student 
were analyzed qualitatively. It was noticed that in all the cognitive abilities tested in 
the study, children with dyscalculia had moderate to severe deficiency. For a detailed 
description of the procedure and results, see Ramaa (2015).

Gowramma (2000) conducted a doctoral-level study (under the supervision of 
the author of this chapter) on development of a remedial instruction program for 
children with dyscalculia studying in grade III and IV at primary schools. She 
attempted to identify children with dyscalculia from a sample of 1408 children by 
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using a set of inclusionary and exclusionary criteria. She diagnosed 78 students 
(5.54%) as having dyscalculia and further classified them into different categories 
as follows: dyscalculia without reading and writing problems (24 out of 78 
(30.77%)), dyscalculia without a writing problem (14 out of 78 (17.95%)), and 
dyscalculia with reading and writing problems (40 out of 78 (51.28%)). Detailed 
descriptions of the procedure are available in Ramaa and Gowramma (2002) and in 
Gowramma (2005).

Gowramma (2000) analyzed the difficulties faced and errors committed by the 
students in her study by administering the Arithmetic Diagnostic Test for primary 
school children (Ramaa, 1990, 1994). In order to overcome these difficulties she 
planned a remedial instruction program and experimentally validated it. The remedial 
instruction program was found to be effective in general. She has given suggestions 
for further study (Gowramma, 2005).

In India, people who are deprived of basic social rights and security because of 
poverty, discrimination, or other unfavorable circumstances are called “socially 
disadvantaged.” This group includes Scheduled Castes (SC), Scheduled Tribes 
(ST), Other Backward Classes (OBC), and Minorities (linguistic/religious). Among 
them the SCs and STs are the most disadvantaged due to social and geographical/
cultural exclusions, respectively. Nearly 25% of the Indian population belong to 
these categories.

Shukla and Neerja (1994), in trend reports on research in mathematics education, 
indicated that certain factors were responsible for higher rates of failure in mathe-
matics achievement, particularly at secondary level. The major contributing factors 
noted were intelligence and the socioeconomic background of the students. The 
authors stressed the need for continued research in mathematics education, keeping 
in mind the diversities in Indian schools, and for development of special strategies 
for teaching first-generation learners, children from backward classes (sectors), and 
children with sensory handicaps and intellectual disabilities, as well as children 
from tribal and hilly areas. There is a need to understand the specific difficulties 
faced by different categories of children in order to meet their special needs. Sawant 
and Athwale (1994) observed that the proportions of literate individuals are lower 
among those who belong to the SCs and STs. The main reason for this is deprivation 
of educational facilities for generations. Severe underachievement among tribal 
students at the primary level has been noted by Sujatha (1998), Shukla (1997), and 
Prakash (1997).

Ramaa and Gowramma (2001) conducted a study to identify the arithmetic dif-
ficulties faced by 138 socially disadvantaged students who were studying in grade V 
at five government primary schools. They administered the Arithmetic Diagnostic 
Test (Kannada version) developed by Ramaa (1994) in order to identify difficulties in 
arithmetic among the students in the study. The percentages of the students who were 
masters, partial achievers, and non-masters with reference to each criterion measure 
were calculated. The students experienced difficulties in almost all the criterion mea-
sures. Since the tool administered was meant for grades I to IV, a greater number of 
masters were expected, followed by partial achievers and non-masters. However, it 
was noted that the percentages of partial achievers and non-masters were greater than 
the percentages of masters in the majority of the criterion measures.
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Ramaa (2015) did a qualitative meta-analysis of the data obtained from the 1990 
and 2001 studies on children with dyscalculia and socially disadvantaged children, 
respectively. She compared the percentages of masters, partial achievers, and non- 
masters among children with dyscalculia with those of socially disadvantaged 
children in each of the criterion measures covered in the Arithmetic Diagnostic Test 
(Kannada version) (Ramaa, 1994). It was found that there was a considerable 
overlap in the difficulties experienced by both groups of students.

The results are discussed in detail, highlighting the educational implications in 
the chapter (Ramaa, 2015).

In the study conducted by Kaur, Kohli, and Batani Devi (2008), the investigators 
verified the comparative efficacy of various strategies for basic mathematical skills 
in children with learning disabilities. The students in the study were randomly 
assigned to multimedia, cognitive, eclectic, and control conditions. All the strategies 
employed in the study significantly enhanced the basic mathematical skills of 
learning- disabled children. The investigators concluded that multimedia, cognitive 
strategy, and eclectic approaches can be used to enhance the mathematical skills 
of children with learning disabilities.

Nagavalli (2015) studied the effectiveness of different intervention strategies for 
learners with dyscalculia at the primary school level. The study was carried out in 
three phases. The first and second phases focused on administration of screening 
and diagnostic tests to 2180 students studying in grade V at primary schools in the 
Salem district. The test results revealed that 50 students had learning difficulties in 
mathematics and were identified as students with dyscalculia. The cognitive defi-
ciencies among them were analyzed. The investigator attempted to classify the 
children with dyscalculia identified in the study into different categories. The third 
phase of the study involved administration of remedial intervention programs to 
children with dyscalculia. The post-test scores of the boys and girls were better than 
their pre-test scores.

 Conclusion

The Government of India, professionals, researchers, and service providers have 
started showing interest in learning disabilities in general and mathematical difficul-
ties and disabilities in particular. There should be more intensive and extensive efforts 
in this direction in the country.
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Chapter 20
Adding all up: Mathematical Learning 
Difficulties Around the World

Vitor Geraldi Haase and Helga Krinzinger

Authors of the chapters in Section 2, “Math learning difficulties across the world,” 
were invited to provide a description of math education and achievement in their 
respective countries, with an eye toward math learning difficulties. The following 
questions were proposed: (a) how are special needs in mathematics education 
defined and recognized?; (b) what kind of support do children get at school for 
severe math learning difficulties?; (c) who gives the support and what qualifications 
do they have for this work?; (d) are evidence-based assessment tools and interven-
tion methods available?; (e) what are the key issues and current trends in math 
learning difficulties at the moment?

In this discussion, we consider if it is possible to delineate a global picture of 
math learning difficulties and which is the format eventually assumed by such a 
picture emerging from the diversity and local specificities. Is it possible to detect 
global trends in the recognition and support of individuals with math learning 
difficulties?

From the outset, it is possible to verify a widespread recognition of the impor-
tance of math education and concern from governments, educators, and parents 
for youngsters’ math achievement on international tests. In the next section, we 
delineate in very broad strokes the state of math achievement across different 
countries.
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 Math Achievement Around the World

From the results reported on youngsters’ math achievement around the world, we 
believe it is possible to identify at least four situations. This is, admittedly, a gross 
simplification, neglecting specificities of distinct contexts. The first is represented 
by the top achievers, i.e., some Northern European and East Asian countries (Chang, 
Lee, & Yen, 2018; Räsänen et al., 2018). These two sets of countries seem to follow 
different paths to high math achievement. In these countries, both problems of uni-
versal access and quality of schooling have been largely solved. The path toward 
excellency in the Northern European countries seems to be related to the advances 
of the welfare state. Northern European countries present high indexes of “human 
development,” related to affluence, heavy taxation, strong state regulation, political 
democracy, juridical stability, low corruption indices, economic and gender equal-
ity, etc. Investment in education and teacher training is massive, and, at the same 
time, management is decentralized, with schools presenting a considerable degree 
of autonomy and accountability.

The route taken by Eastern Asian countries is different. Economic affluence in 
Eastern Asian countries is a relatively new phenomenon, and political democracy 
and socioeconomic and gender equality are not uniformly widespread across these 
countries. Math achievement success in Eastern Asian countries seems to be associ-
ated with (a) efficient school systems; (b) relative transparency of verbal numeral 
systems in Eastern Asian languages, conferring a head start in learning arithmetics; 
and (c) motivational factors. Motivational factors are rooted in ancient cultural 
traditions related to respect for parents and teachers and diligence associated with 
the recognition of the importance of math education in the current global context.

In both Northern European and Eastern Asian countries, rates of low numeracy, 
incompatible with effective functioning in the contemporary knowledge society, are 
extremely rare. For example, rates of youngsters not achieving at or above PiSA 
Level 2 have oscillated around 10% in several of these countries. It seems that such 
countries improved their educational systems to such a degree that the rates of very 
low performance roughly correspond to the prevalence of the most severe forms of 
math learning difficulty. Some Northern European countries are moving one step 
ahead of universal and good quality school education. The challenge goes beyond 
mandatory education to mandatory learning (Räsänen et al., 2018). It is supposed 
that all children should learn, including those who present some sort of inherent 
difficulty, such as developmental dyscalculia.

The second situation is exemplified by most other Northern Hemisphere and 
Oceania countries (Baffaluy & Puvuelo, 2018; Csikos, András, Rausch, & Shvarts, 
2018; Desoete, Dowker, & Hasselhorn, 2018; Jordan, Rinne, & Hansen, 2018; 
Reeve, 2018). These countries have a rich scientific and pedagogical tradition allied 
to high human development indexes. With a few exceptions, mean math achieve-
ment levels in these countries are generally average to high. However, intranational 
variability is also high in these countries, with a significant proportion of around 
15% to 25% of individuals not attaining the minimal numeracy requirements to 
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effectively navigate in the contemporary knowledge society. The relative high rates 
of very low performers, much higher than the prevalence of developmental dyscal-
culia, in the presence of well-organized school systems, suggest a role for socioeco-
nomic and cultural factors. The discrepancy between general high indices of human 
development in the face of low math achievement is probably related to the drastic 
social transformations occurring in these countries in the last decades. These include 
massive migration and the challenge to educate children from diverse cultural con-
texts, who need to learn in a foreign language. Eastern European countries face the 
challenge of rebuilding their educational systems after many decades under oppres-
sive political regimes, followed by devastating wars and social chaos in many cases.

The third situation refers to the so-called “developing” countries such as several 
countries in Latin America, North Africa, and the Middle East (Dorneles, 2018; 
Rodríguez, Cuadro, & Ruiz, 2018). These countries present reasonable indexes of 
human development and have, to a large degree, solved the challenge of enrolling 
all children in school. The next challenge is to improve the quality of education. 
As a consequence of poor educational quality, percentages of very low attainers 
may vary from 50% to 70%. Children attend school, but they simply do not learn. 
Such extremely high rates of math learning failure are at least one order of magni-
tude larger than the prevalence of developmental dyscalculia. Reasons may also be 
related to socioeconomic factors. The main culprits could be related to political and 
juridical instability, populist regimes, and corruption associated with a general inef-
ficiency of the state in implementing educational policies. Poor quality of teacher 
training; ineffective, ideologized, and scientifically unsubstantiated pedagogical 
orientations (e.g., Freire, 2000), together with corporate disputes over wages (some-
times associated with frequent strikes and teacher absenteeism) (Sowell, 2010); 
and lack of valorization of the teaching profession must also be mentioned. This is 
even more unfortunate when one considers that many of these countries formulated 
reasonable curricular guidelines, following, for example, guidelines suggested by 
UNESCO and other international organizations. A recent report of the World Bank 
indicated that efficiency in education is more dependent on the quality than on the 
amount of public expenditures (World Bank, 2017).

It is important to keep in mind that, even in these developing countries plagued 
by political and socioeconomic problems, poverty is not the only risk factor for poor 
math achievement. Some children may be simultaneously poor and present inherent 
math learning difficulties. Not recognizing the full nature of these children’s problems 
may prove to be a double handicap. They may be simultaneously disadvantaged 
because of poverty and because of some condition predisposing to specific math 
learning difficulties (Carvalho & Haase, 2018; Haase & Carvalho, 2018).

The fourth situation is related to very poor educational systems and lack of 
universal enrollment in school. This situation describes difficulties encountered by 
many sub-Saharan and some Latin-American countries, especially in the Caribbean 
(Roberts, Tshuma, Mpalami, & Saka, 2018). The challenge here is to build a school 
system in the first place.
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The picture described of math achievement around the world is supported by 
several data reported in Section 2. In broad strokes, the following generalizations 
could be advanced:

 (a) Although rates of low math achievers may be somewhat greater than those of 
reading low achievers, in general, math achievement is correlated with attain-
ment in other curricular domains.

 (b) Across countries, math achievement is correlated with the human development 
index.

 (c) Intranational socioeconomic differences in math performance are lower in the 
top-performing countries.

 (d) Cross-national variability is observed in the low-performing and not in the 
high-performing strata of youngsters.

 (e) A country’s overall average achievement and the rate of low-performing students 
in that country are correlated.

 (f) In the top-performing countries, rates of low achievement are more or less similar 
to that of developmental dyscalculia.

The big picture is, thus, of huge cross- and intranational variability associated 
with human development and socioeconomic welfare in the case of top-performing 
countries and with political instability and socioeconomic apartheid in the low- 
performing countries. The overall picture is sometimes colored by regional hues. 
In the next section, we proceed to the discussion of four aspects that vary across 
countries: (a) gender issues; (b) historical heritage, such as from the former Soviet 
regime; (c) intranational diversity; and (d) paradox of high math achievement in the 
face of low motivation.

 Gender Issues

Apart from socioeconomic status, another topic regarding equality in education 
was surprisingly only mentioned in the chapter by Rodríguez, Cuadro, and Ruiz, 
although it is a worldwide issue, namely, the gender gap in math education. An 
overview about prevalence studies of dyscalculia shows that older studies using a 
simple cutoff criterion commonly report higher prevalence rates in boys (Badian, 
1983, 2.2:1; Badian, 1999, 1.2:1; Share, Moffitt, & Silva, 1988, 1.8:1), whereas 
studies with any kind of discrepancy criterion (either in comparison with IQ scores 
or literacy scores) show either no gender differences (Lewis, Hitch, & Walker, 1994) 
or even higher-risk ratios in girls (Hein, 2000, 0.2:1; Von Aster, Kucian, Schweiter, 
& Martin, 2005, 1:2.28; Gross-Tsur, Manor, & Shalev, 1996, 1:1.1; Klauer, 1992, 
no explicit rates reported). The same effect could be observed in a study using dif-
ferent criteria in the same sample of over 1000 children: no prevalence differences 
in girls and boys regarding dyscalculia were found if no discrepancy measures 
were used (Devine, Soltész, Nobes, Goswami, & Szűcs, 2013). However, a discrep-
ancy of one standard deviation to a standardized reading score yielded 55 girls vs. 
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24 boys and a discrepancy of 1.5 standard deviations resulted in 110 girls vs. 78 
boys identified as dyscalculic. So, contrary to most other developmental disorders, 
girls seem to be more often affected by developmental dyscalculia (e.g., Von Aster 
et al., 2005), whereas boys with mathematical learning difficulties combined with 
other cognitive deficits are found at least as often as girls with the same problems.

In general, no or only small performance differences in math between boys and 
girls are reported for aptitude tests, school achievement tests, or math grades 
(Kimura, 2000; Lindberg, Hyde, Petersen, & Linn, 2010). In some countries, like 
Finland, girls even typically outperform boys in mathematics grades at school. 
However, breaking down mathematics to more clearly defined cognitive subcom-
ponents reveals a male advantage from adolescence onward for complex word 
problems (Kimura, 2000). A male advantage is also observed during primary 
school years (Kaufmann et al., 2009; Krinzinger et al., 2012; Krinzinger, Wood, & 
Willmes, 2012; Zuber, Pixner, Moeller, & Nuerk, 2009), and even in kindergarten 
(Weinhold Zulauf, Schweiter, & von Aster, 2003), for the acquisition of multi-digit 
number understanding (Krinzinger, 2011). These differences could be related to 
better spatial skills in boys (Voyer, Voyer, & Bryden, 1995), probably leading to an 
advantage in using spatial cognitive strategies (e.g., Carr, Hettinger Steiner, Kyser, 
& Biddlecomb, 2008; Van Garderen, 2006).

Alternatively, recent international studies (PISA, TIMMS) have shown that gen-
der differences in the mathematical domain were related to the respective national 
“gender gap index” (GGI; e.g., Hausmann, Tyson, & Zahidi, 2006), mirroring 
economic, academic, and other fields of (in)equality between women and men 
(e.g., Else-Quest, Hyde, & Linn, 2010; Guiso, Monte, Sapienza, & Zingales, 2008). 
One respective study by Penner (2008) showed that gender inequality in the job 
market for the parent generation was the main factor explaining gender differences 
in the children. The cognitive mechanism behind this is most likely “stereotype 
threat” in the sense of a self-fulfilling prophecy (e.g., Osborne, 2001), meaning that 
girls and women score worse on math tests only because they were told they are 
less able. It has been shown that the correlations between self-concepts and atti-
tudes toward math and math achievement grow stronger during puberty (Denissen, 
Zarrett, & Eccles, 2007). Hopefully, gender gaps and the negative stereotypes 
regarding females and mathematics (as well as sciences in general) will continu-
ously decrease and finally vanish in the future, so a development like that found in 
Finland can be observed in more and more countries.

Studies trying to disentangle the effects of socially influenced factors (such as 
math self-concepts) and more biologically based factors (such as spatial skills) on 
gender differences in math usually find that both play a role (Casey, Nuttall, & 
Pezaris, 1997, 2001). It may even be senseless to discuss about the differential 
effects of biology and environment, as their effects influence each other and are thus 
“as inseparable as conjoined twins who share a common heart” (Halpern, 1997, 
p. 1097). However, as a society, we should definitely focus on social factors which 
may negatively impact math achievement in a substantial subgroup of children, 
whether it be poor socioeconomic background or gender gaps.
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 Heritage of the Soviet Regime

Countries belonging to the sociopolitical and economic sphere of influence of the 
former Soviet Union have a strong cultural, scientific, and pedagogical heritage dat-
ing back centuries (Csikos et  al., 2018). Thus, the extreme variability in math 
achievement displayed by these countries deserves attention. Some countries are 
among the top performers, while others are situated among the very lowest rank-
ings. This variability is certainly related to the social chaos and in some cases, war-
fare, occurring in many of these countries after the fall of the Soviet Union.

Csikos and coworkers call attention also to the pedagogical heritage of the Soviet 
regime: (a) political interference in the curriculum and textbooks; (b) centralization 
of decisions and lack of autonomy of schools; (c) emphasis on math competitive-
ness, favoring outstanding performance in selected individuals; (d) misuse of the 
math achievement of a few individuals for political propaganda; (e) apartheid 
between those who could and those who could not do math, against the background 
of an officially egalitarian ideology; and (f) emphasis on math and disregard for 
pedagogy in math teacher training. In some of these countries, the result was a rela-
tive disregard for the needs of children who did not follow the pace of most of their 
colleagues in learning mathematics. The authors explicitly advise against ideologi-
zation of math teaching: “any kinds of ideologically set mathematics education 
necessarily dismiss the integrity of mathematical knowledge.” Unfortunately, 
ideologization of education is a danger that did not go away with the fall of the 
Soviet Union.

 Intranational Diversity

It is important to recognize that the remarks presented above are gross simplifica-
tions, when one considers the huge socioeconomic, cultural, ethnic, linguistic, and 
religious differences faced by many areas such as sub-Saharan Africa, Caribbean, 
Brazil, India, and Israel (Ashkenazi, Restle, & Mark-Zigdon, 2018. Dorneles, 2018, 
Ramaa, 2018, Roberts et al., 2018). The situation regarding math achievement is 
not so clear in areas such as India and sub-Saharan Africa, which do not participate 
in international surveys. However, there are reasons to assume a heavy burden of 
inequality (Drèze & Sen, 2013; Rosas & Santa Cruz, 2013; Tooley, 2001).

According to Ashkenazi and coworkers, governments in these and other coun-
tries must solve the challenge of implementing a minimum curriculum and improv-
ing general level of achievement (the “melting pot” approach) and, at the same time, 
acknowledging diversity and preserving traditions. Additionally, intranational 
diversity frequently precludes participation of certain population groups in the 
international surveys of math achievement, potentially leading to distortions 
(Ashkenazi et al., 2018; Dowker, 2018).
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 Achievement-Motivation Gap

The last regional color is illustrated by the gaps between math achievement and 
motivation. For example, math motivation in several high-performing countries is, 
on average, lower when compared with that of individuals from low-performing 
countries (Chang et al., 2018; Räsänen et al., 2018). Low math motivation despite 
high math achievement has elicited the greatest interest in the context of East Asian 
countries (Lee, 2009; Stankov, 2010). In the case of East Asian cultures, the motiva-
tional paradox has been speculatively attributed to some cultural traits such as a 
more collectivistic orientation, high expectations, fear of losing face, and extreme 
conscientiousness. Anyway, pressure from parents and teachers is a widespread 
phenomenon that negatively impacts on emotional well-being and motivation to 
learn mathematics (Batchelor, Gilmore, & Inglis, 2017; Beilock, Gunderson, 
Ramirez, & Levine, 2010). Traditional teaching, characterized by high demands for 
correctness and little cognitive and motivational support, is associated with negative 
emotional experiences (Bekdemir, 2010, Meece, Wigfield, & Eccles, 1990, Turner 
et al., 2002, see also Haase, Guimarães, & Wood, 2018).

Finally, it is important to comment on the flip side of the motivation paradox. 
On average, youngsters from some developing countries report high levels of math 
self- concept, in spite of low math achievement, when compared with other coun-
tries (Lee, 2009). It seems that these youngsters are unaware of their difficulties and 
unpreparedness.

The variability of math achievement around the world and its increasing impor-
tance would suggest that governments should not spare efforts in improving math 
education as well as in recognizing and providing interventions for kids with math 
learning difficulties. In the next section, we will focus on the difficulties associated 
with these two last tasks.

 Definition of Special Needs in Math

Research on math learning difficulties has traditionally fallen behind research on 
reading learning difficulties (Gersten, Clarke, & Mazzocco, 2007). Research on 
reading has also been an important source of motivation for research in math learn-
ing and its difficulties. Recognition of learning difficulties is not a simple matter. 
Evidence indicates, for example, that even nowadays developmental dyslexia is 
under-recognized (Barbiero et al., 2012). It is no surprise then that recognition of 
math learning difficulties is considerably less frequent than recognition of reading 
difficulties (Balbi, Ruiz, & García, 2017).

Virtually all authors in Part 2 reported that early recognition of math learning 
difficulties in their countries is clearly insufficient. Legislation in most countries 
foresees recognition and intervention for individuals with special educational 
needs. But lawful recognition of specific learning difficulties, and math learning 
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 difficulties in particular, is less common. In certain countries, guidelines have been 
formulated, stimulating teachers to identify math learning difficulties (Baffaluy & 
Puvuelo, 2018). In most West European and North American countries and 
elsewhere in the world, validated diagnostic instruments are available (Baffaluy & 
Puvuelo, 2018; Desoete et  al., 2018; Jordan et  al., 2018; Räsänen et  al., 2018; 
Rodríguez et al., 2018).

A very interesting move is the development and slow but steady increasing rate 
of implementation of the response to intervention (RTI) approach (Jordan et  al., 
2018, see also Fuchs, Fuchs, Seethaler, & Zhu, 2018). The RTI approach foresees 
early diagnosis by teachers, using screening procedures to identify kids at risk for 
developing math learning difficulties. At-risk kids are then referred within the 
school environment to a series of interventions of increasing intensity if difficulties 
persist. There is cumulative evidence indicating the effectiveness of the RTI 
approach (Fuchs et al., 2018; Jordan et al., 2018).

The greatest advantage of RTI is limiting diagnosis and intervention to resources 
available in the schools without referral to specialists. This is in accordance with 
the growing evidence of the heterogeneous nature of math learning difficulties 
(Haase & Carvalho, 2018; Rubinsten & Henik, 2009) and, at the same time, avoids 
unnecessary labeling effects (Lauchlan & Boyle, 2007). Around the world, a clear 
move can be identified away from diagnostic categories based exclusively on a 
medical model.

The main hazard associated with RTI is delaying the referral of kids with 
genetic conditions to proper, specialized diagnosis and care (Haase & Carvalho, 
2018). Implementation of the RTI approach is also associated with several logistic 
problems such as trained personnel shortage, treatment quality, and adherence. At 
the moment, although there seems to be clear movement toward RTI, this approach 
is foreseen in the legislation of some countries and research circles in a few oth-
ers. Clearly, there is a gap between research results and real-life implementation.

 Support at School for Children with Severe Math Difficulties

In recent decades, education has been inspired by the goal of inclusion, i.e., of not 
leaving any child behind. This is also important in the case of math education, con-
sidering the complexity inherent in the subject (Mazzocco, Hanich, & Noeder, 
2012) and its socioeconomic importance (Parsons & Bynner, 2005). The experience 
of the top-performing countries clearly shows that this is possible (Chang et  al., 
2018; Räsänen et al., 2018). This is the case, at least for the vast majority of chil-
dren, with the possible exception of those presenting more severe and genetically 
based forms of math learning difficulties (Carvalho & Haase, 2018; Haase & 
Carvalho, 2018). It remains to be investigated whether proper early intervention can 
prevent these more severe forms of math learning difficulties. This is the challenge 
currently posed to the top-performing countries.
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The results of the top-performing countries suggest that decentralized policy 
making, autonomy, and accountability on the part of schools and teachers, teacher 
training, and adoption of the RTI approach described above are promising mea-
sures. Accumulating evidence suggests that more severe difficulties in math learn-
ing are associated with basic numerical processing impairments and that these 
impairments may be ameliorated when properly recognized at an early age (Siegler 
& Braithwaite, 2017). However, this is far from fully corroborated, and most coun-
tries are far from the ideal of investigating this hypothesis and, eventually, imple-
menting effective early interventions. It would be fair to say that a reasonable 
proportion of countries is in different degrees of transition toward the model of early 
recognition and interventions in the school environment.

An interesting observation is that those countries which seem to take the best 
care of children with special educational needs, within the educational system 
(including high quality teacher education), are those which do not use interna-
tional diagnostic classification systems (DSM-5 or ICD-10) and their criteria for 
the identification of learning difficulties. This is not surprising, as the diagnostic 
classifications are created for use in the health systems and not in the educational 
systems. Additionally, clinical diagnoses may be avoided by implementing proper 
pedagogical interventions. In general, countries with less specific teacher educa-
tion and less elaborate special educational needs programs rely more heavily on 
clinical diagnoses, sometimes to provide affected children with help from outside 
the educational system.

 Teacher Training

Judging from the experience of the top math performing countries, it seems that 
teacher training is one of the ingredients of effective math education (Chang et al., 
2018, Räsänen et al., 2018). This is more easily said than done. We have already 
commented on the need for a qualitatively improved and not only quantitatively 
increased educational expenditure (World Bank, 2017). We mentioned also the 
worldwide ideological influences on education (e.g., Freire, 2000) and corporate 
interests as obstacles to a better education (Sowell, 2010). In this section, we com-
ment on two possible obstacles to better teacher preparation.

The first one is related to lack of primary teacher training in mathematics. 
Primary teachers widely report feeling uncomfortable and unprepared to teach 
numeracy, compared to literacy (Bekdemir, 2010; Meece et al., 1990). Additionally, 
evidence indicates that teacher self-doubt regarding math teaching competence can 
negatively impact on the pupils (Beilock et al., 2010). It seems that, contrary to what 
happened in the former Soviet Union, teacher training in recent years has paid more 
attention to the pedagogical than to the math aspects of mathematical education. 
The result is that primary teachers feel unsure about teaching math to their pupils.

The second one is related to the lack of pedagogical training. The old math 
pedagogy emphasized and decontextualized math performance (Klein, 2003). 
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The new pedagogy of mathematics, as illustrated by the definition of the PISA levels 
of mathematics knowledge, emphasizes math competencies in real life (Brazil, 2016). 
The emphasis on contextualized competencies is associated with curricular goal 
implementation problems. As these competencies are rather loosely defined, teach-
ers simply do not know what and how to proceed to implement the curricular 
goals. This problem is compounded by the fact that the competency model is usu-
ally implemented through a constructivist framework, as it will be discussed in the 
next section.

 Toward Evidence-Based Education

Reading the chapters in Section 2, it is possible to infer that everywhere in the 
world, there is a gap between scientific knowledge and its practical implementation. 
It seems that lab results have a long and tortuous path until they reach the classroom. 
What varies cross-nationally is the width of the gap. The state of research is more 
advanced in Northern Hemisphere and Pacific Rim countries (Baffaluy & Puvuelo, 
2018; Chang et al., 2018; Desoete et al., 2018; Jordan et al., 2018; Räsänen et al., 
2018; Reeve, 2018). However, even in these countries, classroom practices lag 
behind scientific and legislative advances. The need for evidence-based education 
is widely recognized by several authors.

The difficulties several countries encounter in implementing public policies are 
classic. It seems, however, that some pedagogical choices may also interfere with 
the building of more effective and evidence-based education. As mentioned above, 
the competency model currently adopted is ill-defined and lacks objective imple-
mentation guidelines. Additionally, the competency goal model is usually imple-
mented within a constructivist framework of discovery and cooperative learning 
(Christodoulou, 2014). Undoubtedly, the constructivist approach stimulates creativ-
ity (Bonawitz et al., 2011; Lee & Anderson, 2013). However, it also imposes heavy 
demands on the pupils in terms of cognitive abilities, intentionality, mind reading, 
and other social skills (Tomasello, Kruger, & Ratner, 1993). This option alone may 
not be the best way to promote math learning in children who present specific dif-
ficulties in this subject. Exclusive learning by discovery in an ill-structured setting 
overloads the working memory capacity and may not be the best way to teach chil-
dren with special needs (Kirschner, Sweller, & Clark, 2006; Mayer, 2004). This 
contrasts with the efficiency of mixed methods, sharing at least some instructional 
components (Hattie, 2009; Lee & Anderson, 2013). A cross-generational and cross- 
national comparative study indicates, for example, that both math reasoning and 
calculation fluency decreased decade after decade in the USA, while these same 
competencies improved dramatically in China (Geary et al., 1997). This time epoch 
roughly corresponds to the implementation of the constructivist framework in the 
West. A more balanced pedagogical framework, combining discovery and cooperative 
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learning with classical instruction, development of both conceptual and procedural 
knowledge, etc. could be in order.

If the analysis presented above is correct, math pedagogy is desperately in need 
of an evidence basis. The first move toward an evidentiary foundation of math 
pedagogy would be adopting an open mind approach, searching for evidence and 
not only basing classroom practices on teachers’ ingenuity or undemonstrated 
theoretical assumptions, some heavily charged with ideological implications, despite 
their popularity in some quarters of the world.

 Key Issues and Trends

In a nutshell, if a general trend is to be identified in math education and support for 
individuals with learning difficulties, the current models adopted in Northern 
European and advanced Eastern Asian countries are regarded as a standard toward 
which all eyes are directed. This model could be characterized in broad strokes as 
strong state intervention, efficiency of public expenditure, excellent teacher train-
ing, decentralization of the decision process, and school and teacher accountabil-
ity. Ethically, this model is guided by the ideal of inclusion and demedicalization, 
limiting diagnosis and intervention to the school environment as much as possible. 
Theoretically, it is based on the RTI model of early diagnosis and intervention. The 
efficacy of this model is demonstrated by both research evidence and its success in 
restricting math learning difficulties to a tiny proportion of the school population. 
Some countries have even adopted, and are striving toward, the goal of learning for 
all children.

One assumption that is shared, at least implicitly, by all authors is state interven-
tion. The authors share the assumption that education is a human right and a state 
obligation. The problem is that not always, and not everywhere, does the state fulfill 
its duties. This has led to the building, in some developing and underdeveloped 
countries, of an informal private school system for the poor (Tooley, 2001). As an 
educational phenomenon, private schools for the poor have received almost no 
attention from researchers and international agencies. Physical and human resources 
in these schools are very poor. Little is known about their efficacy. What is certain, 
however, is that there is a market for such schools. That is, when parents can afford 
to, even in the poorest countries of the world, they prefer to send their kids to private 
schools.

We end this discussion with more questions than answers. The difficulty in gen-
eralizing across countries suggests there is no one-size-fits-all solution for math 
educational needs. The current state-regulated and competency model seems to be 
adequate for some countries. The question must also be posed: are there alternatives 
that could better fit specific local needs? Definitely, more information is missing 
regarding math educational needs of poor performing countries. Research should 
also look for alternative models and sources of evidence.
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Chapter 21
Genetics of Dyscalculia 1: In Search 
of Genes

Maria Raquel S. Carvalho and Vitor Geraldi Haase

 Introduction

Living at the beginning of the twenty-first century requires being numerate; this means 
dealing with numbers appropriately. Effective numerical abilities are increasingly 
important in our modern information societies and, in particular, with respect to topics 
involving science, technology, engineering, and math (STEM). The ability to reason 
numerically is critical for individual life and career prospects (e.g., Butterworth, 
Varma, & Laurillard, 2011; Dowker, 2005). In particular, math abilities have been 
associated with higher wages, employability, and mental health indexes; inverse 
effects are observed to be associated with low math achievement, even after exclud-
ing the effects of low literacy (Auerbach, Gross-Tsur, Manor, & Shalev, 2008; 
Parsons & Bynner, 2005).

Low math achievement affects everyday life profoundly. Affected persons may 
face difficulties in using money, identifying bus lines, understanding maps and 
deciding routes, counting blocks, understanding hours, culinary recipes, etc. 
Therefore, not only researchers but also policy makers and public opinion are 
increasingly sensitive to the economic and social importance of different national 
performance levels on international school achievement tests, such as PISA (Budd, 
2015; Sturman, 2015).
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While some individuals excel in math achievement, others struggle with persis-
tent and severe difficulties in learning the most basic aspects of arithmetic such 
as number reading and writing, performing the four operations, and learning the 
basic facts. These difficulties present a major obstacle to progressing across the 
math  curriculum and deserve the diagnosis of developmental dyscalculia or math 
learning disability (Butterworth et al., 2011; Shalev, Manor, & Gross-Tsur, 2005).

At both ends of the population distribution, math abilities run in families (Landerl 
& Moll, 2010; Shalev et al., 2001) are moderately heritable (Docherty et al., 2010; 
Petrill, Kovas, Hart, Thompson, & Plomin, 2009). However, the investigation of the 
genetic mechanisms underlying math learning difficulties is hampered by the com-
plexity of the phenotype. The phenotype is influenced by multiple cultural, linguis-
tic, socioeconomic, cognitive, emotional, and motivational factors.

Mathematics is a cultural acquisition, something learned in school. However, we 
do need a brain that is specifically wired to learn math. As discussed below, dealing 
with math involves innate abilities, which have been selected in an evolutionary 
scenario that largely predates humans (Dehaene, 2011). Therefore, we share some 
components of math ability with other animals, but we also must have acquired 
some new abilities that they have not. Most of these new abilities reflect cultural 
evolution during the last 10,000 years. In terms of evolution, this is just a blip. How 
has it been possible to develop math to the point that we have it today, considering 
that the cultural evolution is so recent? Might better math ability itself has been a 
selective advantage? It is possible. Natural selection acts by changing allelic fre-
quencies. Therefore, genes may provide answers to these questions, at least in part.

The investigation of such complex (in the sense of multicomponent), and some-
what ethereal, phenotypes such as math ability may be tricky. For example, there is 
a wide range of math abilities within human populations. However, most of this 
variability reflects environmental, particularly socioeconomic status (SES), effects. 
Disentangling the genetic components of variability found in the normal range of 
the distribution is usually hard.

In this context, studying dyscalculia may provide us with useful questions, such as: 
If dyscalculia is a consequence of an abnormal brain development, how can we dis-
cover the etiology of these abnormalities? How can we use genetics to characterize 
brain development, both normal and abnormal? If the main question posed by chil-
dren with dyscalculia and their parents is why, will we ever be able to answer it? Will 
knowing the causes of dyscalculia help us to evaluate intervention programs and to 
establish prognoses? Are there red flags which would help us to identify children at 
risk, who would benefit from intervention, before math difficulties emerge? Will 
genetics help us deal with such red flags, if they exist? These are ambitious questions 
and most of them are beyond our grasp, for now. However, some important first steps 
have already been taken. Here, and in the companion chapter (Haase & Carvalho, 
2018, this volume), we will review the state of the art of the genetics of dyscalculia.

The text is divided into three sections. First, we review the clinical epidemiology 
of developmental dyscalculia. Second, we review the evidence for genetic suscepti-
bility in developmental dyscalculia. Third, we review the main gene-finding strate-
gies currently available, concentrating the discussion on genome-wide association 
studies (GWAS), genome-wide linkage analysis (GWLA), and association studies 
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conducted on comorbidities. Characterization of cognitive endophenotypes and 
searching for genotypic-phenotypic correlations in genetic syndromes associated 
with math learning difficulties are other important gene-finding strategies. This will 
be reviewed in the companion chapter (Haase & Carvalho, 2018, this volume).

 Clinical Epidemiology of Developmental Dyscalculia

Difficulty in acquiring and retrieving the arithmetic fact tables is the central symptom 
of dyscalculia (Butterworth et al., 2011). Other manifestations include difficulties in 
estimating and comparing set sizes; counting, reading, and writing numbers; per-
forming the four basic operations; etc. Impairments are severe and persistent and 
affect the most basic aspects of number processing and arithmetic (Shalev et  al., 
2005; Wong, Ho, & Tang, 2014). Children with dyscalculia are delayed in beginning 
to finger count, are slow to discover that finger counting may be used for calculation, 
and persist in finger counting for longer. Associated symptoms include difficulties in 
telling time and spatial/geographic orientation.

Defining dyscalculia for diagnostic and research purposes is complex. There are 
many labels in use such as math learning disability/disorder/difficulty, arithmetic 
disability, dyscalculia, and developmental dyscalculia. There are no theoretically or 
functionally grounded diagnostic criteria. Hale et al. (2010) reviewed the pros and 
cons for distinct diagnostic approaches (see also Wong et al., 2014). Three main 
diagnostic approaches are usually considered:

 (a) Discrepancy criterion. The performance of the child on standardized arithmetic 
tests is low, when compared with his or her own performance in IQ or reading/
spelling achievement tests. This approach is open to criticism because IQ and 
achievement are highly correlated, introducing statistical distortions and predis-
posing it to false-negative results. Studies have also failed to find any cognitive 
or intervention relevant distinctions between samples defined by the discrepancy 
or by the absolute threshold criteria (Ehlert, Schroeders, & Fritz, 2012).

 (b) Absolute threshold. A cutoff score is set, and the individual is defined as having 
dyscalculia if his or her standardized achievement test score falls below this 
threshold. Cutoff scores used in the literature vary widely, so Mazzocco (2007) 
proposed to set a cutoff at the 25th percentile for math difficulties and a cutoff 
at the fifth percentile for developmental dyscalculia or math learning disability, 
respectively. The main advantage of the absolute threshold method is the easy 
operationalization. The main problem is related to the lack of characterization 
of the impairment as specific and restricted to one cognitive domain, since indi-
viduals with varying IQ levels will be included in the sample.

 (c) Response to intervention (RTI). This method consists of applying the diagnosis 
of dyscalculia only after the response to a series of pedagogical interventions 
has been analyzed. The RTI approach is sound, in the sense that it restricts the 
diagnosis to just those individuals with severe and persistent impairments. RTI 
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is difficult to implement and time- and resource-consuming and makes diagnosis 
dependent on the quality of and the adherence to the interventions  implemented. 
RTI may also delay the access of children with dyscalculia, associated with 
additional medical conditions and/or genetic syndromes, to proper health care.

In summary, the longitudinal approach of RTI has the main advantage of selecting 
cases with persistent and severe impairments. Cross-sectional approaches, such as 
discrepancy and absolute criteria, are required to recruit large enough samples for 
research purposes. In this last case, motivational factors may also act as confound-
ers. Difficulties in dealing with arithmetic are frequently attributable to motivational 
and environmental factors, such as socioeconomic status (SES) and quality of edu-
cation. Children presenting a stronger motivational component may catch up after 
proper stimulation (Wong et al., 2014). Currently, most studies use one or the other 
of the cross-sectional definitions.

As math learning does not occur in a vacuum, social and linguistic contexts must 
also be considered (Gamboa & Waltenberg, 2012; Oliveira-Ferreira, Costa, Micheli, 
Pinheiro-Chagas, & Haase, 2012). Low SES is a risk factor for developmental 
dyscalculia (Gross-Tsur, Manor, & Shalev, 1996). The role of psychosocial speci-
ficities in the development of math abilities is a subject of increasing scientific inter-
est. This may potentially explain both SES and cross-national differences in math 
achievement. As an example, 75% of Brazilian youngsters perform below level II in 
mathematics in the PISA examination (Brazil, Ministry of Education, 2016). This 
figure is 8% in Finland. Correspondingly, heritability estimates vary according to 
the sample sociodemographic composition, being higher in populations with fewer 
social disparities and lower in unequal societies (Bishop, 2015; Turkheimer, Haley, 
Waldron, d'Onofrio, & Gottesman, 2003).

The prevalence of developmental dyscalculia has been estimated to range from 
3.4% (Reigosa-Crespo et al., 2012) to 6.2% (Gross-Tsur et al., 1996). Obviously, 
these figures change according to the cutoff used to define dyscalculia in different 
studies, and prevalence estimates as high as 10% have been described (reviewed by 
Devine, Soltész, Nobes, Goswami, & Szűcs, 2013). A preponderance of females has 
been reported in some studies (Reigosa-Crespo et  al., 2012). Gender differences 
could be related to diagnostic criteria. Prevalence is higher in females when a 
reading- math discrepancy criterion is used (Devine et al., 2013). This may reflect 
the higher linguistic abilities in females.

Dyscalculia is frequently comorbid with dyslexia, attention deficit hyperactiv-
ity disorder (ADHD), autism spectrum disorder, and language impairment 
(Landerl, Göbel, & Moll, 2013; Shalev, Auerbach, & Gross-Tsur, 1995; Stefansson 
et  al., 2014). The comorbidity among these conditions is much higher than it 
would be expected by chance, suggesting a common underlying impairment. As 
an example, some 60% of children with dyscalculia present with dyslexia and/or 
dysorthography, and some 30% of children with dyslexia and/or dysorthography 
present with dyscalculia (Landerl & Moll, 2010). The prevalence of ADHD in a 
sample of individuals with dyscalculia was estimated to be 26% (Gross-Tsur 
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et al., 1996) and of dyscalculia in a sample of individuals with ADHD to be 18% 
(Capano, Minden, Chen, Schachar, & Ickowicz, 2008). Twin studies indicate 
considerable genetic  correlation between these conditions (Hart et al., 2010). As 
a consequence, candidate genes/chromosomal regions and biochemical pathways, 
identified for several neurodevelopmental disorders, are also candidates for 
dyscalculia, as discussed below.

The cognitive foundations of number processing and arithmetic are also 
extremely complex (Hohol, Cipora, Willmes, & Nuerk, 2017). Basic arithmetic rep-
resents the most fundamental aspect of mathematics, and its acquisition requires the 
successful interplay between several neurocognitive systems associated with gen-
eral intelligence; working memory; verbal abilities, including phonological pro-
cessing; visuospatial and visuoconstructional abilities; basic numerical concepts 
and processing abilities; as well as motivational and emotional self-regulation. 
Wilson and Dehaene (2007) proposed a theoretical model of dyscalculia subtypes, 
comprehending (a) basic numerical processing impairments, (b) phonological 
processing impairments, (c) visuospatial/visuoconstructional impairment, and d) 
working memory/executive function impairments. As discussed in the companion 
chapter (Haase & Carvalho, 2018, this volume), these subtypes are useful to identify 
cognitive endophenotypes explaining comorbidities and characterizing math learn-
ing difficulties in genetic syndromes.

Considering the complexity of the underlying mechanisms, research or diagnos-
tic protocols for dyscalculia usually include (a) SES measures; (b) standardized 
math and reading/spelling achievement tests; (c) general cognitive measures such as 
IQ, attention/executive functions, and working memory; (d) handedness and finger 
gnosia; (e) visuospatial and visuoconstructional abilities; (f) reading-related abili-
ties (regular and irregular word and nonword reading, word reading fluency, phone-
mic awareness, etc.); and (g) specific math ability tasks (Arabic number dictation, 
number line, nonsymbolic and symbolic numerical magnitude comparison, estima-
tion, single digit addition, subtraction and multiplication, word problem solving, 
math anxiety and beliefs, etc.). Not surprisingly, large, well-characterized samples 
are difficult to obtain. Not considering the cognitive heterogeneity of developmental 
dyscalculia reduces the power of molecular genetic studies.

 Genetic Susceptibility to Dyscalculia

Usually, first-line evidence for a genetic component comes from reports of pedigree 
analysis, which may suggest Mendelian segregation. To date, no large Mendelian 
pedigree of a pure form of dyscalculia has been described. For many common 
conditions, such Mendelian pedigrees are rare, and the evidence for a genetic com-
ponent comes from familial aggregation (but without a typical Mendelian segrega-
tion pattern) or heritability studies. More recently, molecular genetic evidence has 
become increasingly useful.
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 Familial Aggregation in Dyscalculia

Moderate to strong familial aggregation has been described for developmental 
dyscalculia (Shalev et al., 2001). In a sample composed of 39 affected children, they 
found that 66% of the mothers, 40% of the fathers, 53% of the siblings, and 44% of 
second-degree relatives had developmental dyscalculia. The frequency among sibs 
of affected children was ten times greater than the population frequency. No effects 
of IQ and attention were detected. Familial aggregation was also described in a 
sample of siblings of dyscalculia participants, in a study using number sense tasks 
as phenotypes (Desoete, Praet, Titeca, & Ceulemans, 2013).

Landerl and Moll (2010) investigated the frequency of comorbidity among 
arithmetic, reading, and spelling disorders and reported results for the arithmetic 
disorder in first-degree relatives of children with each one of these phenotypes. 
Recurrence rates in the families of children with pure dyscalculia were 30% for 
dyscalculia plus dyslexia, 22% for pure dyscalculia, and 15% for pure dyslexia. 
These results suggest that dyslexia and dyscalculia share some common genetic 
components but also have some specific ones.

 Heritability of Dyscalculia

Another important approach to characterizing the biological underpinnings of 
numerical processing and arithmetic abilities is seen in behavioral genetic studies. 
Genetic research suggests considerable genetic continuity between typical and atypi-
cal development of numerical and arithmetic abilities (Asbury & Plomin, 2013).

Haworth, Kovas, Petrill, and Plomin (2007), studying a sample composed of 
2178 twin pairs, described heritability for math achievement in the normal and low 
achievement ranges. In the low achievement range (198 MZ and 198 DZ same-sex 
pairs), the heritability values obtained were using and applying (0.70); numbers and 
algebra (0.69); shapes, spaces, and measures (0.74); and composite (0.75). High 
heritability values were also obtained for achievement in the normal range.

Pinel and Dehaene (2013) used fMRI to estimate heritability for brain activation 
while performing calculation tasks in a sample composed of 19 MZ and 13 DZ 
twin pairs. Heritability values in the 0.52–0.66 range were obtained for activation 
of the brain areas involved in calculation tasks. There are also some studies on 
math ability showing similar results (Krapohl et al., 2014). These results suggest 
that math ability and some of its components are influenced by moderate to strong 
genetic factors.

However, methods for assessing the genetic susceptibility to dyscalculia do not 
provide all the needed answers. Familial aggregation studies do not distinguish 
between genetic and environmental influences. Heritability estimates help to parti-
tion variance among distinct environmental and genetic components but apply only 
to the population and not the individual level. Additionally, heritability alone does 
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not help in finding genes, and specific research is necessary to bring the field forward. 
Current genetic-molecular approaches offer straightforward ways to address the 
genetic underpinnings of dyscalculia.

 Gene-Finding Strategies

Currently, there is a routine for investigating the genetic basis of a complex condi-
tion, which includes (a) collecting evidence for the existence of a genetic compo-
nent (familial aggregation, heritability, co-occurrence with genetic syndromes); (b) 
searching for candidate genes in a genome-wide approach, e.g., genome-wide asso-
ciation studies (GWAS), genome-wide linkage analysis (GWLA), genome-wide 
microdeletion and/or microduplication screening, and exome or whole genome 
sequencing; and (c) searching for confirmatory evidence, using additional 
approaches such as replication of association studies, mutation screening in affected 
persons, or functional studies (RNA and protein expression patterns, animal or cel-
lular models). Over the last three decades, the genetic bases of a large number of 
complex phenotypes have been characterized, pointing to new genes and pathways, 
which would not have been discovered without such straightforward strategies. 
However, the success obtained with this routine for investigating depends on the 
phenotype complexity, as we will see below. In the remaining of this section, we 
will focus on two additional strategies for finding genes, genome-wide association 
studies and candidate genes associated with phenotypes that co-occur with 
dyscalculia.

 Genome-Wide Association Studies

Genome-wide association studies (GWAS) are extremely powerful tools for detect-
ing genetic components of a phenotype. The assumption is that, if there are genetic 
predisposing alleles, they are located somewhere in the genome. There are many 
possible approaches to GWAS. In all of them, single nucleotide polymorphisms 
(SNPs) are genotyped throughout the genome. For example, allele frequencies 
obtained for each SNP in a sample of affected persons are compared to the allele 
frequencies in a control group. Alleles presenting different frequencies between the 
groups are considered associated with the phenotype. Considering the large number 
of SNPs tested, correction for multiple testing is necessary. Nevertheless, false- 
positive results are frequent and independent replication is mandatory. A very small 
number of GWAS for math ability/disability have already been published and will 
be considered in some detail here.

Docherty et al. (2010) developed a three-phase study using two samples extracted 
from a twin study. Children were rated using an online test, evaluating  “understanding 
number,” “computation and knowledge,” and “nonnumerical processes” or teacher 
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rating, evaluating “using and applying mathematics,” “numbers and algebra,” and 
“shapes, space, and measures.” Three different scores were constructed, one for the 
online test, one for the teacher ratings, and one combining both. In the first phase, 
two groups of 300 individuals (10-year-old children), representing the low and the 
high ends of the math ability distribution with a cutoff at the 16th percentile, were 
genotyped. In the second phase, two groups of 300 individuals (10-year-old chil-
dren), representing the low and the high ends of the math ability distribution with a 
cutoff at the 20th percentile, were genotyped. In the genotyping, a 500 k SNP array 
was used in pools of 30 individuals of both sexes. In the third phase, 46 SNPs, which 
reached significance in the first and second phases, were genotyped individually in 
a sample of over 2000 children, representing the complete range of math ability. 
After the third phase, significant (Bonferroni corrected) associations were detected 
for three genes: MMP7, GRIK1, and DNAH5.

MMP7 encodes a protein that degrades components of the extracellular matrix. 
It has been associated with cancer, including brain tumors, among other conditions. 
In mice neurons, high levels of MMP7 protein inhibit NMDA-stimulated calcium 
flux, affecting synapsis function (Szklarczyk et  al., 2008). Also in mice, MMP7 
mutations reduce the ability of cochlear cells to deal with acoustic trauma (Hu et al., 
2012). No evidence of a role in learning has been published. GRIK1 encodes the 
neuronal glutamate receptor subunit GluR-5 (or kainate receptor subunit 1) and has 
been implicated in the releasing of both glutamate and gamma-aminobutyric acid 
and has been associated with psychiatric conditions, including schizophrenia 
(review by Choi, Zepp, Higgs, Weickert, & Webster, 2009) and early-onset obesity 
(Serra-Juhé et al., 2017). This gene is expressed in the prefrontal cortex in the first 
5 years of life (Choi et al., 2009). DNAH5 encodes the dynein axonemal heavy chain 
5 protein. Mutations in DNAH5 cause primary ciliary dyskinesia. DYX1C1 and 
DCDC2, two genes associated with dyslexia, also cause primary ciliary dyskinesia. 
These genes are involved in the function of the primary cilium. During the embryonic 
development, specific groups of cells act as organizer centers (or nodes) regulating 
the fate and differentiation of the neighbor cells. These cells secrete signaling mol-
ecules which are set in movement by the primary cilia. The primary cilium is 
responsible for axon and cell migration (Kere, 2014; Tammimies et al., 2016; Tarkar 
et al., 2013). Another gene involved in the function of the primary cilium, PCSK6, 
is implicated in hemispheric lateralization and dyslexia (Paracchini, Diaz, & Stein, 
2016). No other study has implicated MMP7, GRIK1, or DNAH5 in dyscalculia.

Ludwig et al. (2013) reported a GWAS for math difficulties. They used five 
samples of approximately 200 children each, with two samples of dyslexics and one 
of controls from Germany and one sample of dyslexics and one of controls from 
Austria. Evaluated phenotypes included number judgment and mathematical calcu-
lation and the depth of the intraparietal sulcus (IPS), assessed using structural 
MRI. One significant p-value (p = 8.8 × 10−10) was replicated among the samples. 
Under the dominant model, rs133885 yielded an estimated effect size of approxi-
mately 5%. The gene is MYO18B. rs133885 mediates an amino acid substitution in 
the MYO18B protein. Carriers of the GG genotype presented lower performance in 
the number judgment task and displayed a significantly lower depth and volume of 
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the right IPS. Mutations in this gene have been associated with nemaline myopathy 
(Malfatti et al., 2015) and malignancies (Nishioka et al., 2002).

In a subsequent study, no association of rs133885 and dyscalculia or math ability 
was detected (Pettigrew et al., 2015). Pettigrew and coworkers’ study included large 
samples from five cohorts, some composed of children with dyscalculia, one 
composed of children with specific language impairment, and some composed of 
unaffected children.

Baron-Cohen et al. (2014) developed a GWAS using a sample composed of high 
school and university students. There were 419 students who obtained grades of 
A or A* in the British General Certificate Standard Examination (GCSE) for math-
ematics and 183 students who obtained grades of C or lower. Genotyping was car-
ried out using a 900 k SNP platform and same-sex pools of 30 individuals, composing 
high and low performance groups. No SNP reached genome-wide significance. 
The authors selected 15 SNPs, which reached p < 1.5 × 10−5, to be individually 
genotyped in a confirmatory sample composed of 375 high and 167 low math 
groups. Only one SNP (rs789859) was significantly associated with math ability. 
This SNP maps within the promoter of FAM43A (family with sequence similarity 43 
member A) and also close to LSG1 (large 60S subunit nuclear export GTPase 1). 
These genes map to 3q29. Microdeletions and microduplications in this region have 
been associated with autism, schizophrenia, and intellectual disability (Nava et al., 
2014; Sagar et al., 2013; Willatt et al., 2005). In S. cerevisiae, LSG1 is a GTPase 
required for the export of the 60S ribosomal subunit from the nucleus to the cyto-
plasm. FAM43A encodes for a protein of unknown function.

Chen et al. (2017) described a GWAS developed using three independent cohorts, 
with 494 and 504 individuals in the discovery and 599 individuals in the confirma-
tory phases. Participants were Chinese children (7–13 years old), and the pheno-
types were the grades on midterm and final exams. Children with IQ below the 25th 
percentile were excluded. Genotyping was carried out using a 1.2 million SNP plat-
form and samples were genotyped individually. SNPs with p-values <1.0 × 10−5 
were selected for confirmation. A meta-analysis was conducted combining signifi-
cant results from the three cohorts. After the meta-analysis, five SNPs in the gene 
SPOCK1 reached p < 10−9. SPOCK1 maps to 5q31.2 and encodes testican-1, a pro-
tein associated with tumor progression and prognosis, as well as neurogenesis. 
SPOCK1 protein is associated with epithelial-mesenchymal transition, a change in 
cell behavior needed for migration in both metastasis and neurodevelopment. Using 
exome, a mutation in SPOCK1 was detected in a female patient presenting intel-
lectual disability, dyspraxia, dysarthria, partial agenesis of the corpus callosum, 
prenatal-onset microcephaly, and atrial septal defect with an aberrant subclavian 
artery. These findings support the hypothesis that subtle variations in SPOCK1 may 
underlie a condition such as dyscalculia.

In conclusion, there are few studies and no SNP-candidate gene association has 
been replicated. Most of these studies do not have ideal designs, considering 
diagnostic criteria, sample size, and sample homogeneity. DNA pooling was used to 
reduce costs. However, not knowing the per-person SNP frequencies prevents the 
use of the most powerful strategies available for GWAS, e.g., combining neighboring 
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SNPs into haplotypes, which work as barcodes for each region. This approach was 
used successfully by Chen et al. (2017).

Independently of technical issues, some phenotypes are harder to investigate, and 
dyscalculia/math learning ability may be among them. Dyscalculia is etiologically 
heterogeneous, including, in some cases, strong environmental effects. Therefore, 
samples also tend to include subjects with low genetic susceptibility. In addition, pre-
cise diagnosis of developmental dyscalculia depends on extensive neuropsychological 
examination. Large, well-characterized population samples, enriched for subjects 
with strong genetic susceptibility, as needed for GWAS, are hard to obtain. Although 
difficult, the search for the genetic components of dyscalculia is fundamental to 
understanding the underlying cellular/molecular processes.

 Candidate Genes from Comorbidities

Dyscalculia has been a difficult phenotype to deconstruct, because it includes large 
numbers of components or endophenotypes. In addition, developmental dyscalculia 
presents frequently in comorbidity with common conditions such as dyslexia, specific 
language impairment, ADHD, autism, intellectual disability (ID), schizophrenia, 
and others.

One important question raised by Ashkenazi, Black, Abrams, Hoeft, and Menon 
(2013) deals with the partial overlap of the neurobiological underpinnings of devel-
opmental dyscalculia and dyslexia. Extensive research on dyslexia has implicated a 
circuit that includes the left cortical areas in the infero-lateral occipitotemporal 
transition, the temporoparietal junction, and the frontal operculum. These areas 
largely overlap those recruited by symbolic numerical processing and verbal calcu-
lation operations. Considering the partially overlapping neural substrate and the 
high frequency of co-occurrence of dyscalculia and dyslexia, the number of studies 
specifically investigating the genetics of the mechanisms underlying this associa-
tion is low.

Some studies have been conducted investigating the contribution of copy number 
variations (CNVs) to learning disabilities. CNVs include microdeletions and micro-
duplications which may occur throughout the genome. They are common causes of 
intellectual disability, autism, and schizophrenia. The 15q11.2 (BP1–BP2) microde-
letion confers a four times higher risk for the dyslexia and dyscalculia phenotype. 
This deletion is also associated with smaller volumes of both gray and white matter 
structures, as well as reduced activation of brain regions important for reading and 
arithmetic, observed using MRI (Stefansson et al., 2014; Ulfarsson et al., 2017).

Some of the genes associated with dyslexia have been investigated for pleiotro-
pic effects on math learning. For example, association between DCDC2 and 
“numerical facts” was detected in a sample of 85 informative families, with a genetic 
effect  =  0.57%. Association between DYX1C1 and “mental calculation” was 
detected in a sample of 40 informative families, with a genetic effect of 0.65% 
(Marino et al., 2011). As referred above, DCDC2 and DYX1C1 are involved in the 
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functioning of the primary cilium. The cilium is involved in many developmental 
functions, including the establishment of the left-right body axis and axon and neu-
ronal migration (reviewed by Kere, 2014, Brandler & Paracchini, 2014, Trulioff, 
Ermakov, & Malashichev, 2017). During development, groups of cells secrete sig-
naling molecules that diffuse to regulate differentiation of other cells in the neigh-
borhood. These molecules are set in motion by the beating of the cell cilia. Left-right 
asymmetries are also fundamental to the specialization of the brain areas required 
for number processing and calculation. Cilia defects have been described in dys-
lexia, among many other conditions. Not surprisingly, “numerical facts” and “men-
tal calculation,” the phenotypes associated with these genes, are situated in the 
interface between number and word processing.

 Perspectives

Comparing with other topics related to education (e.g., intellectual disability, 
autism, dyslexia, and ADHD), the progress in understanding dyscalculia has been 
slow. Patients with pure forms of dyscalculia are difficult to find. In addition, fami-
lies, in which the phenotype segregates, which have been useful in mapping dys-
lexia genes, seem to be less common in dyscalculia.

However, the main point concerns to the phenotype. As discussed in the compan-
ion chapter (Haase & Carvalho, 2018, this volume), dyscalculia has subtypes and 
endophenotypes. In addition, there are non-genetic forms of dyscalculia. Heterogeneity 
is frequent in most phenotypes. Here, a very useful concept is trait architecture. 
Different phenotypes will have different trait architectures. For example, one trait may 
be produced by one or a small number of major effect genes. Others may be produced 
by a large number of minor genes, each one with a small effect. Heterogeneity also 
implies that different individuals have the same phenotype with different trait archi-
tectures, e.g., in one child dyscalculia is caused by a microdeletion, in another by a 
single gene mutation, and in another by no detectable gene.

Therefore, we need to move our attention to more specific components or 
endophenotypes of dyscalculia, intermediate between the etiologic and the pheno-
typic level. An ideal endophenotype should be specific (not common to other condi-
tions and in unaffected persons), early in manifestation, relatively independent of 
formal education, easy to score, and as close as possible to the biological substrate 
of the phenotype in investigation. The cognitive impairments underlying the sub-
types of dyscalculia proposed by Wilson and Dehaene (2007) are serious candidate 
endophenotypes. Examining their role in the math difficulties of genetic syndromes 
could be an efficient approach.

Dissecting connections between genes, endophenotypes, and phenotypes will 
help to reduce the analytic complexity; but it will certainly not solve the problem for 
one and for all. This situation is analogous to the discovery of the DNA structure or 
the genome projects. Great expectations were associated with these scientific 
advances. To date, we still have not solved all the mysteries related to the definition 
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and origins of life and its diversity. However, we have learned so much that life is 
no longer considered a mysterious process but, rather, a subject perfectly amenable 
to scientific investigation. In the end, endophenotypes may prove not to be the key 
to dissecting all existing connections between genotype and phenotype. However, 
throughout this process, we will continue to learn a lot. We are already learning. 
Advances in genetics allow us to diagnose and discover an increasing number of condi-
tions associated with math learning difficulties, to discover and characterize specific 
patterns of impairment, and to plan more efficient educational interventions.
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Chapter 22
Genetics of Dyscalculia 2: In Search 
of Endophenotypes

Maria Raquel S. Carvalho and Vitor Geraldi Haase

 Introduction

Molecular genetic approaches developed over the last two decades will help in the 
identification of genes underlying developmental dyscalculia. So far, progress has been 
limited by the heterogeneity of the phenotype and patterns of comorbidity (Carvalho & 
Haase, 2018, this volume). In this chapter, we review the co- occurrence of math learn-
ing difficulties in genetic syndromes as an approach to characterize specific endophe-
notypes involved in problems with math. Cognitive endophenotypic analysis is 
discussed as a gene-finding strategy. First, we discuss the concept of endophenotype 
and its relevance to the phenotypic characterization of developmental dyscalculia in 
genetic studies. Second, we discuss five syndromes caused by different genetic mecha-
nisms as potential models of the endophenotypes implicated in dyscalculia. Finally, we 
discuss educational implications, potentially relevant to the classroom.

 Cognitive Endophenotypes of Dyscalculia

One way to reduce the complexity, in order to disentangle genotypic-phenotypic 
correlations underlying math ability and disability, is to use the concept of endophe-
notypes (Bishop & Rutter, 2009). As implicit in the name, endophenotypes are 
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intermediate phenotypes arising in the complex epigenetic pathways between the 
interaction of genetic and environmental experiences and the phenotypic expression. 
Endophenotypes can be characterized at multiple levels through cognitive, neural, 
and molecular analyses. According to this view, the phenotypic expression could be 
understood as resulting from a network of interacting endophenotypes. Dissecting 
the molecular genetic bases of the endophenotypes could facilitate the discovery of 
the genotypic-phenotypic links. In this vein, genetic research on math abilities and 
disabilities would aim at characterizing the relevant endophenotypes.

Research on the endophenotypes of math ability is relevant to the understanding of 
the subtypes and the most frequent patterns of comorbidity of developmental dyscalcu-
lia. In an influential theoretical work, Wilson and Dehaene (2007) identified four cogni-
tive endophenotypes corresponding to four subtypes of developmental dyscalculia: 
basic number processing, phonological processing, visuospatial processing, and work-
ing memory/executive function processing. Next, we discuss the four cognitive endo-
phenotypes potentially underlying the heterogeneity of manifestations of dyscalculia.

 Basic Number Processing

Research on numerical cognition goes under the assumption that basic numerical 
processing is an important precursor to arithmetic learning (Siegler & Braithwaite, 
2017). Numerical processing refers to the ability to quantify the numerosity of sets 
and to transcode between different numerical notations. Numbers are represented 
using two main notations: nonsymbolic and symbolic. Accurate nonsymbolic 
numerical representations up to four are implemented by visual attentional pro-
cesses in a parallel individuation, object tracking, or object file system (OFS, Hyde 
& Spelke, 2011). The ability to accurately quantify sets up to four elements is called 
subitizing and seems to depend on visual attentional rather than numerical processes. 
Numerosities larger than four are represented approximately in analogical format by 
means of a spatially oriented mental number line implemented in an approximate 
number system (ANS, Dehaene, 1992, Dehaene & Cohen, 1995). The symbolic 
numerical notations comprise phonological and orthographic verbal notations and 
the visual Arabic system. Accurate quantification is possible by means of the OFS up 
to numerosities of four and by means of verbal counting with larger sets. The ANS 
allows for approximate estimation of larger numerosities.

ANS has attracted much attention as a precursor to arithmetic because it repre-
sents a core conceptual system, effective from infancy on, and shared with other 
animal species. ANS obeys the basic psychophysical laws of Weber and Fechner, 
explaining several effects in numerical processing (Dehaene, Dupoux, & Mehler, 
1990). The distance and ratio effects correspond to the Weber law: it is increasingly 
more difficult to discriminate numerosities as the numerical difference between 
them decreases. This corresponds to a scalar or ratio distribution with a just notice-
able difference corresponding to a constant, the Weber fraction. The size effect 
corresponds to the Fechner law: it is increasingly more difficult to discriminate 
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between larger than between smaller numerosities. This is explained by the logarithmic 
 compression characteristic of the function that fits between the stimuli numerosities 
and their mental representations. The distance, ratio, and size effects suggest an ana-
logic representation of numbers on a spatially oriented mental number line. In addi-
tion, it is easier to react to small digits with the left hand and to larger digits with the 
right hand, corresponding to the spatial-numerical association of response codes or 
SNARC effect (Dehaene, Bossini, & Giraux, 1993).

The role of nonsymbolic over symbolic numerical processing as a precursor of 
arithmetic ability and as a marker of disability is controversial. According to one 
perspective, the ANS (Piazza, 2010) or a number module (Butterworth, 2010) is a 
powerful source of influence. Another influential perspective reinforces the role of 
linking rote verbal counting skills with numerosities in the subitizing range as a 
decisive factor in the development of the number concept (Le Corre & Carey, 2007). 
Impairments of number processing in the subitizing range have been observed in 
some studies (Bruandet, Molko, Cohen, & Dehaene, 2004; Koontz & Berch, 1996; 
Landerl, Bevan, & Butterworth, 2004). Other evidence points to an association 
between ANS accuracy and both typical (Halberda, Mazzocco, & Feigenson, 2008) 
and atypical math achievement (Mazzocco, Feigenson, & Halberda, 2011; Piazza 
et al., 2010; Pinheiro-Chagas et al., 2014). This association between math achieve-
ment and ANS accuracy has not been confirmed by other studies (De Smedt & 
Gilmore, 2011; Rousselle & Noël, 2007). Other evidence indicates that symbolic 
over nonsymbolic number processing is the crucial predictor of math achievement 
(Geary, Bailey, & Hoard, 2009; Nosworthy, Bugden, Archibald, Evans, & Ansari, 
2013; Vanbinst, Ceulemans, Peters, Ghesquière, & De Smedt, 2017). Extant meta- 
analyses indicate that both nonsymbolic and symbolic number processing accuracy 
are weakly correlated with math achievement (Chen & Li, 2014; Fazio, Bailey, 
Thompson, & Siegler, 2014; Schneider et al., 2017). Correlations are slightly stron-
ger for symbolic processing.

An interesting pattern of dissociation was observed by Rousselle and Noël 
(2007). Children with dyscalculia presented impairments in symbolic but not in 
nonsymbolic number processing (see also De Smedt and Gilmore 2011). This led to 
the formulation of the access hypothesis of dyscalculia (De Smedt & Gilmore, 2011; 
Noël & Rousselle, 2011; Rousselle & Noël, 2007). According to this hypothesis, 
number processing impairments in dyscalculia could be ascribed either to a represen-
tational inaccuracy in the ANS or to difficulty in automatizing connections and 
accessing nonsymbolic quantitative representations from symbolic numerals.

Assessment of ANS accuracy is plagued by several methodological constraints, such 
as covariation between nonsymbolic discrete and continuous magnitudes (Leibovich, 
Katzin, Harel, & Henik, 2017). Studies differ widely in their measures, designs, and 
samples. So, it is difficult to draw definite conclusions. However, additional evidence 
indicates that it is discrete rather than continuous nonsymbolic magnitude representa-
tions that associate with math achievement (Anobile, Castaldi, Turi, Tinelli, & Burr, 
2016). It is also noteworthy that single case studies have been published in which an 
ANS impairment was the most probable determinant of math learning difficulties 
(Davidse, de Jong, Shaul, & Bus, 2014; Haase et al., 2014; Júlio-Costa, Starling-Alves, 
Lopes-Silva, Wood, & Haase, 2015; Ta’ir, Brezner, & Ariel, 1997).
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 Phonological Processing

Several arithmetic abilities are heavily dependent on verbal processing, such as number 
reading and writing, arithmetic facts learning, and word problem solving. In the case of 
Arabic number dictation, the verbal numerals must be temporarily stored and decoded 
in the phonological format (Barrouillet, Camos, Perruchet, & Seron, 2004). It has been 
proposed that phonological processing impairments could be an underlying mecha-
nism explaining math learning difficulties in individuals with dyslexia (Simmons & 
Singleton, 2008). Evidence suggests that phonological processing  – encompassing 
rapid automatized naming, phonological short-term memory, and phonemic aware-
ness – could be a critical cognitive mechanism shared by the reading and writing of 
words and numbers (Lopes-Silva et al., 2016; Lopes-Silva, Moura, Júlio-Costa, Haase, 
& Wood, 2014). Phonological processing abilities are thus important candidates for an 
endophenotype explaining both math learning and the connection between arithmetic 
and reading/spelling disorders. Research should, ideally, elucidate the molecular 
genetic basis of each component of phonological processing.

 Visuospatial and Visuoconstructional Abilities

Visuospatial and visuoconstructional abilities are crucial for several arithmetic 
tasks. Multidigit calculation, for example, depends on the ability to spatially orga-
nize the execution of the algorithm, maintaining the alignment of the columns and 
rows (Raghubar et al., 2009). Spatial working memory also plays an important role 
in the carrying and borrowing operations between columns (Mammarella, Caviola, 
Giofrè, & Szűcs, 2017; Passolunghi & Mammarella, 2012). Spatial forms of acalcu-
lia in adults are well established (Benavides-Varela et al., 2017; Granà, Hofer, & 
Semenza, 2006; Hartje, 1987). Characterization of a visuospatial form of dyscalcu-
lia remains elusive (Barnes & Raghubar, 2014; Wilson & Dehaene, 2007). It is 
noteworthy that a condition referred to as nonverbal learning disability (NLD) pres-
ents both arithmetic and visuospatial impairments (Cornoldi, Mammarella, & Fine, 
2016). Some genetic syndromes such as Turner syndrome (TS), velocardiofacial 
syndrome (VCFS), and Williams syndrome (WS) are considered causes of NLD 
(Cornoldi et al., 2016).

 Working Memory

Impairments in working memory, most notably in the central executive component, 
are an important cognitive marker of developmental dyscalculia (Bull & Lee, 2014; 
Raghubar, Barnes, & Hecht, 2010). Every new acquisition in arithmetic learning 
imposes heavy demands on the storing and controlled processing of information in 
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working memory, such as verbal counting (Camos, Barrouillet, & Fayol, 2001), 
single-digit operations and facts learning (De Visscher & Noël, 2014), transcoding 
(Camos, 2008; Moura et  al., 2013), multidigit calculation (Trbovich & LeFevre, 
2003), and word problem solving (Andersson, 2007; Costa et al., 2011).

The construct of working memory is extremely complex. The term working 
memory refers to the limited capacity to temporarily store information in order to 
consciously process it or to control behavior. The influential multistore model 
assumes the existence of several distinct mechanisms, related, respectively, to short- 
term store of phonological, visual, and visuospatial information and with the control 
or executive processes (Baddeley, 2000; Baddeley & Hitch, 1974). The newer 
version of the model assumes an episodic buffer related to binding of information 
represented in multiple formats and interactions with long-term memory. The epi-
sodic buffer has not been researched in the context of numerical cognition. 
Mechanisms implemented by the central executive are related to dual-task processing, 
information updating, concurrent inadequate response inhibiting, and set-shifting 
(Miyake, Friedman, Emerson, Witzki, & Howerter, 2000).

The multistore model is complex, and virtually every single syndromic and non-
syndromic neurodevelopmental disorder presents with working memory deficits 
(Johnson, 2012). These are major obstacles for considering working memory as a 
possible endophenotype of developmental dyscalculia. Johnson (2012) suggested 
that a learning disability results when an individual has a specific deficit in one 
cognitive domain and general processing resources in working memory are insuf-
ficient to compensate for the difficulties. In this vein, dyscalculia would be explained 
by a deficit in some specific endophenotype such as numerical, phonological, or 
visuospatial processing that cannot be compensated by general cognitive resources. 
Accordingly, executive impairments in working memory are conceived as an 
endophenotype shared by distinct neurodevelopmental disorders.

We now turn our attention to evidence of a genetic basis for dyscalculia obtained 
from the analysis of some genetic conditions, such as chromosomal abnormalities, 
genomic disorders, and single-gene diseases.

 Chromosomal Abnormalities

Two chromosomal aneuploidies will be discussed, the Turner and Klinefelter 
syndromes.

 Dyscalculia in Turner Syndrome

Turner syndrome is a chromosomal disorder that affects females and refers to the set 
of signs and symptoms caused by the complete or partial deletion of the second 
sexual chromosome. Chromosomal mosaicisms are also frequent and may include 
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lineages with a Y-chromosome, e.g., in a 45,X/46,XY karyotype. Additional mecha-
nisms are X-autosomal translocations, ring X-chromosome, X-isochromosome, and 
a wide range of microdeletions.

Fine mapping of X-chromosomal microdeletions has implicated the pseudoauto-
somal region on X (PAR1; Xp22.3) as the candidate region for the Turner syndrome 
cognitive phenotype. The pseudoautosomal regions are good theoretical candidates 
because the genes in these regions have homologues on the Y-chromosome. This 
suggests that two copies of these genes are necessary. The PAR1 region includes at 
least 32 genes, but clear evidence of a specific association for one of them and for 
the Turner syndrome cognitive phenotype has not yet been published (Ross, 
Roeltgen, Kushner, Wei, & Zinn, 2000; Zinn et al., 2007). Considering the complex-
ity of the X-chromosome and autosomal interactions, the phenotypes described here 
may reflect a direct effect of genes on the X-chromosome or the deregulation of 
genes elsewhere.

As a consequence of the diversity of karyotypes, clinical manifestations vary 
among affected individuals. The most frequent clinical manifestations are heart 
congenital malformation and/or aortic dilatation, short stature, hearing impair-
ment, and infertility due to premature ovarian insufficiency. Quality of life can be 
effectively improved by proper care (Gravholt et  al., 2017). The frequency of 
Turner syndrome is estimated to be from 1:2000 to 1:4000 females. Several stud-
ies have described the cognitive profile of children with Turner syndrome. 
Intelligence is usually in the normal range (Mazzocco, 2007). They may present 
attention deficit hyperactivity disorder (ADHD), specific learning disorders, 
social communication disorder, autism spectrum disorder, and developmental 
coordination disorder.

Except for the absence of phonological processing deficits (Temple & Shephard, 
2012), the Turner syndrome cognitive phenotype encompasses all the other postu-
lated endophenotypes of developmental dyscalculia. Females with Turner syndrome 
present a 50% prevalence of dyscalculia (Murphy, Mazzocco, Gerner, & Henry, 
2006). Impairments in executive (Kirk, Mazzocco, & Kover, 2005) and visuospatial 
functions (Mazzocco, Singh Bhatia, & Lesniak-Karpiak, 2006; Temple & Carney, 
1995) are also common. A discrepancy between high verbal and low performance IQ 
is characteristic (Mazzocco, 2007). Dyscalculia in Turner syndrome is related to defi-
cits in speeded processing and calculation (Baker & Reiss, 2016), subitizing in some 
(Bruandet et al., 2004) but not all studies (Simon et al., 2008), and symbolic number 
processing, also in some (Brankaer, Ghesquière, De Wel, Swillen, & De Smedt, 
2016; Simon et  al., 2008) but not all studies (Baker & Reiss, 2016; Zougkou & 
Temple, 2016). Results are also discrepant regarding the association (Brankaer et al., 
2016) or dissociation (Mazzocco et al., 2006) between number and visuospatial 
processing impairments. In summary, there is evidence for impairment of three 
dyscalculia endophenotypes in Turner syndrome. They are executive function, 
number processing, and visuospatial processing. It is not known whether and how 
these endophenotypes are related in Turner syndrome.
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 Dyscalculia in Klinefelter Syndrome

Klinefelter syndrome is a genetic condition having, in most cases, a 47,XXY karyo-
type; more complex (48,XXXY, 48,XXYY), isochromosome (47,iXq,Y) and mosa-
icism (e.g., 47,XXY/46,XY) are seen in 10–20% of cases (Bonomi et al., 2017). 
The frequency of Klinefelter syndrome ranges from 0.1% to 0.2% of newborn males 
but is higher in specific groups, such as azoospermic men. The phenotype is highly 
variable and most cases remain undiagnosed. From puberty on, symptoms become 
more prominent and reflect direct effects of an extra X-chromosome and/or low 
testosterone levels including small testis, eunuchoid skeleton, gynecomastia, sparse 
body hair with female distribution, impaired sexual desire, impaired erectile func-
tion, language and speech disabilities, and low but normal IQ.

Klinefelter syndrome is proposed as a model of the phonological endophenotype 
underlying math difficulties associated with dyslexia, although evidence is not always 
compelling. Executive dysfunction is characteristic of Klinefelter syndrome (van Rijn 
& Swaab, 2015), but this kind of impairment is shared with almost all other forms of 
neurodevelopmental disorders. Visuospatial abilities are spared in Klinefelter syn-
drome (Bender, Harmon, Linden, Bucher-Bartelson, & Robinson, 1999; Ross et al., 
2008). The most salient cognitive feature is the impairment in verbal abilities. Earlier 
reports called attention to the importance of Klinefelter syndrome as a cause of devel-
opmental dyslexia (Bender, Puck, Salbenblatt, & Robinson, 1986; Pennington, 
Bender, Puck, Salbenblatt, & Robinson, 1982). More recent investigation has con-
firmed the impairment not only of reading but also of arithmetic achievement (Ross, 
Zeger, Kushner, Zinn, & Roeltgen, 2009; Rovet, Netley, Keenan, Bailey, & Stewart, 
1996). The cognitive profile of math impairment in Klinefelter syndrome remains 
unknown, as reports have focused on standardized and not on theoretically grounded 
tasks. In one study, phonemic awareness was not impaired (Bender, Linden, & 
Harmon, 2001). Klinefelter syndrome is characterized by low achievement in reading 
and math. It remains to be investigated if there is an underlying mechanism explaining 
the co-occurrence of these impairments in Klinefelter syndrome.

 Genomic Disorders

Copy number variations (CNVs) in specific regions of the genome tend to recur and, 
if associated with recognizable patterns of congenital malformations, allow the 
identification of specific microdeletion and/or microduplication syndromes. CNVs 
are common in genomic regions enriched for segmental duplications, which are 
long repetitive elements that mediate nonhomologous pairing. Nonhomologous 
pairing favors unequal crossing over, resulting in nonallelic homologous recombi-
nation and causing gain or loss of the chromosomal segments between them. 
Dyscalculia has been described in several genomic disorders, e.g., Williams-Beuren, 
22q11.2 and 15q11.2(BP1–BP2) deletion syndromes.
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 Dyscalculia in 22q11.2 Deletion Syndromes

Dyscalculia has been particularly well characterized in 22q11.2 deletion syndrome 
(22q11.2DS) or velocardiofacial syndrome (VCFS). This chromosomal region is 
divided according to the segmental duplications present, which are named LCR22 
(for low copy repeats in chromosome 22). In approximately 90% of cases, VCFS is 
caused by the deletion of the segment between LCR22-2 (also known as LCR22-A) 
and LCR22-4 (or LCR22-D). This interval is also referred to as the 22q11.2 typi-
cally deleted region (TDR). In 8% of cases, the deletion spans the segment between 
LCR22-2 and LCR22-3a (or LCR22-C). Only a small percentage of the cases do not 
coincide with these boundaries (for a review, see Carvalho et  al. (2014)). Main 
symptoms include congenital heart malformations, developmental delay (particu-
larly speech delay), intellectual disability, submucous cleft palate, hypernasal 
speech, and schizophrenia in the late teens, although none of them is obligatory 
(McDonald-McGinn et al., 2015; Shprintzen, 2008).

Approximately, 20 patients have been reported with deletions spanning the seg-
ment between LCR22-4 (or LCR22-D) and LCR22-5 (or LCR22-E). These dele-
tions do not overlap the LCR22-2 to LCR22-4 interval and do constitute a newly 
described syndrome, characterized by prematurity, congenital heart defects, subtle 
facial dysmorphisms, and developmental delay (particularly speech delay), among 
others. Intelligence was normal in 2 of the 20 cases, and they both presented with 
dyscalculia (Carvalho et al., 2014). Nine additional patients with this microdeletion 
have been reported subsequently (Lindgren et  al., 2015; Mikhail et  al., 2014). 
Developmental delay, intellectual disability, and psychiatric conditions including 
autism, bipolar disorder, and schizophrenia are frequently seen. In synthesis, we 
have two different syndromes caused by deletions of two contiguous and nonover-
lapping regions on 22q11.2. Both are associated with dyscalculia.

Genotypic-phenotypic correlations have been established for some phenotypes 
in 22q11.2, particularly concerning the 22q11.2 TDR. There is a good amount of 
evidence associating congenital heart malformations with TBX1 and psychiatric dis-
orders with COMT and PRODH. COMT has also been associated with ANS accu-
racy and dyscalculia (Júlio-Costa et al., 2013). ANS accuracy (usually assessed by 
nonsymbolic number magnitude comparison of dot sets) is associated with poly-
morphisms of the COMT gene, regulating the bioavailability of dopamine in the 
synapses of the prefrontal and parietal cortices (Júlio-Costa et al., 2013). The COMT 
val158met polymorphism has also been proposed as a mechanism underlying 
 working memory performance (Dumontheil et al., 2011). The COMT gene maps to 
the 22q11.2 region deleted in the velocardiofacial syndrome. The specific working 
memory components associated with the val158met polymorphism remain to be 
elucidated (Karayiorgou, Simon, & Gogos, 2010; Karlsgodt, Bachman, Winkler, 
Bearden, & Glahn, 2011).

Intelligence is in the normal range in 50% of individuals with VCFS (De Smedt 
et al., 2007). Those individuals with normal intelligence present a higher prevalence 
of the nonverbal learning disability profile, characterized by math, motor, visuospatial, 
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and social-pragmatic impairments (Schoch et al., 2014). Visuospatial impairments 
are a hallmark of VCFS (Antshel et al., 2008; Simon et al., 2005; Simon, Bearden, 
McDonald-McGinn, & Zackai, 2005). Phonological short-term memory is spared 
(De Smedt et al., 2009).

Math impairments have been observed in single-digit, multidigit, and word 
problem- solving abilities in VCFS (De Smedt et al., 2008). Both symbolic (De Smedt 
et  al., 2009) and nonsymbolic number comparisons (Attout, Noël, Vossius, & 
Rousselle, 2017; Oliveira et al., 2014) are impaired in VCFS. Several studies have 
indicated that basic number processing impairments in VCFS could be reduced to an 
underlying visuospatial deficit (Simon, Bearden, et  al., 2005, Simon, Bish, et  al., 
2005; see review in Simon (2008)). Control of visuospatial abilities in VCFS did not 
attenuate number processing impairments in one study (Brankaer et  al., 2016). In 
another study, an ANS accuracy impairment was observed in the visuospatial modal-
ity but not in the auditory modality (Attout et al., 2017). The relative importance of 
symbolic vs. nonsymbolic number processing for math achievement and the connec-
tion to visuospatial processing in VCFS remain important research questions.

 Dyscalculia in Williams Syndrome

The Williams syndrome (or Williams-Beuren syndrome) is characterized by dis-
tinctive facial features including wide forehead, puffy eyes, short nose with broad 
tip, full cheeks, wide mouth with full lips, and small, widely spaced teeth. Congenital 
heart malformations are frequent, and the most common defects are supravalvular 
aortic stenosis and peripheral pulmonary stenosis. They may present hypertension 
and endocrine abnormalities (hypercalcemia, hypercalciuria, hypothyroidism, and 
early puberty) and short stature. Hyperacusis is frequent. Williams syndrome is a 
highly heterogeneous and complex condition from the neuropsychological point of 
view. IQ is normal in half of the individuals (Pitts & Mervis, 2016). The cognitive- 
behavioral phenotype in individuals with normal IQ includes hypersociability, anxi-
ety proneness, interest in music, and impairments in motor, executive, visuospatial, 
syntactic, and pragmatic-discursive abilities, in addition to a relatively spared 
phonological- semantic lexicon (Vandeweyer, Van der Aa, Reyniers, & Kooy, 2012).

Williams syndrome is caused by recurrent deletions in 7q11.23. LCRs are also 
common in this region, and the most common deletions in the Williams syndrome 
region are 1.55–1.8 Mb. The size of the deletion depends on which LCRs are involved 
in nonallelic homologous recombination. At least 28 genes map to the Williams syn-
drome region, including the elastin (ELN) gene, which is associated with the con-
genital heart malformations and also with other symptoms of WS. ELN mutations 
cause autosomal dominant supravalvular aortic stenosis in some families, without 
typical Williams syndrome, suggesting that other genes in the Williams syndrome 
typically deleted region cause the other clinical manifestations of this syndrome. 
Small 7q11.23 deletions helped in the search for genotypic-phenotypic correlations, 
and some candidate genes emerged: GTF2IRD1 and BAZ1B (craniofacial features), 
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STX1A and MLXIPL (diabetes mellitus), and GTF2IRD1 (cognitive symptoms) 
(reviewed by Vandeweyer et al. (2012)). Most cases are sporadic, but some autoso-
mal dominant families have been described.

Molecular mechanisms underlying Williams syndrome are being investigated in 
cell cultures of Williams syndrome neurons obtained by reprogramming mature 
cells into self-renewing, induced pluripotent stem cells (iPSCs). For example, one 
of the genes in the Williams syndrome region, BAZ1B (also known as Williams 
syndrome transcription factor), has been associated with both neurogenesis and 
neuron differentiation. BAZ1B deletions have induced a transcription dysregulation 
in Williams syndrome-induced neurons, with over 700 downregulated and over 
1000 upregulated genes. Dysregulation altered the transcription profiles of genes 
implicated in cognition, synaptic transmission, and intellectual disability (e.g., 
CACNA1C, GABRG2, GRIN3A, NLGN3) and genes implicated in axon guidance 
and formation of neuronal projections; delta-catenin (CTNND2) and KANSL1 are 
associated in the literature with the expression “conspicuously happy disposition,” 
meaning that BAZ1B may be implicated in the personality traits of persons with 
Williams syndrome. BAZ1B deletion explains almost 42% of the transcriptional 
deregulations observed in Williams syndrome cells (Lalli et al., 2016).

Duplications of the Williams syndrome region have been associated with autism. 
Crespi and Procyshyn (2017) reviewed the evidence suggesting that the behavioral 
manifestations in deletions and duplications in the Williams syndrome region paral-
lel those observed in individuals with high and low oxytocin levels, respectively. 
Indeed, patients with Williams syndrome present higher oxytocin levels. Social 
behavior patterns and visuospatial difficulties (low performance on the mental rota-
tion test) are similar in people with Williams syndrome and high oxytocin levels. 
These authors suggested that the higher levels of oxytocin observed in Williams 
syndrome are mediated by GTF2I, a gene in the Williams syndrome region.

Math learning impairments are an important characteristic of Williams syndrome 
(O'Hearn & Landau, 2007). Impairments of enumeration in Williams syndrome have 
been observed in the subitizing range (O’Hearn, Hoffman, & Landau, 2011). Deficits 
have been observed in the numerosity estimation of sets of dots up to 11 (Ansari, 
Donlan, & Karmiloff-Smith, 2007) and in positioning numbers on the number line 
(Opfer & Martens, 2012). Difficulties in numerical magnitude comparisons have 
been observed both in symbolic (Krajcsi, Lukács, Igács, Racsmány, & Pléh, 2009) 
and nonsymbolic modalities (Rousselle, Dembour, & Noël, 2013). In another study, 
Libertus, Feigenson, Halberda, and Landau (2014) observed a  dissociation charac-
terized by sparing of symbolic and impairment of nonsymbolic number processing 
in Williams syndrome. Some studies did not obtain clear-cut results regarding 
impairments in basic number processing in Williams syndrome (Paterson, Brown, 
Gsödl, Johnson, & Karmiloff-Smith, 1999; Paterson, Girelli, Butterworth, & 
Karmiloff-Smith, 2006; van Herwegen, Ansari, Xu, & Karmiloff- Smith, 2008). 
However, these studies did not distinguish between OFS and ANS. Some questions 
remain open. The relationship between visuospatial and numerical processing in 
Williams syndrome is not clear. Deficits are not restricted to nonverbal mechanisms, 
as phonological awareness is also impaired in Williams syndrome (Menghini, 
Verucci, & Vicari, 2004).
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 Monogenic Conditions

Dyscalculia has been described in some monogenic conditions, e.g., in neurofibro-
matosis type 1 (Mazzocco, 2001), phenylketonuria (Chang, Gray, & O'Brien, 2000), 
and girls with the fragile X syndrome (Hagerman et al., 1992). Here, we will focus 
our attention on the fragile X syndrome.

 Dyscalculia in Fragile X Syndrome and FMR1 Premutations

Compelling evidence of a specific association with dyscalculia has been published 
for fragile X syndrome (FXS). FXS is caused by the expansion of a cytosine- 
guanine- guanine (CGG) repeat in the 5′-untranslated region (5´-UTR) of the fragile 
X mental retardation (FMR1) gene. Depending on the number of CGGs, alleles are 
classified as normal (6–44 CGGs); intermediary, also known as gray zone (45–54 
CGGs); premutation (55–200 CGGs); and full mutation (>200 CGG) (Bassell & 
Warren, 2008; Fu et  al., 1991; Lozano, Martinez-Cerdeno, & Hagerman, 2015; 
Maenner et al., 2013). FMR1 full mutations cause the FXS, characterized by intel-
lectual disability, autism, ADHD, and working memory (WM) deficits in boys and 
borderline to normal IQ and autism associated with obesity in girls. ADHD and 
dyscalculia are also frequent in girls with FXS (Abbeduto, McDuffie, & Thurman, 
2014; Bailey, Raspa, Olmsted, & Holiday, 2008; Brown et al., 1982; Ciaccio et al., 
2017; Jäkälä et al., 1997; Lozano, Rosero, & Hagerman, 2014).

In contrast to virtually all males, who present intellectual disability (Bailey Jr, 
Hatton, & Skinner, 1998), 50% of females with FXS present an IQ in the normal to 
borderline range (Rousseau, Heitz, Tarleton, et  al., 1994). High prevalences of 
autism (50–65% in males and 20% in females) and ADHD (80% in males and 30% 
in females) are usually reported (see review in Grigsby, 2016). Eighty-seven percent 
of girls with FXS meet diagnostic criteria for dyscalculia (Murphy et al., 2006). 
Females with FXS present an uneven cognitive profile of assets (verbal memory and 
analytic visual perception) and deficits (visuospatial and executive function, see 
review in Murphy, Mazzocco, and McCloskey (2010)). In girls with FXS (6–16 years 
old), a relative strength in verbal and processing speed abilities, with weaknesses in 
visuospatial-constructional and working memory abilities, was observed by Quintin 
et al. (2016). Girls with FXS preserved number reading/writing and rote counting 
abilities with deficits in magnitude judgments, mental line judgments, and under-
standing of counting principles and basic addition (Murphy et al., 2006). Impairments 
in basic numerical processing are masked by rote verbal skills in older female chil-
dren with FXS (Murphy & Mazzocco, 2008). Differently from Turner syndrome, 
visuospatial perceptual abilities were correlated with math performance in FXS 
(Mazzocco et al., 2006).

Individuals with FMR1 premutation may present deficits in cognitive functions 
such as working memory, executive function, visuospatial perception, phonological 
processing, and reaction time (Bodega et al., 2006; Bretherick, Fluker, & Robinson, 
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2005; Debrey et al., 2016; Fernandez-Carvajal et al., 2009; Hall, 2014; Kenna et al., 
2013; Liu, Winarni, Zhang, Tassone, & Hagerman, 2013; Sullivan et  al., 2005). 
Females with a premutation allele may present difficulties in basic numeric compre-
hension and numerical transcoding of mathematical questions and calculations 
(Lachiewicz, Dawson, Spiridigliozzi, & McConkie-Rosell, 2006; Murphy & 
Mazzocco, 2008; Roberts et al., 2005; Semenza et al., 2012). Currently, FMR1 pre-
mutation and full mutations in females provide the best evidence of a monogenic 
component for dyscalculia. As with the other syndromes discussed here, the role of 
nonsymbolic vs. symbolic number processing and their connections with visuospa-
tial abilities remain to be more thoroughly investigated.

 From the Lab to the Classroom

We have reviewed the concept of cognitive endophenotype as a key for understand-
ing the genetic bases of math learning abilities and disabilities. The cognitive endo-
phenotype was postulated as a complexity-reducing strategy that could help to 
disentangle the relationships between the genetic and environmental etiologic levels 
and the phenotypic expression of math achievement. From this perspective, severe 
and persistent difficulties in learning arithmetic – corresponding to the diagnosis of 
developmental dyscalculia  – result from the interaction of a host of genetic and 
environmental factors from which math achievement is expressed at the phenotypic 
level. Interactions between genetic and environmental factors are complex, encom-
passing multiple crisscrossing chains of events with distinct intermediate steps. 
These steps correspond to intermediate or endophenotypes that can be characterized 
at the neurochemical, neurofunctional, and neurocognitive levels. The phenotypic 
expression of math facility or difficulty would then result from the interaction of a 
network of such endophenotypes. The task of investigating the genetic basis of 
arithmetic achievement is thus reduced to the identification of relevant endopheno-
types. What have we learned that could be relevant to the classroom?

First, we have learned that cognitive mechanisms underlying math abilities vary 
widely, albeit in systematic ways. Klinefelter syndrome was used as an example of 
a verbally mediated cognitive endophenotype eventually useful in explaining the 
pattern of math difficulties associated with developmental dyslexia. Other models 
of verbally mediated endophenotypes could include Down syndrome (Naess, 2016) 
and Noonan syndrome (Pierpont et al., 2010). These are all conditions in which a 
predominantly verbal pattern of impairment was uncovered to date.

Second, we have learned that in other syndromes such as Turner syndrome, velo-
cardiofacial syndrome, Williams syndrome, and fragile X syndrome, the mecha-
nisms implicated seem to be nonverbal. Their difficulties seem to be related to 
impairments in basic numerical processing and/or visuospatial processing.

Third, we have learned that impairments in working memory and/or executive 
functions lack the specificity to be good candidates for an endophenotype implicated 
in dyscalculia. All reviewed syndromes present one kind or another of impairments 
in working memory/executive functions. Impairment in these processes is also 
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observed in virtually all other forms of neurodevelopmental disorders. Teachers 
should be aware of this fact and address executive problems of their pupils by using 
proper behavioral and cognitive self-management techniques.

Fourth, we have learned about the extreme phenotypic variability that characterizes 
each genetic syndrome. In some syndromes, such as velocardiofacial, Williams, and 
fragile X syndrome in females, the median split of intelligence is at the cutoff point for 
intellectual disability. Therefore, half of the affected individuals will present intellectual 
disability, and in the other half, intelligence will be in the normal range. This has impor-
tant implications for diagnosis. Increasingly efficient molecular diagnostic methods 
make it possible to identify specific genetic causes of learning problems. Such diagnoses 
have important therapeutic implications and may be established in individuals who have 
not been previously identified because of mild phenotypic expression, lack of severe 
life-threatening malformations, and/or normal intelligence.

Fifth, we have also learned about the extreme genetic heterogeneity underlying 
arithmetic abilities. Multiple genetic mechanisms may be implicated in similar phe-
notypic expressions. For example, adjacent and nonoverlapping microdeletions in 
the 22q11.2 region may be associated with impairments in the accuracy of nonsym-
bolic numerical representations. Otherwise, the same genetic mechanism such as 
the COMT val158met polymorphism may be implicated in different phenotypic 
expressions such as anxiety, impulsivity, working memory, accuracy of nonsymbolic 
numerical representations, etc.

Finally, we have learned that early recognition of genetic syndromes, referral for 
proper diagnosis and treatment, and planning of customized interventions are essen-
tial. In this way, math learning difficulties may function as a kind of red flag, pointing 
to possible genetic etiologies. General red flags for genetic syndromes, which teach-
ers can observe, are short or tall stature, congenital malformations, hypotonia, poor 
motor coordination, anomalous handedness, and history of developmental delay. 
“Funny face” is an important red flag. These children have no facial malformation 
but, rather, small, subtle dysmorphisms such as a low nasal bridge, markedly upslant-
ing or downslanting palpebral fissures, small or prominent chin, low set ears, etc. 
(Huang et al., 2010). Normal people may have one or two such dysmorphisms, but 
they are not enough to characterize a “funny face.” However, it is important to con-
sider that most children with math learning difficulty will have a perfectly normal 
constitution and no genetic syndrome.
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Chapter 23
Neurobiological Origins of Mathematical 
Learning Disabilities or Dyscalculia: A Review 
of Brain Imaging Data

Bert De Smedt, Lien Peters, and Pol Ghesquière

 Introduction

Mathematical skills constitute basic competencies that children need to acquire 
during elementary school. These skills are quintessential to our daily life, as we use 
numbers every day and early mathematical competencies in young children are the 
most stable predictors of their later academic outcome (Duncan et al., 2007) as well 
as of their future income and socioeconomic status (Ritchie & Bates, 2013). On the 
other hand, approximately 5–8% of the children experience lifelong difficulties in 
acquiring and executing these mathematical skills: children with mathematical learn-
ing disabilities or dyscalculia (American Psychiatric Association, 2013; Butterworth, 
Varma, & Laurillard, 2011; Geary, 2011). Critically, these difficulties are not merely 
explained by intellectual disabilities, uncorrected sensory problems, mental or neu-
rological disorders, or inadequate instruction (American Psychiatric Association, 
2013). In the most recent version of Diagnostic and Statistical Manual of Mental 
Disorders or DSM-5 (American Psychiatric Association, 2013), this specific learn-
ing disorder is categorized into the section of neurodevelopmental disorders, which 
indicates that abnormalities in brain structure and function underlie the behavioral 
manifestations of the disorder. Despite its assumed neurobiological origin, there are 
only but a handful neuroimaging studies that have investigated the neural basis of 
these mathematical learning disabilities, which we review in this chapter.

B. De Smedt (*) · L. Peters · P. Ghesquière
Faculty of Psychology and Educational Sciences, Parenting and Special Education  
Research Unit, KU Leuven, Leuven, Belgium
e-mail: bert.desmedt@kuleuven.be; lien.peters@kuleuven.be; pol.ghesquiere@kuleuven.be

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97148-3_23&domain=pdf
mailto:bert.desmedt@kuleuven.be
mailto:lien.peters@kuleuven.be
mailto:pol.ghesquiere@kuleuven.be


368

The first time the term dyscalculia was coined in the scientific literature (Kosc, 
1974), it was already stipulated that this disorder was brain-based and that it was the 
consequence of an “impairment in the growth dynamics of brain centers, which are 
the organic substrate of mathematical abilities” (p. 166). At that time, there were no 
brain imaging techniques available to investigate brain function and structure in a 
noninvasive way, such as magnetic resonance imaging or MRI, and these only 
became routinely available since the early 1990s. Knowledge about the brain at that 
time was largely based on (adult) neuropsychological case studies. These were in- 
depth studies of patients with brain damage (e.g., due to injury or hemorrhage), 
which were not able to calculate any more after the damage, even though they were 
able to do so before the onset of the damage; these mathematical impairments were 
termed “acalculia.” These case studies revealed that damage to the parietal cortex 
resulted in different types of mathematical difficulties (e.g., Dehaene & Cohen, 
1997). Already in 1919, Henschen (1919) described an association between a lesion 
in the left parietal cortex and acalculia, and in 1940, Gerstmann (1940) described a 
syndrome, caused by a lesion in the left angular gyrus (AG), that included finger 
agnosia (= difficulties in the ability to distinguish, recognize, or name fingers when 
touched), left-right disorientation, agraphia (= difficulties in writing), and, most rel-
evant in this context, acalculia. It is important to emphasize that the results of these 
neuropsychological case studies cannot be readily generalized to dyscalculia. This 
is because patients with acalculia have an acquired disorder: They had typical math-
ematical development before the onset of the disorder and difficulties only emerged 
after specific brain damage had occurred. Dyscalculia, however, is a developmental 
disorder, in which the development of mathematical ability, and its associated brain 
networks, shows a different developmental trajectory from a very early age on.

The availability of MRI methods to study brain function and structure has resulted 
in a continuously increasing knowledge of the brain networks that support number 
processing (e.g., Sokolowski, Fias, Bosah Ononye, & Ansari, 2017) and arithmetic 
(e.g., Arsalidou & Taylor, 2011; Menon, 2015; Peters & De Smedt, 2018). The vast 
majority of this research has been carried out in healthy adults, and the generalization 
of these findings to the developing and atypical brain needs to be done with great cau-
tion (e.g., Ansari, 2010; Karmiloff-Smith, 2010): Studies in healthy adults only reveal 
something about the end state of mathematical development, yet they do not inform 
us on how these skills, and their underlying brain correlates, develop. Findings from 
these adult studies mistakenly suggest that brain structures and functions are static. 
However, it is becoming increasingly clear that the developing brain is highly plastic 
and that its structure and function change dramatically throughout development into 
adulthood, a process that is highly driven by environmental factors, such as (math) 
education (Johnson & de Haan, 2011). Against this background, the current chapter 
takes a developmental perspective in describing the brain networks associated with 
mathematical ability and how these are impaired in dyscalculia.

It is unlikely that our brains are predestined to perform mathematical operations. 
For example, we use specific symbols to perform these operations, such as Arabic 
digits, and these have only been invented rather late in the evolution of mankind 
(e.g., Arabic digits only emerged in the Early Middle Ages; Ifrah, 1998). As is the 
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case in other academic abilities, such as reading, mathematical skills are culturally 
transmitted, and developing brains change as they are learning these cultural skills 
(Dehaene & Cohen, 2007), a process called experience-dependent cortical plastic-
ity, pointing to how brains change and brain areas gradually acquire their function, 
as children learn new skills, such as arithmetic (Johnson & de Haan, 2011). On the 
other hand, animals and human infants are able to process numerical magnitudes, 
albeit in a nonsymbolic way (for reviews see Christodoulou, Lac, & Moore, 2017; 
Smyth & Ansari, 2017), and this nonsymbolic number processing consistently acti-
vates the intraparietal sulcus (IPS) and prefrontal cortices (Nieder & Dehaene, 
2009; Sokolowski et al., 2017). Interestingly, similar areas are being activated dur-
ing the processing of symbolic numbers and during arithmetic, and these areas 
might provide a basis via which the brain network for performing mathematical 
operations is gradually constructed. The connections between these nonsymbolic 
and symbolic number skills continue to be an area of very intense debate in cogni-
tive and brain imaging studies (e.g., De Smedt, Noël, Gilmore, & Ansari, 2013; 
Leibovich, Al-Rubaiey Kadhim, & Ansari, 2017; Merkley & Ansari, 2016) as well 
as in studies on dyscalculia (De Smedt & Gilmore, 2011; De Smedt et al., 2013; see 
also Schwenk et al., 2017). Because the processing of numerical magnitudes is criti-
cal to children’s mathematical development (e.g., Schneider et al., 2017) and a poor 
understanding of numerical magnitudes might constitute a key deficit in dyscalculia 
that cascades into impairments in arithmetic (De Smedt et al., 2013; Schwenk et al., 
2017), we first describe the brain networks that subserve the processing of numeri-
cal magnitudes and subsequently summarize how the networks underlying arithme-
tic are gradually constructed. In both cases, we will elaborate on how these networks 
are altered in children with dyscalculia.

 Brain Activity During Numerical Magnitude Processing 
and Arithmetic

As signals that indicate brain activity can only be meaningfully interpreted if they are 
linked to a cognitive model (e.g., Cacioppo, Berntson, & Nusbaum, 2008; De Smedt, 
Holloway, & Ansari, 2011), we provide a succinct description of the development of 
numerical magnitude processing and arithmetic and its impairments in dyscalculia. 
These cognitive models serve as a lens through which the subsequent neural data in 
typically developing children and children with dyscalculia are discussed.

 Numerical Magnitude Processing

The ability to understand and process nonsymbolic numerical quantities already 
emerges at a very young age: Human infants are able to discriminate between numer-
osities (Feigenson, Libertus, & Halberda, 2013; Smyth & Ansari, 2017), and 
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toddlers can identify the larger of two dot arrays (Barth, Landsman, & Lang, 2008). 
On the other hand, toddlers also learn to represent number in a symbolic way via the 
acquisition of the numerical meaning of number words and, later on, Arabic digits 
(Merkley & Ansari, 2016). These nonsymbolic and symbolic representations of 
number are gradually becoming more interconnected during development. The dom-
inant view posits that symbolic representations are being mapped on the earlier 
developed pre-existing nonsymbolic representations of quantity (e.g., Dehaene & 
Cohen, 1997; Piazza et al., 2010). This dominant unidirectional view has been chal-
lenged against the background of developmental and brain imaging data (e.g., 
Leibovich et al., 2017; Leibovich & Ansari, 2016), suggesting that the developmen-
tal trajectory of how numerical symbols acquire their meaning is less straightforward 
than originally thought. In any case, it is clear that the understanding of the meaning 
of numbers, i.e., their quantity, is critical for successful mathematical development.

The understanding of the meaning of numbers is commonly investigated with 
number comparison tasks in which children have to identify the larger of two pre-
sented dot arrays, number words, or Arabic numerals. Performance on these tasks 
correlates with individual differences in mathematics achievement (De Smedt et al., 
2013 for a systematic review; Schneider et al., 2017 for a meta-analysis: r = 0.28, 
95%CI [0.24, 0.32]). These associations, cross-sectional as well as predictive, are 
robustly observed for symbolic comparison tasks, yet the associations with nonsym-
bolic measures are significantly smaller and far less consistent (De Smedt et al., 
2013; Schneider et al., 2017), indicating that symbolic magnitude processing is a 
more powerful predictor of mathematical performance. Studies in children with 
dyscalculia (De Smedt et al., 2013 for a systematic review; Schwenk et al., 2017 for 
a meta-analysis) have consistently revealed that these children show impairments in 
numerical magnitude processing. More specifically, children with dyscalculia show 
robust deficits on symbolic comparison measures, particularly when reaction times 
are measured. On the other hand, when nonsymbolic measures are considered, the 
picture is far less conclusive, as some studies have shown deficits in nonsymbolic 
number processing, while others have not.

Various studies have examined brain activity during the processing of nonsym-
bolic and symbolic numerical magnitudes via comparison, ordering, or passive 
viewing paradigms (Ansari, 2008; Arsalidou & Taylor, 2011; Dehaene, Piazza, 
Pinel, & Cohen, 2003). A recent meta-analysis in healthy adults (Sokolowski et al., 
2017) revealed that regions in the prefrontal cortex (PFC) and parietal lobes (includ-
ing IPS and posterior superior parietal lobe or PSPL) are consistently active when 
healthy adults are processing nonsymbolic and symbolic numerical magnitudes. 
This meta-analysis also revealed that there were differences when processing 
 nonsymbolic and symbolic numbers, such that left-lateralized parietal regions were 
more active for symbolic number processing, while the processing of nonsymbolic 
number showed increased activity in the right (superior) parietal lobe.

Developmental imaging studies have pointed to both communalities and differ-
ences between children and adults in this brain network. For example, an fMRI 
study in 4-year-olds showed that during the passive viewing of nonsymbolic 
number, children recruited the (right) IPS in a similar way as healthy adults 
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(Cantlon, Brannon, Carter, & Pelphrey, 2006). Other studies that compared children 
and adults have highlighted important differences. Children showed a larger engage-
ment of frontal regions than adults during number comparison, which suggests that 
they need more working memory and attentional resources to perform this type of 
task. Adults, on the other hand, exhibited increased and more specific activity in the 
bilateral (intra)parietal cortex than children (Ansari & Dhital, 2006; Ansari, Garcia, 
Lucas, Hamon, & Dhital, 2005; Holloway, Price, & Ansari, 2010; Kaufmann, 
Kucian, von Aster, Cohen Kadosh, & Dowker, 2014). These data indicate that the 
brain networks that support the processing of number are not static but evolve over 
time. This development is characterized by a frontal-to-parietal shift in brain activ-
ity and an increasing functional specialization of the parietal cortex. A similar 
development has been observed in the context of learning arithmetic (Rivera, Reiss, 
Eckert, & Menon, 2005), as we will review below. Such evolution from widespread 
networks to more focused activity is common and has been described in many other 
cognitive domains (Johnson, 2011). They nicely illustrate the interactive specializa-
tion account of children’s development of brain function, which posits that brain 
networks are gradually constructed over development (via interaction with the envi-
ronment) and evolve from widespread to more specific functional networks.

A handful of studies have compared the brain activity of typically developing 
children and children with dyscalculia during a numerical magnitude processing 
task. These studies observed that children with dyscalculia showed significantly less 
brain activity in the IPS compared to age- and IQ-matched controls during nonsym-
bolic comparison (Price, Holloway, Räsänen, Vesterinen, & Ansari, 2007), symbolic 
comparison (Mussolin et al., 2010; Soltész, Szucs, Dékány, Márkus, & Csépe, 2007), 
and symbolic ordering (Kucian et al., 2011). These findings suggest that the above-
mentioned functional specialization of the parietal cortex for the processing of num-
ber might be delayed or disturbed. On the other hand, some studies have failed to 
observe group differences during a nonsymbolic comparison task (Kovas et al., 2009; 
Kucian et  al., 2006). This may not be unexpected in view of the above- reviewed 
accumulating behavioral evidence that deficits in nonsymbolic number processing in 
dyscalculia are much less consistent than originally thought, while symbolic num-
ber processing deficits are more reliably observed (De Smedt et al., 2013; Schwenk 
et al., 2017). Future imaging studies with symbolic number processing tasks are 
needed in order to verify whether deficits in symbolic number processing in 
dyscalculia can also be reliably observed at the neural level.

 Arithmetic

Decades of cognitive developmental research have investigated the acquisition of 
arithmetic, and this development involves a change in the mix of strategies that are 
used to calculate the answer to a particular problem (Geary, 2011; Jordan, Hanich, 
& Kaplan, 2003; Siegler, 1996). Already before the start of formal schooling, 
children use (finger) counting to solve simple sums, such as 2 + 3. The repeated use 
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of these counting routines allows children to develop associations between problems 
and their answers, arithmetic facts, which are stored in long-term memory. The 
acquisition of these facts is important because fact retrieval is more efficient, and it 
consumes less working memory than the more cognitively demanding and error- 
prone procedures, such as counting. The availability of arithmetic facts also allows 
children to use these facts to decompose problems into smaller problems, such as 
7 + 8 = 15, 7 + 3 = 10, and 10 + 5 = 15. These decomposition strategies usually occur 
in problems with larger numbers (typically when they cross 10). They are used more 
often during addition and subtraction – albeit more frequently in subtraction than in 
addition (Barrouillet, Mignon, & Thevenot, 2008) – but they are much less used in 
multiplication, in which fact retrieval is the most dominant strategy from an early 
point on in development (Imbo & Vandierendonck, 2007; Lemaire & Siegler, 1995). 
The development of these strategies is not an abrupt shift from one strategy to the 
other but rather a change in the frequency distributions of strategies children use, the 
so-called overlapping wave theory (Siegler, 1996). This theory posits that strategies 
remain available over development, even into adulthood, but that the frequency in 
their use changes at different time points, with the more efficient strategies, such as 
fact retrieval, becoming more dominant. Difficulties in this development of strategy 
use have been considered to be the hallmark of dyscalculia (Geary, 1993, 2011): 
Children with dyscalculia are known to have problems in understanding and executing 
procedural strategies, and they show persistent deficits in the retrieval of arithmetic 
facts from memory. Are these difficulties related to functional abnormalities in the 
brain networks that show increased activity during calculation?

A considerable body of fMRI studies in healthy adults has revealed that a large, 
whole-brain network is active when they perform arithmetic (Arsalidou & Taylor, 
2011; Menon, 2015), as is depicted in Fig. 23.1. This network includes the bilateral 
posterior parietal cortex (comprising the IPS, PSPL, AG, and supramarginal gyrus or 
SMG), inferior and superior prefrontal cortex (PFC), and occipitotemporal regions 
(such as the fusiform gyrus). Activity in this network is modulated by the arithmetic 
operation (Rosenberg-Lee, Chang, Young, Wu, & Menon, 2011), strategy use 
(Grabner et al., 2009; Tschentscher & Hauk, 2014), expertise (Grabner et al., 2007), 
and training (Zamarian, Ischebeck, & Delazer, 2009). Consistent across these data is 
the activation of the bilateral IPS during arithmetic, potentially reflecting the role of 
numerical magnitude processing during calculation (Arsalidou & Taylor, 2011). The 
activity in this area appears to be higher for subtractions, large problems, and during 
the execution of procedural strategies. Activity in the  temporoparietal cortex (AG 
and SMG) has been typically associated with the retrieval of arithmetic facts from 
long-term memory. Increases in brain activity in this area are usually observed in 
multiplication and correlate with mathematical expertise (Grabner et  al., 2007). 
Originally, this temporoparietal activity was thought to reflect the involvement of 
phonological processes in fact retrieval and multiplication. This interpretation has 
been questioned (Menon, 2015), and recent data by De Visscher, Berens, Keidel, 
Noël, and Bird (2015) suggest that it rather reflects the automatic mapping between 
an arithmetic problem and its answer in long-term memory. Increases in activity in the 
lateral PFC have been typically attributed to the involvement of auxiliary cognitive 
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functions that are crucial during calculation, such as working memory, inhibitory 
control, and attentional processes (Arsalidou & Taylor, 2011), and these regions are 
typically recruited more during more demanding problems, such as larger problems, 
and during the execution of procedural or backup strategies, when the answer cannot 
be retrieved from long-term memory. Finally, occipitotemporal regions, including 
the fusiform gyrus, are involved in the visual processing of symbolic numerical 
information, given that arithmetic stimuli represent visual symbols (Arsalidou & 
Taylor, 2011), but the specific role of this region in arithmetic has not been studied 
in much detail (Peters, De Smedt, & Op de Beeck, 2015).

Training studies in adults have tried to simulate the abovementioned develop-
mental process of strategy change in arithmetic, in particular the development from 
procedures to arithmetic fact retrieval (Zamarian & Delazer, 2015, for a review). 
These studies offer a window to our understanding of how arithmetic networks 
change across skill acquisition. These data revealed, as a function of training, a 
decrease in activity in PFC coupled with an increase in the posterior parietal cortex. 
At the same time, activity in the posterior parietal cortex shifts from the IPS to the 
AG, potentially reflecting the increasing reliance on retrieval strategies and a 
decreasing reliance on procedural backup strategies, such as counting or decompo-
sition, which is in line with the overlapping wave model of strategy development 
(Siegler, 1996). These data offer insights into how brain activity changes as a func-
tion of learning, but these studies in adults are not necessarily directly transferable 

Fig. 23.1 Sagittal slice showing the brain networks for number processing and arithmetic. The 
white boxes indicate the most relevant areas implicated in number processing and/or arithmetic, 
including PFC prefrontal cortex, HC hippocampus, PSPL posterior superior parietal lobe, IPS 
intraparietal sulcus, SMG supramarginal gyrus, AG angular gyrus, and FG fusiform gyrus. The 
colored tracts represent the relevant frontal-to-parietal white matter connections as revealed via 
spherical deconvolution analysis of DTI data. Pink superior longitudinal fasciculus (SLF), blue 
arcuate fasciculus (AF)
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to children, because children’s brains are not merely smaller versions of a highly 
skilled adult brain (Ansari, 2010).

fMRI studies on arithmetic in typically developing children have substantially 
increased over the last 5  years (Peters & De Smedt, 2018, for a recent review), 
revealing, as in adults, a widespread bilateral (frontoparietal) network of areas that 
show increased brain activity during arithmetic (Fig. 21.1). Is the activity in this 
network also modulated by the same factors as has been observed in adults?

De Smedt et al. (2011) investigated the effects of problem size (small vs. large 
problems) and operation (addition vs. subtraction) on brain activity during arith-
metic in 10–12-year-olds. They reasoned that the large vs. small and subtraction 
vs. addition contrast would reveal those brain networks that showed an increased 
involvement in procedural strategies, whereas the reverse contrasts would unravel 
those networks that are more relevant to fact retrieval. Commensurate with the 
abovementioned adult data, children showed increased activity in a widespread 
frontoparietal network that included the bilateral IPS and PFC during the solution 
of procedural problems (see also Polspoel, Peters, Vandermosten, & De Smedt, 
2017). Different from the adult data, fact retrieval problems, which in adults were 
accompanied by increases in the AG, showed increased activity in the medial 
temporal lobe, specifically the (left) hippocampus (HC), an observation that has 
been confirmed in more recent studies (Menon, 2016, for a review). This role of 
the HC might be related to the formation of long-term memories of arithmetic 
facts, a hypothesis that has gained increased attention in the last years (Menon, 
2016). The differences between children and adults might be explained by the 
time-limited role of the HC in long-term memory (Smith & Squire, 2009): Its role 
appears to be crucial in the early consolidation of (arithmetic) facts, while in later 
stages of more automatization, posterior parietal systems, including the AG, 
become more relevant. This again emphasizes the importance of a developmental 
perspective and illustrates that brain imaging findings of adults are not merely 
applicable to children.

Differences between adults and children clearly indicate that the brain networks 
that are activated during calculation change over time. Rivera et al. (2005) examined 
these age-related changes in children aged 8–19 years old, by investigating which 
brain areas showed negative (i.e., age-related decrease) and positive (i.e., age- 
related increase) associations with chronological age. They observed that activity in 
the PFC decreased with age, potentially reflecting the decreased involvement of 
working memory and attentional resources. On the other hand, activity in the (left) 
inferior parietal cortex increased (including IPS and AG) with age. This points to an 
increasing functional specialization of the (inferior) parietal cortex with age, and a 
similar development in the brain networks supporting the processing of numerical 
magnitudes has been observed (as reviewed above). Similar age-related changes 
have been observed in more recent studies (Chang, Metcalfe, Padmanabhan, Chen, 
& Menon, 2016; Qin et al., 2014; Rosenberg-Lee et al., 2011), and they echo the 
observed training-related changes that have been found in adults (Zamarian & 
Delazer, 2015).
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Only but a few studies have examined the brain activity during arithmetic in chil-
dren with dyscalculia, and their findings remain mixed (Peters & De Smedt, 2018, 
for a review). Some studies have reported increased brain activity in children with 
dyscalculia in the abovementioned frontoparietal network that is active during arith-
metic (Davis et al., 2009; Rosenberg-Lee et al., 2015), particularly during more dif-
ficult problems as in subtraction, suggesting some compensatory mechanisms, 
which are, however, poorly understood. Other studies have observed decreased 
brain activation in children with dyscalculia, together with the observation that no 
brain area showed increased activity in dyscalculia compared to age-matched con-
trols (Ashkenazi, Rosenberg-Lee, Tenison, & Menon, 2012; Berteletti, Prado, & 
Booth, 2014; De Smedt et al., 2011). These decreases in brain activity have been 
observed in prefrontal (Ashkenazi et  al., 2012; Berteletti et  al., 2014) as well as 
posterior parietal, including IPS, areas (Ashkenazi et  al., 2012; Berteletti et  al., 
2014; De Smedt et al., 2011). A common observation in these studies is that typi-
cally developing children showed a difficulty-related modulation of the frontopari-
etal network, whereas children with dyscalculia did not. For example, typically 
developing children showed increased brain activity in the IPS during the solution 
of more complex (i.e., large) problems than during easier (i.e., small) problems, 
whereas children with dyscalculia recruited the IPS to the same extent for both 
types of problems (De Smedt et al., 2011; see also Ashkenazi et al., 2012). This 
might reflect that children with dyscalculia continue to rely on (more immature) 
procedural strategies for easy as well as complex problems, while their typically 
developing peers already shifted to the use of fact retrieval strategies for solving the 
easy problems, as has been observed in behavioral data (Geary, 2011).

 Structural Brain Imaging

Various studies have used structural MRI (voxel-based morphometry) to investigate 
the anatomical characteristics (in particular gray matter) of the abovementioned 
networks of number processing and arithmetic in children with dyscalculia. These 
studies have observed that children with dyscalculia have significantly less gray 
matter in the posterior parietal cortex, including the IPS (Isaacs, Edmonds, Lucas, 
& Gadian, 2001; Rotzer et  al., 2008; Rykhlevskaia, Uddin, Kondos, & Menon, 
2009), in prefrontal cortex (Rotzer et  al., 2008) and in hippocampal areas 
(Rykhlevskaia et al., 2009), compared to typically developing children.

 Connectivity

The above-reviewed brain imaging data indicate the involvement of multiple brain 
areas in the processing of number and arithmetic that are distant from each other. 
These areas are connected via white matter tracts, which allow for communication 

23 Neurobiological Origins of Mathematical Learning Disabilities or Dyscalculia…



376

between these brain areas. This implies that in order to fully understand the neural 
basis of dyscalculia, one also needs to consider the connections between these areas, 
rather than only focusing on isolated brain regions (Uddin et al., 2010, for a discus-
sion). There is now an increasing interest in studying these structural and functional 
connections (for a review see Matejko & Ansari, 2015; Peters & De Smedt, 2018).

Structural connections between different brain areas, i.e., white matter tracts, can 
be investigated by means of diffusion tensor imaging or DTI, which examines the 
properties of these white matter tracts. This technique also allows one to investigate 
how the quality of these tracts is correlated with individual differences in perfor-
mance, such as reading (e.g., Vandermosten, Boets, Wouters, & Ghesquière, 2012) 
or arithmetic (e.g., Matejko & Ansari, 2015). For example, children with higher 
arithmetical skills show stronger connections between the frontal and parietal areas 
of the arithmetic network than those with lower arithmetical skills (Tsang, 
Dougherty, Deutsch, Wandell, & Ben-Shachar, 2009; Van Beek, Ghesquière, Lagae, 
& De Smedt, 2014). To our knowledge, only one study has used DTI to examine 
white matter tracts in children with dyscalculia (Rykhlevskaia et al., 2009). This 
study revealed a reduced white matter integrity of the superior longitudinal fascicu-
lus, a tract that connects the prefrontal cortex and the posterior parietal cortex 
(Fig. 21.1) in children with dyscalculia. Future studies are, however, necessary to 
replicate and further consolidate this finding.

It is also possible to investigate the functional connections between the areas of 
the abovementioned brain networks via fMRI. There are two approaches to investi-
gate this. Task-based connectivity studies investigate the temporal correlations in 
brain activity in distant but connected areas during the execution of a particular task. 
Resting-state connectivity studies examine the temporal correlations between dis-
tant brain areas during the brain at rest, assuming that these networks at rest corre-
late with how they are functionally coupled during the execution of a particular task. 
One study examined task-based functional connectivity in children with dyscalculia 
during the execution of an arithmetic task (Rosenberg-Lee et al., 2015). This study 
observed increased parietal-frontal functional connectivity in children with dyscal-
culia compared to age-matched controls. This type of connectivity has been linked 
to working memory systems that are recruited during arithmetic (Menon, 2016), yet 
the connectivity differences between children with and without dyscalculia were not 
so easy to interpret as they might reflect compensatory effects as well as inefficient 
use of working memory resources. One study investigated resting-state connectivity 
in children with dyscalculia and age-matched controls (Jolles et  al., 2016). This 
study observed that children with dyscalculia showed increased interhemispheric 
IPS connectivity and increased connectivity between the IPS and (dorsal) frontopa-
rietal regions.

In summary, there is evidence to suggest that there are differences in the 
(frontoparietal) connectivity between the areas of number and arithmetic networks 
in children with dyscalculia. The number of structural and functional connectivity 
studies in dyscalculia is currently too few to draw strong definitive conclusions. 
Future research is needed to further examine this.
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 Effects of Remedial Interventions on Brain Activity

Is it possible to change brain activity during number processing and arithmetic in 
children with dyscalculia? Two studies have addressed this question by investigat-
ing the effect of a number line (Michels, O’Gorman, & Kucian, 2018) and an arith-
metic (Iuculano et  al., 2015) intervention on the brain activity in children with 
dyscalculia.

Michels et  al. (2018) examined the effect of the computer-based number line 
training Rescue Calcularis in children with dyscalculia and a control group of age- 
matched typically developing children. Rescue Calcularis is a 5-week program and 
consists of number lines in which children have to position numbers as well as the 
outcomes of calculations. Michels et al. showed that children with dyscalculia had 
increased functional connectivity between the IPS and parietal, frontal, visual, and 
temporal regions before the training but that this hyperconnectivity disappeared 
after training.

Iuculano et  al. (2015) investigated the effect of an 8-week one-on-one math 
tutoring intervention, which focused on learning increasingly efficient counting 
strategies and arithmetic facts and which has been shown to improve performance 
in children with mathematical difficulties (Fuchs, Compton, Fuchs, Bryant, & 
Davis, 2008). Iuculano et al. (2015) studied brain activity during single-digit addi-
tion before and after the tutoring in children with dyscalculia and an age-matched 
control group, who also underwent the training. Before the training, children with 
dyscalculia showed increased activity in frontal, superior parietal, temporoparietal, 
and hippocampal areas, compared to age-matched controls. After training, the brain 
activity of children with dyscalculia did not differ anymore from the control chil-
dren, suggesting that normalization of the brain activity had occurred in children 
with dyscalculia after training.

The findings of these intervention studies, although preliminary, indicate that it 
is possible to change brain activity in children with dyscalculia via specific inter-
ventions. Future studies are however needed to fully elucidate the effects of reme-
dial interventions on the brain function, structure, and connectivity in children with 
dyscalculia.

 Discussion

The number of neuroimaging studies on dyscalculia has steadily increased over the 
last decade, yet it left us with a rather scattered picture of findings. There are various 
methodological reasons for this. First, studies differ in the populations under study. 
For example, they collapse children of different ages, and the criteria studies use to 
define dyscalculia vary greatly, with differences in cutoff criteria, the lack of taking 
persistency of the mathematical impairments into account, and the in- or exclusion 
of accompanying reading impairments. Second, studies differ in the tasks they use 
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in their fMRI design or they use to correlate with brain structure and function. 
One particular issue is the type of control condition in an fMRI design that is sub-
tracted or compared to the condition of interest, as this is a critical determinant of 
observed findings and group differences (Menon, 2016, for a discussion). Third, 
studies also differ in their data-analytic methods of imaging data, such as the choice 
of preprocessing parameters, the selection of the normalization template (pediatric 
or not), and the decisions to correct for multiple comparisons. Each of these meth-
odological reasons (and their interactions) can explain the inconsistencies between 
studies. The effect of these between-study differences is even exacerbated when the 
pool of studies on a given topic, as is the case in dyscalculia, is small. The only way 
to address this issue is to conduct more studies.

One possibility to address this issue of inconsistency is to perform meta-analyses 
to statistically extract communalities across studies. Although Kaufmann, Wood, 
Rubinsten, and Henik (2011) conducted a meta-analysis on studies in dyscalculia, 
the current body of studies is simply too small to reliably perform such an analysis. 
Eickhoff et  al. (2016) recommended to include in an imaging meta-analysis at 
minimum 17–20 experiments to have enough power to detect a moderate effect. 
This number of studies increases if one wants to test moderators of the differences 
between typically developing children and children with dyscalculia, such as the 
type of task (number processing vs. arithmetic). We currently lack a critical mass of 
studies on dyscalculia that would allow us to do such an analysis.

An important limitation of the existing body of evidence is that there are no 
longitudinal studies that have examined brain function or structure in dyscalculia at 
multiple time points. The available data do not allow us to determine whether the 
observed brain abnormalities are the cause or the consequence of their difficulties in 
number processing and arithmetic. It is possible that the observed abnormalities are 
simply the consequence of less experience with number and arithmetic in children 
with dyscalculia compared to typically developing children and that they do not 
represent the etiology of the disorder. For example, studies in dyslexia, which com-
pared children with dyslexia to age-matched controls and to children who had simi-
lar reading level and experience but were younger in age (reading-level-matched 
controls), revealed that some of the observed brain abnormalities were explained by 
their reduced reading experience (Vandermosten, Hoeft, & Norton, 2016, for a 
review). To the best of our knowledge, such comparisons with ability-level-matched 
children are nonexistent in dyscalculia, and they clearly represent an area for future 
research.

We also do not  know whether the abovementioned brain abnormalities in 
children with dyscalculia are already present before they learn to calculate and 
hence may represent a neurobiological cause of their disability. In dyslexia research, 
there is now an increasing number of brain imaging studies that have investigated 
children before they learn to read, including children who are at risk for developing 
dyslexia (see Vandermosten et al., 2016, for a review). Such studies are also needed 
in the context of number and arithmetic as they will allow us to further unravel the 
neurobiological cause of atypical mathematical development.
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From a practical point of view, it is important to emphasize that the abovemen-
tioned brain abnormalities in children with dyscalculia are very subtle. They can 
only be observed at the group level, and this does not necessarily imply that such 
abnormalities can be found at the level of the individual child. Stated differently, 
most children with dyscalculia will not show abnormalities on a clinical brain scan. 
As a result it is (currently) not possible to determine via a brain scan whether a child 
has dyscalculia or not. Related to this, there is an active interest in the possibility of 
neurobiological measures, or biomarkers, to predict which children will develop 
learning disorders and how they will respond to interventions (Black, Myers, & 
Hoeft, 2015). To the best of our knowledge, there are currently no studies in dyscal-
culia that have investigated such biomarkers, but this might be an interesting avenue 
for further research.

 Conclusion

The first scientific reports of dyscalculia suggested that these impairments origi-
nated from abnormalities in brain structures or functions related to mathematical 
processing, yet the study of the brain networks that support number processing and 
arithmetic in children is only a very recent endeavor. There are emerging trends in 
our understanding of these networks, but the research on this topic is still nascent. 
Studies in typically developing children indicate that a frontoparietal network is 
consistently active during number processing and arithmetic. This network shows 
both communalities and differences with what is being observed in adults. Only but 
a few studies have investigated these networks in children with dyscalculia, 
showing that these children have functional as well as structural abnormalities in 
these networks. In the absence of longitudinal data, it is currently unclear whether 
these abnormalities are a cause or consequence of this learning disorder, and future 
studies are needed to unravel this.
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Chapter 24
Comorbidity and Differential Diagnosis 
of Dyscalculia and ADHD

Helga Krinzinger

 Introduction

It has been well-known for a long time now that working memory, attention and 
executive functions are some of the main predictors of mathematical abilities 
(Geary, 2005; Passolunghi, Cargnelutti, & Pastore, 2014) and that children with 
attention deficit/hyperactivity disorder (ADHD) are frequently impaired in these 
cognitive domains (Barkley, 1997). Hence, it is no surprise that children with ADHD 
often score worse on mathematical tasks than children without ADHD (Ackerman, 
Dykman, & Peters, 1977). Comorbidity rates for ADHD and mathematical learning 
disability (MLD) or dyscalculia are reported to lie between 25% (Gross-Tsur, 
Manor, & Shalev, 1996; Silva et al., 2015) and 42% (Desoete, 2008). These comor-
bidity rates are much higher than expected given that the prevalence rates for both 
developmental disorders are not much higher than 5% (Lindsay, Tomazic, Levine, 
& Accardo, 1999). This already shows that MLD and ADHD may not be unrelated 
disorders – but what are possible reasons for this?

 What Is Comorbidity?

The term comorbidity was first (and still is) used to describe patients presenting 
with more than one medical condition and was not used before the 1980s (Arcelus 
& Vostanis, 2005). In the meantime, several distinctions of comorbidity types have 
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been proposed (see Angold, Costello, & Erkanli, 1999, for in-depth descriptions): 
(a) homotypic vs. heterotypic comorbidity, meaning comorbidity between disorders 
from the same vs. from different diagnostic groupings; (b) concurrent vs. successive 
comorbidity; and (c) primary vs. secondary comorbidity, which is usually concep-
tualized as the secondary condition being caused by the primary condition. The 
second condition can run concurrently with the primary disorder, but this is not 
required for this distinction (Samet, Nunes, & Hasin, 2004).

Considering MLD and ADHD, according to DSM-V, they both belong to the 
category of neurodevelopmental disorders. Comorbidity between these two disor-
ders should thus be seen as homotypic (Moreno-De-Luca et al., 2013). Usually they 
will occur concurrently (at the same time), although the diagnosis of one disorder 
may precede the other. With respect to the last distinction, impairments in mathe-
matics can clearly be caused by ADHD (and should then be considered a secondary 
problem: see Rubinsten & Henik, 2009), whereas MLD cannot lead to generalized 
attentional problems as seen in ADHD.

 Why Are Comorbidity Rates for Neurodevelopmental Disorders 
So High?

In general, comorbidity rates between psychiatric and developmental disorders 
occur much more frequently than could be accounted for by the respective preva-
lence rates, which are usually explained by covariation between disorders (Angold 
et al., 1999). However, several methodological artefacts can lead to systematic over-
estimation of comorbidity rates. Among them are referral bias (children with more 
than one disorder are more likely to be referred to specialized institutions), coding 
single behaviours (and most importantly “nonspecific symptoms”) as symptoms of 
multiple disorders with overlapping diagnostic criteria, and the related issue of 
diagnostic boundaries between disorders in the classification systems (see Angold 
et al. (1999) and Arcelus and Vostanis (2005) for more extensive overviews). It is 
important to note here that both the DSM-V and the ICD-10 classify disorders by 
the observation of clusters of behavioural symptoms, without regard to their bio-
logical causes (Rapin, 2014).

However, none of these possibilities fully explains the above-mentioned phe-
nomenon (Angold et al., 1999). True comorbidity in the field of neurodevelopmen-
tal disorders (homotypic comorbidity) may arise because different disorders share 
the same risk factors (Arcelus & Vostanis, 2005). Heterotypic comorbidity may also 
share certain causes (Angold et al., 1999). Among the most probable shared risk 
factors for MLD and ADHD are genetic factors. Wilcutt et al. (2010) have shown 
that correlations between biological siblings are moderate to high on dimensional 
measures of math, reading and ADHD symptoms. The relative risk of first-degree 
relatives compared to relatives of individuals without the disorder (or familiarity) 
of ADHD is 4–8 times higher, and of MLD it is estimated to be 5–10 times higher. 
Furthermore, they summarized the results of published twin studies of reading, 
math and ADHD symptom dimensions (mostly inattention) and reported moderate 
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to high shared heritability, whereas shared environmental influences did not explain 
additional variance for the ADHD symptom dimensions. Moreover, they suggested 
that comorbidity between specific learning disabilities and ADHD are primarily 
explained by common genetic influences (see Moreno-De-Luca et al., 2013, for a 
general overview of genetic studies in neurodevelopmental disorders). These high 
heritability rates have led to initial optimism that single genes with major effects 
would be identified for each disorder. However, results of different types of genetic 
studies (candidate gene studies, linkage studies and association studies) all suggest 
that the aetiologies of specific learning disabilities and ADHD are complex and 
polygenetic, with multiple genetic and environmental risk factors contributing to 
the total phenotypic variance in the population. Also, they suggest rather than being 
unique and specific neurodevelopmental deficits, learning disorders and ADHD may 
be distinguished by subtle differences in cognitive profiles (Wilcutt et al., 2010). 
This notion has led the National Institute of Mental Health to propose new bio-
logically based Research Domain Criteria (RDoC) classifications, e.g. for working 
memory, to cut across traditional diagnostic categories and identify neurodevelop-
mental disorders rather as dimensional than categorical dysfunctions of specific 
capacities (Rapin, 2014; see also the Research Domain Criteria approach RDoC of 
the NIMH, http://www.nimh.nih.gov/research-priorities/rdoc/index.shtml).

To this end, genetic studies and epidemiological data suggest that neurodevelop-
mental disorders should rather be thought of as different patterns of symptoms or 
impairments of common underlying continua than being considered as causally and 
pathophysiologically distinct (Moreno-De-Luca et al., 2013). The authors argue for 
a conceptual framework of developmental brain dysfunction; however, they are very 
explicit in stating that this should not be considered a final diagnosis, since “cate-
gorical diagnoses and specific impairments must be identified to guide treatment” 
(Moreno-De-Luca et al., 2013, p. 410). Rapin (2014) also argued that conventional 
DSM or ICD diagnoses are still needed to inform decisions about kinds of interven-
tions one should try and other questions, despite their flaws and lack of classifica-
tion rigour. Similarly, Arcelus and Vostanis (2005) argue that in clinical terms it may 
not matter whether a child is diagnosed as suffering from one single, two distinct or 
one mixed disorder, as long as all behavioral symptoms are recognized and treated.

 What Can Be Causes for Difficulties in Mathematics?

Rubinsten and Henik (2009) explicitly postulated that different aetiologies can lead 
to the same problem, namely, difficulties in mathematics. They differentiate between 
“mathematical learning disability” on the one hand, which they see as secondary 
deficiencies in mathematics due to general cognitive impairments such as inatten-
tion or a working memory deficit (related to frontal lobe dysfunction). On the other 
hand, they conceptualized “developmental dyscalculia” as a primary disability in 
mathematics caused by a core deficit in numerical magnitude representation 
(related to parietal lobe dysfunction; see Wilson & Dehaene, 2007; Landerl, Chap. 2, 
this volume; De Smedt, Peters & Ghesquière, Chap. 21, this volume). Similarly, a 
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recent opinion article by 14 of the leading researchers on this topic (Kaufmann 
et al., 2013) also differentiates between primary and secondary dyscalculia, with the 
latter being entirely caused by nonnumerical impairments such as – but not limited 
to – ADHD.

Interestingly, three studies found that within the group of MLD children, large 
subgroups mostly had difficulties associated with inattention, such as omitting num-
bers while counting or failing to add and subtract carried digits (Badian, 1983; 
Shalev, Manor, & Gros-Tsur, 2005; von Aster, 2000). These children also had 
great difficulties remembering multiplication tables and other number facts. 
Badian suggested already in 1983 that many children make arithmetic errors 
because of attentional problems rather than due to a specific mathematical deficit.

In more detail, several specific mechanisms linking domain-general cognitive 
impairments to deficits in different aspects of arithmetic have been postulated. 
Problems with the carry procedure have been linked to poor attentional and working 
memory skills for a long time (Geary, 1993). Furthermore, Ackerman, Anhalt, and 
Dykman (1986) stated that children with ADHD have problems in mathematics due 
to interference during automatization processes. As a consequence, arithmetic fact 
retrieval is often impaired in children with ADHD even without specific learning 
disabilities (Zentall, 1990). Recently, de Visscher and Noël (2014, 2015) have 
presented empirical evidence for a specific link between impaired arithmetic fact 
retrieval and hypersensitivity to interference.

In addition to a core deficit in numerical magnitude processing and to domain- 
general cognitive impairments, affective disorders may indirectly interrupt success-
ful arithmetic performance. In a recent meta-analysis, Moran (2016) confirmed a 
negative impact of anxiety on a variety of working memory tasks. More specifically, 
math anxiety may impair mathematical performance due to a decreased working 
memory capacity (for a specific review, see Eden, Heine, & Jacobs, 2013). 
Depression also disrupts cognition in children (mostly concerning memory and 
retrieval: Günther, Holtkamp, Jolles, Herpertz-Dahlmann, & Konrad, 2004), which 
can have a negative impact on arithmetic performance. This means that affective 
disorders cannot only be caused by problems in mathematics but that they can 
themselves lead to secondary MLD.

 Why Is It Important to Distinguish Between Primary 
and Secondary MLD?

Mathematical learning disabilities have severe negative consequences on mental 
health (Auerbach, Gross-Tsur, Manor, & Shalev, 2008) as well as employment rates 
and wages (Paglin & Rufolo, 1990; Parsons & Bynner, 2005). However, not all 
children and adolescents struggling with mathematics suffer from developmental 
dyscalculia (Rubinsten & Henik, 2009) or primary MLD (Kaufmann et al., 2013). 
In order to be able to provide the best help for affected individuals, it is necessary to 
know about the respective reasons for deficits in mathematics.
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As described in the section above, a substantial number of children will fulfil 
most diagnostic criteria for the diagnosis of a specific learning disability (SLD) in 
arithmetic, but do not present with a core deficit in numerical magnitude representa-
tion. The DSM-5 (American Psychiatric Association, 2013) does not require evi-
dence for a core deficit as a diagnostic criterion for a SLD in arithmetic but rules out 
MLD if a developmental disorder (such as ADHD), poor intelligence or poor educa-
tion is the cause of the impairment in mathematics. Consequently, secondary MLD 
should not be diagnosed as an SLD in mathematics.

For the families of affected children, the question of how to treat the problems is 
of course much more important than that of any terminology. However, it is impor-
tant to know that the treatment possibilities for ADHD (behavioural therapy, medica-
tion and possibly also neurofeedback therapy) and for internalizing disorders such as 
anxiety or depression (psychotherapy) are in most countries not only much easier 
accessible than a specific learning therapy for dyscalculia but also provided for by 
healthcare systems (see chapter on international differences in this volume).

The most widely and for decades successfully used pharmaceuticals for the treat-
ment of ADHD are based on methylphenidate (MPH). MPH shows general positive 
effects on performances in standardized mathematics tests (for an overview, see 
Elia, Welsh, Gullotta, & Rapoport, 1993, and Lindsay et al., 1999). Furthermore, an 
early and successful ADHD treatment leads to a good prognosis if a hasty and 
impulsive performance style was the cause for most errors in the numerical domain 
(von Aster, 2000). It has also been shown that treatment of math anxiety alleviated 
poor performance in mathematics (Hembree, 1990; Ramirez & Beilock, 2011). To 
this end, treating the underlying causes of secondary MLD might suffice.

On the other hand, primary MLD can only be diminished by an individualized 
learning therapy and not by any medication or psychotherapy known of. In most coun-
tries, parents will have to pay for an individualized learning therapy privately as there 
are no public resources. In some countries (such as Belgium), the school system is 
supposed to take care of all children with MLD.  In some other countries (such as 
Germany), there are very limited respective public resources. In these cases, too many 
false-positive diagnoses may systematically prevent children with primary MLD from 
getting the help they need if parents cannot afford to pay for it privately.

Recapitulatory, treating the unspecific causes of secondary MLD first would not 
only prevent many affected children from the need for an often lengthy and costly 
learning therapy but also save limited respective public resources for children with 
primary MLD if available.

 What Are Difficulties for a Respective Differential Diagnosis?

As outlined above, choosing an optimal treatment for MLD depends on knowledge 
about the underlying causes. However, it is not an easy task to differentiate between 
primary dyscalculia with a comorbid ADHD and a secondary MLD because of 
ADHD (or anxiety, depression, etc.). There are rather several difficulties complicating 
this issue.
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Firstly, the high comorbidity rates between developmental disorders in general 
due to their shared genetic causes (Moreno-De-Luca et  al., 2013) lead to a high 
number of children with attentional and working memory deficits even in the group 
with primary MLD.

Secondly, the development of numerical cognition and arithmetic abilities relies 
to some extent on executive functions, which are themselves related to attentional 
processes (for a meta-analysis, see Friso-van den Bos, van der Ven, Kroesbergen, & 
van Luit, 2013). Recent findings suggest that even tasks considered as cognitive 
marker for a numerical core deficit such as the accuracy of nonsymbolic magnitude 
representation are influenced by children’s capacity for inhibition (Bugden & 
Ansari, 2015; Gilmore et al., 2013).

Another problem is that tasks for testing a numerical core deficit such as magni-
tude comparison of dots are usually developed for research questions only, based on 
reaction times, and not standardized for clinical use. Some dyscalculia tests based 
on neuropsychological models include number line tasks or estimation tasks, which 
should also tap a core deficit in number magnitude processing. However, the respec-
tive subtests are mostly comprised of only very few items or show other construc-
tive deficits and thus suffer from poor reliability (Krinzinger & Günther, in press). 
The existence of a numerical core deficit in a child would provide strong evidence 
for a primary MLD (even if not required for the clinical diagnosis). However, prac-
tising psychologists usually do not have the means for testing this.

Furthermore, standardized dyscalculia tests are often not constructed to optimally 
tap specific numerical deficits. For example, one of the most widely used tests in 
German speaking countries is the ZAREKI-R (Von Aster, Weinhold Zulauf, & Horn, 
2009). In this test, primary school children are asked to solve orally (and not visually) 
presented additions, subtractions and word problems. Children with working mem-
ory deficits frequently do not remember the respective numbers correctly and score 
much better if the same items are presented to them visually later on. What is more, 
the ZAREKI-R includes two obligatory working memory tasks, which account for 
24 of overall 119 possible raw score points. To this end, it is very likely that this test 
(and other similarly constructed ones) is highly sensitive to domain-general working 
memory deficits and does not have the desired specificity for primary MLD.

Last but not least, almost nothing is known so far about possible qualitative per-
formance differences (such as different error types) between children with primary 
MLD and children with secondary MLD. Many more studies have investigated cal-
culation error types and strategies in children with ADHD without MLD. As these 
children present with average mathematical performance, any problems they have 
must be considered unspecific and should not be regarded as conclusive cognitive 
marker for primary MLD. The next section will describe the respective findings.

 Which Error Types Are Not Specific to Primary MLD?

It is well-known that even adults with ADHD have difficulties with written multi- 
digit calculations (Seidman, Biederman, Weber, Hatch, & Faraone, 1998). In 
children with ADHD, inattention has been shown to predict overall accuracy, the 
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number of systematic procedural errors (i.e. the same procedural error type made at 
least twice), and math fact errors in this task (Raghubar et al., 2009).

One of the most comprehensive studies concerning the question of calculation 
error types and strategies in 7–11-year-old children with ADHD but average math-
ematical ability was conducted by Benedetto-Nasho and Tannock (1999). Compared 
to healthy controls matched for age, IQ, and mathematical ability, ADHD children 
used more immature strategies including finger counting. Finger counting reduces 
the working memory load during calculation (Costa et  al., 2011), explaining its 
higher occurrence in ADHD children. The above-described group also made signifi-
cantly more trading errors, with the majority of errors involving a misunderstanding 
of the concept of borrowing. Most of these errors resulted from consequently sub-
tracting the smaller number from the larger number, irrespective of its position in 
the calculation problem (i.e. 688–259 = 431; “subtract small from large”).

Another study in 115 8–10-year-old children born preterm showed that they had 
worse mathematical abilities than control children without any deficits in magnitude 
representation or other basic numerical abilities (Simms et al., 2015). The specific def-
icits in this group lay – similar to the study cited above – mostly in the more frequent 
use of immature strategies such as counting even for easy arithmetic problems, as 
well as in deficits in counting forwards and backwards in the higher number ranges 
if tens, hundreds or thousands had to be crossed (i.e. 2995–3004, 325–317). This 
group also had lower visual-spatial abilities and a lower working memory span com-
pared to control children. For both deficits, the group differences vanished as soon 
as they were controlled for visual-spatial and working memory skills. Consequently, 
the experimental group could be categorized as presenting with secondary MLD.

Interestingly, the MLD subgroup with the highest number of comorbid ADHD 
and often presenting with a hasty, impulsive working style cited above (von Aster, 
2000) also exhibited multi-digit counting errors and fact retrieval deficits as most 
prominent problems.

More direct evidence for specific error types or immature strategy use being 
secondary to attentional and working memory deficits comes from studies investi-
gating respective MPH impact. MPH-induced improvements in the mathematical 
domain have been shown for general improvement concerning speed and accuracy; 
less use of finger counting in multi-digit subtraction (both: Benedetto-Nasho & 
Tannock, 1999); higher number of correct additions and subtractions in a certain 
amount of time, especially including carry procedures (Elia et al., 1993); faster and 
less error-prone fact retrieval for addition (Carlson, Pelham, Swanson, & Wagner, 
1991); and faster and more accurate fact retrieval for all four basic arithmetic opera-
tions (Douglas, Barr, O’Neill, & Britton, 1986). Even more specific, a study in 
small, but very well-controlled, groups of children with ADHD without any math-
ematical deficits, with mathematical deficits and with comorbid primary dyscalculia 
showed that MPH had a general positive effect on subtractions with borrow proce-
dure, but no impact on the deficit in easy, small subtraction in the group with comor-
bid dyscalculia (Rubinsten, Bedard, & Tannock, 2008). The authors explained these 
findings with a positive effect of MPH on working memory, which is the most 
important factor for the performance in subtractions including borrowing. On the 
other hand, a deficit in small subtractions should be caused by a numerical core defi-
cit, which will not be improved by MPH.
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In summary, the following calculation error types and strategies are consistently 
found in ADHD children without MLD and therefore should not be considered as 
specific for dyscalculia: (i) finger counting and immature counting strategies; (ii) 
problems with crossing tens, hundreds and thousands in counting; (iii) fact retrieval 
deficits; and (iv) inaccurate trading procedures in addition and subtraction, includ-
ing an error type called “subtract small from large” and others implying insufficient 
conceptual understanding of the trading procedures.

 Objectives of the Current Study

As described so far, the differential diagnosis between a primary MLD with comor-
bid ADHD (or working memory deficits due to, i.e. an anxiety disorder) and a sec-
ondary MLD is a very difficult task. Most importantly, we are missing clear cognitive 
markers which are specific to primary MLD on the one hand and usable by clini-
cians on the other hand.

To this end, the present study was conducted to analyze differences in qualitative 
error patterns between children and youths with primary versus secondary MLD. The 
main goal was to identify error types which are made significantly more often by 
children with primary MLD. Another aim was to validate a previously suggested 
clinical cut-off (Krinzinger, 2016) for the discrimination between primary and sec-
ondary MLD using the German dyscalculia test Basis-Math 4–8 (Moser-Opitz 
et al., 2010; see also below).

 Materials and Methods

The current study consists of ex post facto analyses of a clinical population tested 
for dyscalculia at the Child Psychiatry Department of the RWTH Aachen University 
Hospital in Germany. The analysis of the convergent and discriminant validity of 
the suggested clinical cut-off in Basis-Math scores as well as differences in error 
patterns made by the resulting separated groups will be presented in this chapter.

 Participants

Data of all children and youths tested between 2011 and 2015 as inpatients or outpa-
tients at the Child Psychiatry Department of the RWTH Aachen University Hospital 
in Germany with the dyscalculia test Basis-Math 4–8 (see below) because of the 
suspicion of MLD were eligible. Most of them had never been tested for dyscalculia. 
They were included if they attended a regular secondary school and both an IQ 
measure (HAWIK-IV, the German version of the WISC-IV, Petermann & Petermann, 
2007) as well as a protocol of self-corrections (see below) were available. 
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Exclusion criteria were an unpathological Basis-Math result (>72 raw score points), 
below-average IQ (<85), undertaking a dyscalculia learning therapy in the past and 
changing the language of math lessons due to moving to Germany from the 
Netherlands or Belgium. The resulting sample consisted of 51 children (39 girls) of 
which only 4 had been diagnosed with dyscalculia according to ICD-10 criteria 
(Dilling, Mombour, & Schmidt, 1993: rather used in Germany but very similar to the 
DSM-V criteria for SLD in arithmetic) in the past.

Consisting of a psychiatric clinical population, all of them had psychiatric 
comorbidities (all classified according to ICD-10 criteria). The highest numbers of 
comorbidities were found for ADHD (n = 31; with 9 children taking MPH at the 
time of the assessment) and depression (n = 36). Twenty children suffered from 
some anxiety disorder, 17 from a somatization disorder and 20 of any other psychi-
atric disorder and/or absence epilepsy. A comorbid reading and spelling disorder 
was present in five children and an isolated reading disorder in only two children.

 Assessment

The Basis-Math 4–8 (Moser-Opitz et al., 2010) was in 2011 the only available dyscal-
culia test in Germany for children and youths in Grade 7 or higher. It usually takes no 
longer than 45 minutes and does not pose high demands on working memory capacity, 
as all problems are presented in written format and can be solved using written calcula-
tion, if necessary. The Basis-Math was constructed in regard to the content of the ICD-
10 criteria for dyscalculia, namely, deficits in the basic arithmetic operations and 
numerical understanding and not in higher domains such as fractions or other topics 
of secondary school mathematics. The maximum overall raw score is 83. Children 
achieving at or above 73 raw score points are considered unpathological, raw score 
points between 72 and 68 constitute a tolerance zone and children achieving below 
67 raw score points are considered to have MLD. The test authors reported high 
sensitivity but an insufficient specificity of only 42% in a German sample using the 
strict cut- off (Moser-Opitz et al., 2010). As described above, the published part of the 
current study (Krinzinger, 2016) suggested a more specific cut-off of ≥50 Basis-Math 
raw score points for secondary MLD, a tolerance zone of 45–50 and only children with 
a resulting score of less than 50 as being candidates for primary MLD. To this end, a 
cut-off of ≥50  in the Basis-Math was used to differentiate a group with secondary 
MLD and a group with possible primary MLD for the current study.

For the number line task used in a large subsample, children were asked to mark 
where 20 numbers should go on respective horizontal lines (all 10 cm long) with the 
endpoints 0 and 1000. The sequence of the items was 500, 3, 432, 600, 287, 400, 743, 
800, 173, 300, 95, 200, 314, 822, 989, 700, 565, 900, 651 and 100 for all children. The 
fits for the linear and the logarithmic functions were calculated for each participant 
in EXCEL, with their difference used as a measure for the  exactness of their number 
magnitude representation in this number range. A negative  number in this difference 
score means a better fit of the logarithmic function, which is considered a valid marker 
for an immature number magnitude representation and is typically found in second 
graders, but not any more in fourth graders (Booth & Siegler, 2006).
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 Error Categories

Calculation error types were coded for all (complete and incomplete) additions, 
subtractions, multiplications, divisions and word problems of the Basis-Math 4–8 
(Moser-Opitz et al., 2010; see above).

The following error types could occur in all problems: counting error (+/− 1 or 2), 
trading error (+/− 10, 100 or 1000), counting and trading error combined (+/− 9, 11, 
90, 110, 900, 1100), split-5 error (+/− 5 or “a full hand”; see Domahs, Krinzinger, 
& Willmes, 2008), wrong procedure (i.e. additions instead of multiplication or 
subtraction), complex procedural (more than one procedural error per item but other 
than counting and trading combined) and “don’t know” as answer.

Error types occurring only in subtraction were “subtract small from large” (i.e. 
688–259  =  431; see Benedetto-Nasho & Tannock, 1999), resulting in a solution 
larger than the minuend and zero as result.

Error types only possible in multiplications and divisions were table errors. 
Furthermore, due to the choice of item sequence (18:2, 180:2, 108:2; 160:4, 160:40), 
wrong generalizations (i.e. 160:4 = 4 ➔ 160:40 = 40) or consecutive errors 
(i.e. 18:2 = 6 ➔ 180:2 = 60) were possible for divisions.

Only in the problem type 100,000–100 error types were possible which were 
only explainable by a faulty understanding of the decimal system. These errors 
were comprised of too few digits (i.e. 100,000–100 = 9.900) and too many digits 
(i.e. 100,000–100 = 999,900) or started with the digit 1 (i.e. 100,000–100 = 100,900) 
in the calculation results.

Calculation errors which did not fit into any of these types were categorized as 
“unidentifiable”.

Counting errors were categorizable within six types (multiple coding possible): 
omissions (all three problems), early stop (all three problems), parity change (count-
ing in twos), change of the unit digit to zero (counting in tens backward), change to 
any other unit digit (counting in tens backward) and change counting hundreds to 
counting thousands or tens (counting in hundreds).

 Analyses

The convergent and discriminant validity analyses of the suggested clinical Basis- 
Math cut-off score for the discrimination between secondary MLD (sMLD) and 
possible primary MLD (pMLD) was conducted using Pearson correlations between 
the Basis-Math overall scores, the differences between the fit for the linear and 
the logarithmic function for the number line estimates as a measure for convergent 
validity, and the IQs as a measure for discriminant validity. Furthermore, group 
comparisons for these two measures were carried out between these two groups 
(using T-tests) as well as between the three groups of children without ADHD, 
unmedicated ADHD children and medicated ADHD children (univariate ANOVA) 
to support the interpretation of convergent and discriminant validity.
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Chi-square tests were carried out for the analyses of different distributions of 
error types between pMLD and sMLD. In order to foster the specificity of respec-
tive differences, chi-square tests for the analyses of different distributions of error 
types between a group of children without ADHD, a group of unmedicated ADHD 
children and a group of medicated ADHD children were carried out as well.

 Results

 Descriptive Statistics

The descriptive statistics concerning age, grade, IQ, Basis-Math overall raw score 
(BM score) and the difference between the fit of the linear and the logarithmic 
function of the number line estimates can be obtained from Table 24.1.

 Convergent and Discriminant Validity of the Postulated More 
Specific Clinical Cut-Off

As expected, the Basis-Math overall scores (BM scores) correlated significantly 
with the differences between the fit for the linear and the logarithmic function of the 
number line estimates (n = 34, r = 0.415, p = 0.015; see Fig. 24.1 for the respective 
scatterplot), but not with IQs (n = 51, r = 0.254, p = 0.073; see Fig. 24.2 for the 
respective scatterplot).

The two experimental groups differed significantly in the number line differ-
ence score (pMLD, mean  =  0.15, sd  =  0.11; sMLD, mean  =  0.20, sd  =  0.04; 
t  =  2.16, p  =  0.039), but not in IQ (pMLD, mean  =  94.9, sd  =  10.2; sMLD, 
mean = 98.3, sd = 8.3; t = 1.21, p = 0.231). On the other hand, the three groups of 
children without ADHD, unmedicated ADHD and medicated ADHD did not dif-
fer significantly in these two measures or in the Basis-Math overall score (all 
F < 0.81, all p > 0.45).

Table 24.1 Descriptive statistics (means, standard deviations, minima, maxima) for age, grade, 
IQ, Basis-Math overall scores (BM score) and differences between the fit of the linear and the 
logarithmic function of the number line estimates (Fit lin-log) for the clinical sample (n = 51)

Mean Standard deviation Minimum Maximum

Age 13.16 2.072 10 18
Grade 7.35 1.787 5 11
IQ 97.47 8.812 85 123
BM score 55.45 12.960 21 71
Fit lin-log 0.18 0.08 −0.06 0.26
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Fig. 24.1 Scatterplot of Basis-Math overall scores (x-axis) and difference between the fit of the 
linear and the logarithmic function for number line estimates (y-axis; n = 34)

Fig. 24.2 Scatterplot of Basis-Math overall scores (x-axis) and IQ scores (y-axis; n = 51)
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Furthermore, only two children who had a BM score of less than 50 showed a 
better fit of the logarithmic function (negative difference score), thus presenting 
with an immature magnitude representation for numbers in the range 0–1000.

 Differences in Calculation Error Types Between Secondary 
and Possible Primary MLD

For six calculation error types, significant differences in their frequencies between 
children with secondary MLD compared to possible primary MLD could be 
observed (percentages of children per group not making the respective error type, χ2 
and p-levels can be obtained from Table 24.2).

The use of a wrong procedure (mostly addition instead of multiplication) and 
wrong generalizations occurred in more than half of the children with possible pri-
mary MLD (pMLD)  and in a minority (not more than 16%) of children with sec-
ondary MLD (sMLD).

Unidentifiable errors (which fit in no other category) were made by 77% of 
pMLD and 63% of sMLD children. If the two items eliciting the most unidentifiable 
errors (1000/8 and a word problem comprising the calculation 7.2/3) were excluded 
from this analysis, this error type was still made by a majority of pMLD (54%) but 
only by a minority of sMLD children (16%; χ2 = 19.9, p = 0.001).

Table 24.2 Relative number (%) of children with a BM score of <50 points (possible primary 
MLD/pMLD) vs. ≥50 (secondary MLD/sMLD) who never made specific calculation error types, 
ordered by significance between differences in frequencies (p-levels for chi-square tests)

Error category
% of pMLD (n = 13) 
not making error type

% of sMLD (n = 38) 
not making error type χ2 p-level

Wrong procedure 39 90 14.6 0.001
Unidentifiable 23 37 16.5 0.011
Decimal understanding 23 61 11.2 0.024
Wrong generalization 46 84 7.4 0.025
Counting error 31 55 9.1 0.028
Complex procedural 0 13 13.8 0.032
Zero as subtraction result 92 100 3.0 0.084
Split-5 error 85 97 2.8 0.092
“Don’t know” 31 50 9.3 0.097
Consecutive error 69 87 2.1 0.150
Table error 62 71 3.1 0.216
Trading error 54 71 7.0 0.224
Counting and trading error 
combined

92 92 3.9 0.267

“Subtract small from large” 92 84 0.5 0.464
Result larger than minuend 92 95 0.1 0.748

24 Comorbidity and Differential Diagnosis of Dyscalculia and ADHD



398

Errors only explainable by a faulty understanding of the decimal system 
(“decimal understanding”) and counting errors also occurred in more than half of 
the children with pMLD but in less than half of the children with sMLD. All children 
with pMLD but only 87% of the children with sMLD made complex procedural 
errors (more than one procedural error per item, excluding counting and trading error 
combined).

The distributions of three error types were marginally significantly different 
between the two groups: no child from the sMLD group came up with zero as a 
subtraction result, but one child from the pMLD group did. Split-5 errors (exactly 5 
of a correct addition or subtraction result) occurred in 15% of the children with 
pMLD but only in 3% of the children with sMLD. A “don’t know” answer was 
given by more than two thirds of the children with pMLD but only by half of the 
sMLD children.

The distributions for consecutive errors, table errors, trading errors, counting and 
trading errors combined, the error type “subtract small from large” and subtractions 
for which the result was larger than the minuend (for error category descriptions, 
see above) were not significantly different between the two groups.

No significant differences for any calculation error-type distribution were found 
between children without ADHD (n = 20), unmedicated ADHD (n = 22) and medi-
cated ADHD (n = 9) children.

 Differences in Counting Error Types Between Secondary 
and Possible Primary MLD

Out of six possible error categories which were made during the three counting 
items (multiple coding was possible), only two were distributed differently between 
the two groups (percentages of children per group not making the respective error 
type, χ2 and p-levels can be obtained from Table 24.3).

Table 24.3 Relative number (%) of children with a BM score of <50 points (possible primary 
MLD/pMLD) vs. ≥50 (secondary MLD/sMLD) who never made specific counting error types, 
ordered by significance between differences in frequencies (p-levels for chi-square tests)

Error category
% of pMLD (n = 13) 
not making error type

% of sMLD (n = 38) 
not making error type χ2 p-level

Change of unit digit to other 
digit (excluding zero)

69 100 12.7 <0.001

Change counting hundreds to 
tens or thousands

54 90 7.9 0.019

Parity change 69 87 2.1 0.150
Early stop 85 92 3.0 0.225
Change of unit digit to zero 100 97 0.3 0.555
Omission 62 58 0.1 0.818
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Changing the unit digit from 7 to another digit (excluding zero) while counting 
backwards in tens occurred in 21% of the pMLD group, but in no child of the sMLD 
group. Changing from counting hundreds to counting tens or thousands happened to 
almost half of the pMLD children but only 10% in the sMLD group.

No significant differences were found for the distributions of parity change in the 
counting in twos item, early stops, changing of unit digit to zero in the counting in 
tens backwards item and omissions.

No significant differences for any error-type distribution were found between 
children without ADHD (n  =  20), unmedicated ADHD (n  =  22) and medicated 
ADHD (n = 9) children.

 Discussion

The current study had two main aims. First, a previously suggested clinical cut-
off of 50 raw score points (Krinzinger, 2016) for the dyscalculia test Basis-Math 
4–8 (Moser-Opitz et al., 2010) which does not provide standardized norms was 
validated in a clinical population study. Furthermore, in the same sample, quali-
tative error analyses for calculation and counting error types were carried out 
comparing two groups differentiated by this cut-off as having secondary MLD 
vs. possible primary MLD. The results will be summarized and discussed in the 
following sections.

 Validation of the Postulated Clinical Cut-Off for the Basis-Math 
Overall Score

In a large subgroup of the current sample (34/51 children), a number line task was 
presented to children in which they had to provide estimates for numbers between 0 
and 1000. For the resulting estimates, the fit for the linear and the fit for the logarith-
mic function were calculated in each child. The respective differences were used as 
a measure for the children’s number magnitude representations, with higher values 
meaning a relatively better fit for the linear (exact) function and values smaller than 
one indicating a better fit of the logarithmic (immature) function.

As expected, this difference measure correlated significantly with the Basis- 
Math overall score, and the two experimental groups (secondary MLD vs. possible 
primary MLD) differed significantly in their respective values. Furthermore, only 
two children presented with a negative value in this difference measure, and both of 
them belonged to the group with possible primary MLD. These results confirmed 
the convergent validity of the postulated cut-off, as indicators for a numerical core 
deficit were related to (and only observed in) the group with possible primary MLD.

On the other hand, neither did the Basis-Math overall score correlate signifi-
cantly with IQ nor did the two experimental groups differ significantly in their 
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IQs. Furthermore, the number line difference measure was not different between 
the three groups of children without ADHD, unmedicated ADHD and medicated 
ADHD. These results confirmed the discriminant validity of the postulated cut-off.

To this end, the discrimination between children with secondary MLD (sMLD) 
caused by attentional or working memory deficits (due to ADHD and/or depression 
or other psychiatric disorders) with at least 50 raw score points in the Basis-Math 
and children with a possible primary MLD (pMLD) caused by a numerical core 
deficit seems to be valid.

 Specific and Unspecific Error Types

One of the main results of this study is the confirmation of various error types not 
being specific for primary MLD but also frequent in ADHD children without any 
differences in mathematics (Benedetto-Nasho & Tannock, 1999; see also 3.7.1.5 for 
an extensive overview). Unspecific calculation error types which have already been 
described before were table errors in multiplication, trading errors (+/− 10, 100, 
1000), counting and trading errors combined (+/− 9/11, 90/110, 900/1100), and the 
error type “subtract small from large” (e.g. 688–259 = 431). Children with second-
ary problems in mathematics have also been found to present with problems in 
counting in steps. Respective unspecific errors in the current study were a parity 
change in the counting in twos item, early stops, changing of unit digit to zero in the 
counting in tens backwards item and omissions. These should be regarded as most 
likely being caused by attention and/or working memory deficits while carrying out 
calculation or counting procedures (procedural errors) and not by a deficient under-
standing of numbers.

On the other hand, changing the unit digit while counting backwards in tens 
(except to zero) was only observed in the pMLD group, and changing the unit of 
counting (i.e. from hundreds to tens or thousands) was significantly more frequent in 
the pMLD group. Regarding calculation errors, zero as a subtraction result was only 
observed in one child of the pMLD group. Furthermore, complex procedural errors 
(more than one procedural error per item, excluding counting and trading errors 
combined), counting errors, errors only to be explained by a faulty understanding of 
the decimal system (e.g. 100,000–100 = 9.900; 100,000–100 = 999,900; 100,000–
100 = 100,900), wrong generalizations which were possible due to a specific item 
sequence (i.e. 160:4 = 4 ➔ 160:40 = 40), using the wrong calculation procedure 
(mostly addition instead of multiplication) and errors fitting in none of the described 
categories or unidentifiable errors were significantly more frequent in the pMLD 
group. Most of these error types can only be ascribed to deficits in conceptual under-
standing of calculation procedures or of numbers themselves (conceptual errors).

These findings are a first step in bridging the long-vacant gap concerning cogni-
tive markers to distinguish primary from secondary MLD. In sum, conceptual errors 
which cannot be explained by deficits in attention or working memory should be 
considered specific for primary MLD. On the one hand, if a child makes hardly any 
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conceptual and mostly procedural errors (which can happen to anyone in certain 
situations like fatigue), clinicians should suspect domain-general deficits (in atten-
tion and/or working memory, caused by ADHD or a psychiatric disorder like depres-
sion or anxiety) to lie at the core of the deficits in mathematics.

 Limitations of This Study

This study was conducted out of a clinical motivation, namely, to distinguish 
between secondary school pupils with primary and secondary MLD with only a 
dyscalculia test at hand which does not provide standardized norms (luckily, this 
situation has changed in the meantime in German-speaking countries). This means 
that the small sample size, its clinical nature, the utilized test itself, the ex post facto 
study design and the fact that no primary school children were included in this study 
pose serious threats as to how far it is possible to generalize the current results. In 
this spirit, the current study is only seen as a means to raise awareness for the impor-
tant and difficult task clinicians have with the differential diagnoses of dyscalculia 
and/or ADHD and/or math anxiety (or other psychiatric disorders causing a work-
ing memory deficit) and as first steps towards the identification of cognitive markers 
helping in this task.

 Conclusions

Whenever there is a choice of different treatment options for children and youths 
struggling with mathematics, it is of highest importance to understand the respec-
tive reasons in each individual case. There is a broad consensus in the field that the 
only promising treatment option for children with primary MLD (presenting with a 
core deficit in number magnitude representation) is an individualized learning ther-
apy. In the absence of a core deficit, for most children with an average IQ who have 
difficulties in mathematics, their problems stem from domain-general deficits like 
inattention or working memory deficits. The most frequent reasons for these are 
again either ADHD or internalizing psychiatric disorders like depression or (math) 
anxiety. It has been shown that both treating ADHD (Elia et al., 1993; Lindsay et al., 
1999; von Aster, 2000) and math anxiety (Hembree, 1990; Ramirez & Beilock, 
2011) alleviated poor performance in mathematics. To this end, if mathematical dif-
ficulties are secondary to another problem, this should always be treated first. 
Furthermore, if you are testing a child for dyscalculia and suspect ADHD and/or an 
internalizing psychiatric disorder (even if as a comorbidity to primary MLD), you 
should not be afraid to initiate a respective thorough assessment and provide parents 
with treatment options if necessary and possible.

However, the results of a dyscalculia test alone are often insufficient to disen-
tangle the possible reasons for a respective bad outcome. A thorough case history 
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and behavioural observation during the test are always mandatory in such cases, 
but may not be enough either. As assessments testing a possible numerical core 
deficit are usually lacking clinical practice (but see above for a number line task 
suitable for secondary school pupils), qualitative error analyses are a way to provide 
information needed for the differential diagnoses in question.

The present study was carried out in a clinical sample of secondary school 
pupils as a first step in this direction. The main results were on the one hand that 
a group with possible primary MLD did not differ from a group with secondary 
MLD (due to ADHD or internalizing psychiatric disorders) in a variety of proce-
dural errors (e.g. trading errors) and in multiplication table errors. Anyone may 
be prone to such error types in situations like fatigue, which is also known to 
diminish attention and working memory. These results confirm earlier studies 
analyzing the behaviour of ADHD children without MLD (e.g. Benedetto-Nasho 
& Tannock, 1999).

On the other hand (and more importantly), several error types which can only be 
explained by faulty conceptual understanding of calculation procedures or the 
decimal system of numbers were made significantly more often by children with 
possible primary MLD.

To this end, the more conceptual errors a pupil makes in basic arithmetic tasks, 
the higher is the need for an individual learning therapy.

References

Ackerman, P. T., Anhalt, J. M., & Dykman, R. A. (1986). Arithmetic automatization failure in 
children with attention and reading disorders: associations and sequela. Journal of Learning 
Disabilities, 4, 222–232.

Ackerman, P. T., Dykman, R. A., & Peters, J. E. (1977). Learning disabled boys as adolescents: 
Cognitive factors and achievement. Journal of the American Academy of Child Psychiatry, 16, 
296–313.

American Psychiatric Association. (2013). DSM-5: Diagnostic and statistical manual of mental 
disorders (5th ed.). Washington, D.C.: American Psychiatric Association.

Angold, A., Costello, E. J., & Erkanli, A. (1999). Comorbidity. Journal of Child Psychology and 
Psychotherapy, 40, 57–87.

Arcelus, J., & Vostanis, P. (2005). Psychiatric comorbidity in children and adolescents. Current 
Opinion in Psychiatry, 18, 429–434.

Auerbach, J. G., Gross-Tsur, V., Manor, O., & Shalev, R. S. (2008). Emotional and behavioral 
characteristics over a six-year period in youth with persistent and nonpersistent dyscalculia. 
Journal of Learning Disabilities, 41, 263–273.

Badian, N. A. (1983). Dyscalculia and nonverbal disorders of learning. In H. R. Myklebust (Ed.), 
Progress in learning disabilities (Vol. 5, pp. 235–264). New York: Stratton.

Barkley, R.  A. (1997). Behavioral inhibition, sustained attention, and executive functions: 
Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.

Benedetto-Nasho, E., & Tannock, R. (1999). Math computation, error patterns and stimulant 
effects in children with attention deficit hyperactivity disorder. Journal of Attention Disorders, 
3, 121–134.

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical 
estimation. Developmental Psychology, 4, 189–201.

H. Krinzinger



403

Bugden, S., & Ansari, D. (2015). Probing the nature of deficits in the “approximate number system” 
in children with persistent developmental dyscalculia. Developmental Science, 19, 817. https://
doi.org/10.1111/desc.12324

Carlson, C. L., Pelham, W. E., Swanson, J. M., & Wagner, J. L. (1991). A divided attention analysis 
of the effects of methylphenidate on the arithmetic performance of children with attention- 
deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 32, 463–471.

Costa, A. J., Silva, J. B., Pinhero-Chagas, P., Krinzinger, H., Lonnemann, J., Willmes, K., et al. 
(2011). A hand full of numbers: a role for offloading in arithmetics learning? Frontiers in 
Psychology, 2, 368. https://doi.org/10.3389/fpsyg.2011.00368

De Visscher, A., & Noël, M.-P. (2014). The detrimental effect of interference in multiplication fact 
storing: typical development and individual differences. Journal of Experimental Psychology: 
General, 143, 2380–2400.

De Visscher, A., & Noël, M.-P. (2015). Serial-order learning impairment and hypersensitivity-
to- interference in dyscalculia. Cognition, 144, 38–48.

Desoete, A. (2008). Co-morbidity in mathematical learning disabilities: Rule or exception? 
The Open Rehabilitation Journal, 1, 15–16.

Dilling, H., Mombour, W., & Schmidt, M. H. (1993). Internationale Klassifikation psychischer 
Störungen: ICD-10. Bern: Verlag Hans Huber.

Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: Evidence 
for internal finger-based number representations in children’s mental calculation. Cortex, 44, 
359–367.

Douglas, V. I., Barr, R. G., O’Neill, M. E., & Britton, B. G. (1986). Short term effects of methyl-
phenidate on the cognitive learning and academic performance of children with attention defi-
cit disorder in the laboratory and the classroom. Journal of Child Psychology and Psychiatry, 
27, 191–211.

Eden, C., Heine, A., & Jacobs, A. M. (2013). Mathematics anxiety and its development in the 
course of formal schooling—A review. Psychology, 4, 27–35. https://doi.org/10.4236/
psych.2013.46A2005

Elia, J., Welsh, P. A., Gullotta, C. S., & Rapoport, J. L. (1993). Classroom academic performance: 
Improvement with both methylphenidate and dextroamphetamine in ADHD boys. Journal of 
Child Psychology and Psychatry, 34, 785–804.

Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). 
Working memory and mathematics in primary school children: A meta-analysis. Educational 
Research Review, 10, 29–44.

Geary, D.  C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic 
components. Psychological Bulletin, 114, 345–362.

Geary, D. C. (2005). The role of cognitive theory in the study of learning disability in mathematics. 
Journal of Learning Disabilities, 38, 305–307.

Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., et al. (2013). Individual 
differences in inhibitory control, not non-verbal number acuity, correlate with mathematics 
achievement. PLoS One, 8, e67374.

Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: prevalence and 
demographic features. Developmental Medicine and Child Neurology, 38, 25–33.

Günther, T., Holtkamp, K., Jolles, J., Herpertz-Dahlmann, B., & Konrad, K. (2004). Verbal memory 
and aspects of attentional control in children and adolescents with anxiety disorders or depressive 
disorders. Journal of Affective Disorders, 82, 265–269.

Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal of Research in 
Mathematics Education, 21, 33–46.

Kaufmann, L., Mazzocco, M. M., Dowker, A., von Aster, M., Göbel, S. M., Grabner, R. H., & 
Rubinsten, O. (2013). Dyscalculia from a developmental and differential perspective. Frontiers 
in Psychology, 4, 516. https://doi.org/10.3389/fpsyg.2013.00516

Krinzinger, H. (2016). Differential diagnosis of primary and secondary mathematical learning 
disability – Indications from the dyscalculia test Basis-Math 4–8. Zeitschrift für Kinder- und 
Jugendpsychiatrie und Psychotherapie, 44, 1–13. https://doi.org/10.1024/1422-4917/a000446

24 Comorbidity and Differential Diagnosis of Dyscalculia and ADHD

https://doi.org/10.1111/desc.12324
https://doi.org/10.1111/desc.12324
https://doi.org/10.3389/fpsyg.2011.00368
https://doi.org/10.4236/psych.2013.46A2005
https://doi.org/10.4236/psych.2013.46A2005
https://doi.org/10.3389/fpsyg.2013.00516
https://doi.org/10.1024/1422-4917/a000446


404

Krinzinger, H., & Günther, T. (in press). Rechnen und Zahlenverarbeitung. In R.  Drechsler & 
T.  Günther (Eds.), Handbuch neuropsychologischer Testverfahren, Band 2: Kinder und 
Jugendliche. Göttingen: Hogrefe.

Lindsay, R. L., Tomazic, T., Levine, M. D., & Accardo, P. J. (1999). Impact of attentional dysfunction 
in dyscalculia. Developmental Medicine and Child Neurology, 41, 639–642.

Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. 
Psychological Bulletin, 142(8), 831–864.

Moreno-De-Luca, A., Myers, S.  M., Challman, T.  D., Moreno-De-Luca, D., Evans, D.  W., & 
Ledbetter, D.  H. (2013). Developmental brain dysfunction: Revival and expansion of old 
concepts based on new genetic evidence. The Lancet, 12, 406–414.

Moser-Opitz, E., Reusser, L., Moeri Müller, M., Anliker, B., Wittich, C., & Freesemann, C. (2010). 
Basisdiagnostik Mathematik für die Klassen 4–8 (BASIS-MATH 4–8). Bern: Huber.

Paglin, M., & Rufolo, A.  M. (1990). Heterogeneous human capital, occupation choice, and 
male- female earning differences. Journal of Labor Economics, 8, 123–144.

Parsons, S. & Bynner, J. (2005). .Does numeracy matter more? Retrieved from: http://nrdc.org.
uk/publications

Passolunghi, M. C., Cargnelutti, E., & Pastore, M. (2014). The contribution of general cognitive 
abilities and approximate number system to early mathematics. British Journal of Educational 
Psychology, 84, 631–649. https://doi.org/10.1111/bjep.12054

Petermann, F., & Petermann, U. (2007). Hamburg-Wechsler Intellligenztest für Kinder IV. Bern: 
Huber.

Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in 
multi-digit arithmetic and behavioural inattention in children with math difficulties. Journal of 
Learning Disabilities, 42, 356–371.

Ramirez, G., & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in 
the classroom. Science, 331(6014), 211–213.

Rapin, I. (2014). Classification of behaviorally defined disorders: Biology versus the DSM. 
Journal of Autism and Developmental Disorders, 44, 2661–2666.

Rubinsten, O., Bedard, A.-C., & Tannock, R. (2008). Methylphenidate has differential effects on 
numerical abilities in ADHD children with and without co-morbid mathematical difficulties. 
The Open Psychology Journal, 1, 11–17.

Rubinsten, O., & Henik, A. (2009). Developmental dyscalculia: different mechanisms might not 
mean different mechanisms. Trends in Cognitive Sciences, 13, 92–99.

Samet, S., Nunes, E. V., & Hasin, D. (2004). Diagnosing comorbidity: concepts, criteria, and 
methods. Acta Neuropsychiatrica, 16, 9–18.

Seidman, L. J., Biederman, J., Weber, W., Hatch, M., & Faraone, S. V. (1998). Neuropsychological 
function in adults with attention-deficit hyperactivity disorder. Biological Psychiatry, 44, 
260–268.

Shalev, R., Manor, O., & Gros-Tsur, V. (2005). Developmental dyscalculia: a prospective six-year 
follow-up. Developmental Medicine and Child Neurology, 47, 121–125.

Silva, D., Colvin, L., Glauert, R., Stanley, F., Srinivasjois, R., & Bower, C. (2015). Literacy and 
numeracy underachievement in boys and girls with ADHD. Journal of Attention Disorders. 
https://doi.org/10.1177/1087054715596575

Simms, V., Gilmore, C., Cragg, L., Clayton, S., Marlow, N., & Johnson, S. (2015). Nature and 
origins of mathematics difficulties in very preterm children: A different etiology than develop-
mental dyscalculia. Pediatric Research, 77, 389–395.

Von Aster, M. (2000). Developmental cognitive neuropsychology of number processing and 
calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry, 9, 
41–57.

Von Aster, M., Weinhold Zulauf, M., & Horn, R. (2009). Neuropsychologische Testbatterie für 
Zahlenverarbeitung und Rechnen bei Kindern – revidierte Fassung. Zareki-R. Frankfurt/Main: 
Pearson.

Wilcutt, E.  G., Pennington, B.  F., Duncan, L., Smith, S.  D., Keenan, J.  M., Wadsworth, S., 
et al. (2010). Understanding the complex etiologies of developmental disorders: Behavioral 

H. Krinzinger

http://nrdc.org.uk/publications
http://nrdc.org.uk/publications
https://doi.org/10.1111/bjep.12054
https://doi.org/10.1177/1087054715596575


405

and molecular genetic approaches. Journal of Developmental & Behavioral Pediatrics, 31, 
533–544.

Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, 
G. Dawson, & K. Fischer (Eds.), Human behavior, learning and the developing brain: Atypical 
development (pp. 212–378). New York: Guilford.

Zentall, S. (1990). Fact-retrieval automatization and math problem solving by learning dis-
abled, attention-disordered, and normal adolescents. Journal of Educational Psychology, 82, 
856–865.

24 Comorbidity and Differential Diagnosis of Dyscalculia and ADHD



407© Springer International Publishing AG, part of Springer Nature 2019 
A. Fritz et al. (eds.), International Handbook of Mathematical Learning 
Difficulties, https://doi.org/10.1007/978-3-319-97148-3_25

Chapter 25
Working Memory and Mathematical 
Learning

Maria Chiara Passolunghi and Hiwet Mariam Costa

 Introduction

An increasing number of students show severe mathematical difficulties. Between 
5% and 10% of children and adolescents experience a substantial learning deficit in 
at least one area of mathematics (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 
2005). The identification of these mathematical difficulties is fundamental if we 
consider the negative widespread drawbacks determined by math difficulties. Basic 
mathematical skills are regularly used in everyday life, and their deficiency affects 
both employment opportunities and socio-emotional well-being. In addition, results 
of recent studies show how mathematical abilities predict financial and educational 
success, particularly for women (Geary, Hoard, Nugent, & Bailey, 2013). It is there-
fore crucial to promote an early identification of children at risk for mathematical 
learning difficulties at preschool level and develop effective evidence-based math-
ematics curricula considering all the cognitive processes involved in the develop-
ment of mathematical skills.

In the last decades, various studies investigated the cognitive factors, defined as 
precursors, that underlie the development of mathematical abilities. The identifica-
tion of these cognitive markers of mathematical learning plays a key role in the early 
identification of children that may develop math difficulties and disabilities. 
Competencies that specifically predict mathematical abilities, such as digit recogni-
tion, magnitude understanding, and counting, may be considered domain-specific 
precursors. General cognitive abilities, such as working memory, processing speed, 
and intelligence, which may predict performance not only in mathematics but also 
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in other school subjects, can be considered as domain-general precursors 
(Passolunghi & Lanfranchi, 2012).

In this chapter, we will not discuss in detail the domain-specific precursors of 
mathematical learning, but we will focus on a key general precursor, the working 
memory, and its influence on the mathematical learning processes.

 Working Memory (WM): A Domain-General Precursor 
of Mathematical Learning

Domain-general cognitive abilities such as memory, attention, or processing speed 
are important precursors of school learning. Of all these general cognitive skills, 
several studies demonstrated that working memory is a key predictor of mathemati-
cal competence. The term “working memory” (WM) refers to a temporary memory 
system that plays an important role in supporting learning during the childhood 
years because its key feature is the capacity to both store and manipulate informa-
tion. Various models of the structure and function of working memory exist, but in 
the present chapter we will refer to the multicomponent model of working memory 
proposed by Baddeley and Hitch in 1974 and revised in succeeding years (Baddeley, 
2000). Baddeley’s models consist of three main parts. The two “slave” systems of 
working memory (i.e., the phonological loop and visuospatial sketchpad) are 
specialized to process language-based and visuospatial information, respectively. 
The central executive, which is not modality-specific, coordinates the two slave 
systems and is responsible for a range of functions, such as the attentional control 
of actions. The distinction between the central executive system and specific mem-
ory storage systems (i.e., the phonological loop and visuospatial sketchpad) in some 
way parallels the distinction between the working memory, involving storage, 
processing, and effortful mental activity, and the short-term memory, typically 
involving situations in which the individual passively holds small amounts of infor-
mation (Swanson & Beebe-Frankenberger, 2004).

In this multicomponent model, the central executive is responsible for control 
and regulation of cognitive processes in which executive functions are involved. 
Miyake et al. (2000) identified three main executive functions in working memory: 
inhibition, updating, and shifting. Inhibition involves the ability to suppress domi-
nant responses, shifting involves the ability to shift strategies when attending to 
multiple tasks or mental processes, and updating involves the ability to replace out-
dated and irrelevant information by maintaining only a restricted set of elements in 
working memory.

More recently, Baddeley (2000) added a fourth component to his model, the 
episodic buffer, which is a limited-capacity system that both integrates and provides 
temporary storage of information from the two subsystems and long-term memory. 
Developmental research related to this fourth component is very limited, so in this 
chapter we will focus on the first three components of Baddeley’s working memory 
model.
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Verbal short-term memory is traditionally assessed using tasks that require the 
participant to recall a sequence of words (e.g., word span task forward) or numbers 
(e.g., digit span task forward). On the other hand, tasks such as the visual pattern 
test are designed to assess visuospatial short-term memory. In the visual pattern test, 
participants are presented with matrix patterns of black and white squares and are 
required to memorize patterns of increasing complexity. All these tasks designed to 
assess short-term memory skills require individuals to recall a sequence of verbal or 
visual information in the same format of presentation. Differently, working memory 
capacity is reliably assessed by dual tasks in which the individual is required to store 
and, at the same time, process increasing amounts of information. An example of 
verbal working memory tasks is the listening span task (Daneman & Carpenter, 
1980). Participants are presented with an increasing number of sentences, they are 
required to judge whether the sentences are true or false, and then at the end of each 
set, they have to recall the last word of each of the sentences of the set.

A long-standing body of research suggests that there is a direct influence of 
working memory on mathematical skills (De Smedt et  al., 2009; Passolunghi, 
Mammarella, & Altoè, 2008; Passolunghi, Vercelloni, & Schadee, 2007). 
Longitudinal studies show that working memory performance assessed in preschool 
years predicts mathematical achievements several years after kindergarten 
(Gathercole, Brown, & Pickering, 2003; Mazzocco & Thompson, 2005). These 
results support the hypothesis that working memory is a distinct and significant cor-
relate of early numerical abilities. However, the same cannot be said of either verbal 
or visuospatial short-term memory (Passolunghi, Lanfranchi, Altoè, & Sollazzo, 
2015). Indeed, there is substantial evidence for separating the involvement of short- 
term and working memory as correlates of mathematical learning (Shah & Miyake, 
2005; Swanson, 2006), with active working memory skills having an essential influ-
ence on early numerical abilities and later mathematical performance. Indeed, even 
the simplest mathematics calculations require WM processes: temporary storage of 
problem information, retrieval of relevant procedures, and processing operations to 
convert the information into numerical output. These same processes are needed 
even for simple number comparison tasks: the child needs to map the different number 
symbols onto the corresponding quantities, store them into memory, and then inte-
grate this with the incoming information to performing the task.

Despite the growing evidence that WM plays a fundamental role in the develop-
ment of mathematical abilities, there is still an absence of shared consensus about 
the relative extent of the involvement of domain-specific and domain-general pre-
cursors in the development of mathematical abilities. Some authors, for example, 
highlight the importance of domain-specific precursors such as the approximate 
number system (ANS) in the development of mathematical learning (Halberda, 
Mazzocco, & Feigenson, 2008). The ANS is an innate system, which allows the 
manipulation of quantities and magnitudes in an approximate way. A typical exam-
ple of ability underlying ANS consists in approximately estimating computation 
results or in comparing two or more sets of elements to identify, without counting, 
which could be the most numerous. The involvement of ANS in mathematical learn-
ing is nevertheless very much debated. Indeed, while some studies account for its 
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significant role, many others do not. Moreover, while some authors report deficits 
associated with ANS in children with or at risk for mathematical learning disability, 
others highlighted impairments in making comparisons between quantities, but only 
when quantities are represented by symbols and not when using nonsymbolic, 
approximate numerosities. In order to further investigate the relation between 
domain-specific and domain-general precursors of mathematical development, we 
conduct a wide assessment of memory components and domain-specific factors, 
such as the ANS (Passolunghi, Cargnelutti, & Pastore, 2014). A large sample of first 
grade typically developing children was tested at both beginning and end of their 
Grade 1. Both general (working memory and intelligence) and specific (ANS) pre-
cursors were evaluated by a wide battery of tests and put in relation to concurrent 
and subsequent mathematical skills. Results demonstrated that working memory 
and intelligence were the strongest precursors in both assessment times. ANS had 
instead a milder role, which lost significance by the end of the school year. Some 
authors argue that the relationship between ANS performance and mathematics 
achievement may in fact be an artefact of the WM (inhibitory control) demands of 
some trials of the numerosity comparison task (e.g., Gilmore et al., 2013; Soltész, 
Szűcs, & Szűcs, 2010).

 Contribution of WM Components to Mathematical Learning

With regard to the contribution of the three core components of working memory to 
the development of mathematical skills, many studies showed a direct association 
between executive function and children’s early emergence and development of 
mathematical abilities across a wide age range. For example, dual-task studies 
suggest that central executive resources are implicated in children’s arithmetic per-
formance (e.g., Imbo & Vandierendonck, 2007), and longitudinal data found that 
inhibitory control predicted later mathematical outcomes (Blair & Razza, 2007; 
Mazzocco & Kover, 2007). On the other hand, children who are poor in mathemat-
ics also have a poor performance in central executive tasks, especially in tasks that 
require the inhibition of irrelevant information and updating (Passolunghi, Cornoldi, 
& De Liberto, 1999; Passolunghi & Siegel, 2001, 2004; St Clair-Thompson & 
Gathercole, 2006).

Spatial skills and visuospatial working memory were also found to be related to 
children’s early counting ability and general mathematical competence (e.g., 
Passolunghi & Mammarella, 2012). Indeed, the visuospatial sketchpad appears to 
support the representation of numbers in counting, arithmetic calculations, and 
especially mental calculation (McKenzie, Bull, & Gray, 2003). This component is 
also fundamental in the process of problem-solving, because it allows the individual 
to build a visual mental representation of the problem (Holmes & Adams, 2006). 
Moreover, visuospatial WM abilities assessed in the preschool years predict  complex 
arithmetic, number sequencing, and graphical representation of data in primary 
school (Bull, Espy, & Wiebe, 2008).
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The results of studies that considered the role of the phonological loop in 
children’s mathematical processing have been unclear. Dual-task studies showed 
that 8–9-year-old children (but not younger children) use a verbal approach supple-
mented by visuospatial resources during online arithmetic performance (McKenzie 
et al., 2003). In the field of learning disabilities, some studies found no differences 
in phonological loop abilities between children with and without mathematical 
difficulties, especially when differences in reading ability were controlled 
(Passolunghi & Siegel, 2001, 2004). Other authors suggest that the phonological 
loop is involved in basic fact retrieval (Holmes & Adams, 2006).

The role of each working memory component in mathematical cognition must be 
considered to vary with expertise and development (Meyer, Salimpoor, Wu, Geary, 
& Menon, 2010), with an increasing involvement of the phonological loop in math-
ematical cognition from the age of 7 onward (Rasmussen & Bisanz, 2005).

 Working Memory, Word Problems, and Calculation

One of the main goals of mathematical education is to develop students’ ability to 
solve mathematical word problems. This ability is important both for academic 
success and for problem-solving in everyday life. However, mathematical word 
problem solution is very demanding and difficult for many students.

In the school setting, mathematical word problems are typically presented as a 
short story that includes relevant numerical information, the “problem data,” and a 
question (e.g., John bought 4 pizzas with 8 slices each. He and his friends Bruce ate 
12 slices of the pizzas. How many slices were left?). The solution of the problem 
requires the use of arithmetic operations (i.e., addition, subtraction, multiplication, 
or division) and the execution of several different cognitive processes. Initially, in 
the understanding phase, children must formulate a cognitive representation of the 
information drawn from the text of the problem. This initial cognitive representation 
requires discriminating relevant from irrelevant information. Subsequently, in the 
solution phase, they need to formulate a plan for solving the problem. Devising a 
plan involves choosing appropriate sub-goals for the solution and consequently 
includes the choice of the correct arithmetic operations and algorithms. Finally, they 
have to correctly perform the calculations.

A more strict focus on word arithmetic problem-solving suggests that working 
memory can be critically involved even when the written text is still available. 
Indeed, text comprehension requires incoming information to be integrated with 
previous information maintained in the working memory system. Furthermore, the 
complete comprehension of the problem requires that the solvers build up a mental 
representation of the problem, which involves the capacity of the working memory 
system. According to Baddeley’s three component model, the central executive is 
probably more specifically and strongly involved in this process than the articula-
tory loop. In fact, problem-solving does not simply involve the maintenance of 
given information, but it requires its control, i.e., that this information is examined 
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for relevance, selected or inhibited according to its relevance, integrated, used, and 
so on. Baddeley (1990) also suggested that reading comprehension involves the 
central executive more than the articulatory loop. This suggestion seems to apply 
even more to written word arithmetic problem-solving which requires not only text 
comprehension but also additional operations on it.

Arithmetic calculation is another important academic skill that  children learn 
when they start formal education. Basic addition skills are fundamental milestones 
for the development of multiplications skills and increasingly complex arithmetic 
abilities. The substantial body of research focused on identifying the cognitive pro-
cesses that underlie arithmetic calculation stresses once again the important role 
played by working memory. For instance, to perform an addition (e.g., 13 + 9) with-
out being able to use a pen and paper, we must temporary retain the phonological 
representations of the numbers. The next step would be to employ one or more 
procedures (e.g., counting) to combine the numbers and produce an answer. 
Alternatively, employing carrying or regrouping strategies involves maintaining 
recently processed information while performing other mental operations. First of 
all, we have to retain the 2 from adding 3 + 9. Next we add the 1 from the tens col-
umn of the 13 to the 1 from the tens column of the 12 produced from adding the 
3 + 9. Finally, we would need to add the products held in working memory, resulting 
in the correct solution.

These examples show clearly how the cognitive processes involved in perform-
ing arithmetic calculations are embedded within the working memory system. For 
instance, even the simplest mathematics calculations require the temporary storage 
of problem information, retrieval of relevant procedures, and processing operations 
to convert the information into numerical output. Studies have also shown that the 
different working memory components (e.g., visuospatial sketchpad, phonological 
loop, and central executive) play specialized and unique roles in arithmetic calcula-
tion (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). Higher working mem-
ory capacity is associated with higher accuracy in solving complex arithmetic 
problems in adults as well as in children. In particular, children with higher working 
memory abilities tend to use more sophisticated strategies such as decomposition 
instead of less sophisticated strategies such as finger counting (Geary, Hoard, Byrd- 
Craven, & DeSoto, 2004).

Research studies in this field emphasize that the central executive plays a greater 
role in mental calculation compared to the phonological loop (e.g., De Rammelaere, 
Stuyven, & Vandierendonck, 2001). In particular, the phonological loop plays a 
major role when calculation involves storing temporary information, whereas carry-
ing operations put a major demand on the central executive processes (Fuerst & 
Hitch, 2000). Only a limited number of studies examined the role of the visuospatial 
component of the WM model. These studies showed that visuospatial WM is related 
to performance in written calculation. In particular, it is important during the initial 
stages of arithmetic calculation for encoding arithmetic problems presented 
visually.
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 Executive Functions of Central Executive Component of WM 
and Their Role in Mathematics

Within the Baddeley’s WM model, the functions of the central executive can be 
fractionated into at least three separate functions: inhibition, updating, and shifting 
(Miyake et al., 2000). Executive processes, and in particular inhibition, appear to be 
particularly important for successful solutions of mathematical word problems 
(Passolunghi & Siegel, 2001, 2004). Previous research has demonstrated a strong 
relationship between inhibitory processes and reading comprehension. Specifically, 
children with reading disabilities perform poorly on working memory tasks that 
require inhibition of irrelevant information (Chiappe, Hasher, & Siegel, 2000). These 
findings show how poor comprehenders’ performance on working memory tasks is 
impaired because they are unable to inhibit irrelevant information adequately. The 
negative consequence of this situation is an overload of their working memory 
capacity.

The ability to inhibit irrelevant information is also related to the success in 
problem- solving tasks. Indeed, in both text comprehension and problem-solving, it is 
necessary to process a great number of information units. Some of these must be 
rejected in order to maintain only those that are relevant. In particular, in the problem- 
solving process, the integration of the relevant information into a coherent structure 
allows a correct and complete mental representation of a text of problem. Passolunghi 
and Siegel (2001, 2004), for example, found that poor problem-solvers had a deficit 
in their ability to reduce accessibility of nontarget and irrelevant information (see 
Passolunghi et al., 1999). These findings are compatible with Engle’s (2002) sugges-
tion that individual differences in working memory capacity are not related to how 
many items can be stored in memory but in the difference in ability of controlling 
attention and maintaining information in an active, quickly retrievable state. 
Moreover, he argues that attentional control is related to inhibitory deficits, that is, 
individuals who have difficulty maintaining attentional focus on the task-relevant 
information are likely to make intrusion errors.

Another executive function associated with the central executive is the updating 
of information. Updating is a complex activity that requires attributing different 
levels of activation to the items presented and maintaining a restricted set of elements 
activated continuously. A typical measure of updating ability is Morris and Jones’ 
updating task (Morris & Jones, 1990), which requires participants to listen to sev-
eral lists of letters of varying length (4 to 10). Participants are asked to recall only 
the final four letters of each list. Since the length of each series is unknown, they are 
forced to update the information maintained in their WM continuously in order to 
remember the final four letters only. Updating skills are involved in resolving arith-
metic word problems. Indeed, in order to understand word problems, children 
have to process all information derived from texts. Some information will be inhibited 
very early because it is not relevant to the solution. Other information will be con-
nected in a coherent model that will be enriched successively by new information. 
This model will be complete when all the information relevant to solving the question 
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has been integrated. Further information concerning other questions will then be 
processed and structured in different models. In short, a child who has to update 
information during a problem-solving task has to select relevant information, to 
inhibit information already processed but no longer relevant, and to substitute the no 
longer relevant information with a new one (Passolunghi & Pazzaglia, 2004). 
Shifting from one model to another requires individuals to update information in 
working memory, in a fine modulation of the mechanisms of enhancement and 
inhibition (Passolunghi & Pazzaglia, 2004).

It is widely assumed that updating processes are important also in calculation, in 
particular during the early development of arithmetical skills. Indeed, arithmetic calcu-
lation requires the storage and manipulation of intermediate results, by updating the 
results of operations such as carrying and borrowing. In line with this view, research 
shows that children with low updating skills had a poorer performance in solving word 
problems and calculation, compared to children with higher updating skills (Passolunghi 
& Pazzaglia, 2004). Recent studies show that updating deficits in children with ADHD 
may be a further source of their difficulty when solving mathematical problems (Re, 
Lovero, Cornoldi, & Passolunghi, 2016). In this respect, their impairment in the ability 
to update information should not differ from the updating difficulties of children with 
learning difficulties in mathematics showing difficulties in the recall of relevant infor-
mation and controlled use of problem procedure.

Another executive function is the ability to shift back and forth between multiple 
tasks, operations, or mental sets. Among the typical complex tests usually used in 
cognitive and neuropsychological studies to assess executive function, the Wisconsin 
card sorting task (WCST) involves testing of the shifting processes. The WCST 
requires matching a series of target cards, presented individually, with any one of 
four reference cards. The participants are aware that the sorting criterion would 
change during the task, but they are not explicitly told the exact number of correctly 
sorted cards to be achieved before the criterion shifts. This test is often conceptual-
ized as a set-shifting task because of its requirement to shift sorting categories after 
a certain number of successful trials. It is worth noting that some researchers view 
this task as requiring inhibitory control to suppress the current sorting category 
before switching to a new one. There is very little research on shifting and mathemat-
ical ability, and further research is necessary to clarify this issue. Bull and Sherif 
(2001) found that the WCST percentage of perseverative responses was negatively 
correlated with mathematical ability in typically developing primary school children. 
That is, children with higher mathematics ability made a lower percentage of 
perseverative responses in this task. These results suggested that the main difficulty 
for children with mathematical learning difficulties in performing arithmetic tasks is 
to inhibit a learned strategy and to switch to a new one.

Interestingly, the results of Espy et al. (2004) showed that shifting or mental 
flexibility did not contribute to mathematical skills in preschool children. They 
assessed shifting ability by tasks that require rule-based learning and shifting (e.g., 
spatial reversal task), similar to WCST. It is possible that mental flexibility may 
contribute more to mathematical abilities in older children, allowing the child to 
flexibly apply different mathematical procedures in problem-solving and calculation 
(e.g., borrowing, carrying) to obtain correct mathematical solutions.
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 Working Memory Training

As extensively described in the previous paragraphs, results from most of the 
studies conducted up to date suggest working memory abilities influence children’s 
performance in mathematical achievement. Indeed, different mathematical tasks, 
such as performing mental arithmetic and understanding mathematical word prob-
lems, require the storage of information, while it is being processed or integrated 
with information retrieved from long-term memory. Given the important role played 
by WM abilities in the development of children’s mathematical skills, in the last 
15 years, different studies have explored whether mathematical learning problems 
can be overcome by training specifically designed to enhance working memory. 
WM was traditionally considered a genetically fixed cognitive ability (Kremen 
et al., 2007). Therefore, in the past the possibility to enhance WM skills by acting on 
an individual’s environmental experiences and opportunities was not considered. 
Recently, a growing set of studies with children with typical development and adults 
has shown that WM skills can be improved through training (e.g., Alloway, Bibile, 
& Lau, 2013; Kroesbergen, van’t Noordende, & Kolkman, 2014; St Clair- Thompson, 
Stevens, Hunt, & Bolder, 2010).

The debate regarding the effects of WM training is still open: some studies show 
positive effects of WM training on arithmetic abilities in primary school children 
using computerized or school-based training procedures (Alloway et  al., 2013; 
Dunning, Holmes, & Gathercole, 2013; Holmes, Gathercole, & Dunning, 2009; St 
Clair-Thompson et al., 2010). Other authors questioned the effectiveness of WM 
training concluding that there is no convincing evidence of the generalization of 
working memory training to other skills (Melby-Lervåg & Hulme, 2013). However, 
the possibility should be considered that cognitive training applied to younger indi-
viduals tends to lead to significantly more widespread transfer of training effects 
(Wass, Scerif, & Johnson, 2012).

Holmes et al. (2009) provided the first evidence of the efficacy of the computer-
ized “Cogmed” training in overcoming common impairments in working memory 
and associated learning difficulties in 10-year-old children with low working mem-
ory skills. They proposed different training tasks that involve the temporary storage 
and manipulation of either sequential visuospatial information, verbal information, 
or both. Children in the training group engaged in the Cogmed program for 35 min a 
day, for at least 20 days in a period of 5–7 weeks. The majority of the children who 
completed the program improved on tasks tapping the central executive and the 
visuospatial sketchpad components of WM.  Moreover, a significant increase in 
mathematics performance assessed with the mathematical reasoning subtest of the 
Wechsler objective number dimensions (WOND; Wechsler, 1996) was also found, 
6 months after the training. St Clair-Thompson et al. (2010) showed the effectiveness 
of a computerized working memory training (“Memory Booster”) in typically devel-
oping children aged 5–8 years. The computer program used teaches memory strate-
gies to children, over a period of 6–8 weeks, and resulted in significant improvements 
in tasks that assess the phonological loop, the central executive, mental arithmetic, 
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and following instructions in the classroom. Enhancing mathematical abilities in 9- 
to 10-year-old typically developing children is also possible using individual school-
based working memory training (Witt, 2011). The WM training program developed 
by Witt (2011) was carried out over a period of 6 weeks, the children in the interven-
tion group were seen individually, and each training session lasted approximately 
15 min. This study suggested that children who underwent working memory training 
made significantly greater gains in the trained working memory tasks, as well as on 
an untrained visuospatial working task, compared to a matched control group. 
Moreover, the training group also made significant improvements in mental 
arithmetic.

Only a few studies have explored the possibility of enhancing working memory 
abilities in kindergartners using a specific working memory training. In a recent 
study (Passolunghi & Costa, 2016), the authors of this section systematically 
investigated the effects of a training program focused on the enhancement of work-
ing memory and a second training program focused on the enhancement of early 
numeracy. The participants were 48 5-year-old typically developing preschool 
children. Both the working memory and early numeracy training programs were 
implemented for 5 weeks, twice weekly, each session lasting 1 h. The working 
memory training included different paper- and- pencil tasks designed to enhance all 
three components of Baddeley’s working memory model (Baddeley, 1986). On the 
other hand, the early numeracy training included different paper-and-pencil tasks 
designed to enhance early numerical abilities such as counting, number-line repre-
sentation, one-to-one correspondence between quantities and numerals, and quan-
tity comparison. The results of this study showed that the early numeracy 
intervention specifically improved early numeracy abilities in preschool children. 
On the other hand, the working memory intervention improved not only verbal and 
visuospatial working memory abilities but also general early numeracy skills 
assessed with the early numeracy test (Van Luit, Van de Rijt, & Pennings, 1994). 
Interestingly, the early numeracy gain obtained in the working memory training 
group did not differ significantly from the gain obtained in the early numeracy 
training group. These findings stress the importance of performing activities 
designed to train working memory abilities, in addition to activities aimed to 
enhance more specific skills in order to support mathematical development. This 
kind of activities could be particularly important for those children who are consid-
ered to be at risk for developing learning disabilities later on in life. Indeed, WM 
training seems to be effective in improving math performance also in young chil-
dren with low early numeracy abilities. The results of a study by Kroesbergen et al. 
(2014) showed that preschoolers with low numerical skills who participated in a 
working memory intervention program for 4 weeks significantly improved their 
working memory and early numeracy skills. The training program consisted of 
eight 30-minute sessions with hands-on activities, which were implemented in 
small groups of five children. The positive results of this study suggest that WM 
training activities can be used with low-performing preschool children, in order to 
minimize the future learning difficulties that result from WM deficits.
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 Conclusion

Individual differences in working memory capacity appear to have a strong influence 
on children’s ability to acquire knowledge and new abilities. The great importance 
of WM in a range of cognitive skills including mathematics has been supported by 
different studies (see Cowan & Alloway, 2008). Moreover, several researches cor-
roborate a network view of mathematical abilities where domain-general cognitive 
abilities as working memory sustain the development of mathematical abilities over 
and above the role of more domain-specific abilities (e.g., Geary, 2011; Passolunghi 
et al., 2014; Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2014). In addition, training 
studies support the same view and suggest that timely action to prevent children 
from developing early difficulties in mathematical learning should focus both on 
domain-specific variables, such as number competence, and on more general 
abilities.

The hypothesis that WM training should improve not only working memory but 
will also have a transfer effect on early numeracy skills is supported by studies deal-
ing with WM training and transfer effects on math abilities in primary school chil-
dren and kindergarten (Alloway et al., 2013; Holmes et al., 2009; Kuhn & Holling, 
2014; Passolunghi & Costa, 2016; St Clair-Thompson et al., 2010). However, the 
possibility that the role of working memory training could vary with development 
should be considered. Most of the studies investigating the effects of WM training 
focused on school-aged children, while only a few studies have explored the possi-
bility of enhancing working memory (and related early numeracy abilities) in 
younger children. It is entirely possible that the effects of WM training might be 
stronger in younger children when the neural system is more malleable to experi-
ence (Wass et al., 2012). These results regarding the positive effects of WM training 
could have interesting implications for classroom practice in preschool and primary 
school. Performing hands-on activities as well as computerized training tasks 
designed to boost WM performance may help children to improve cognitive precur-
sors fundamental in future school learning, encouraging the prevention of learning 
difficulties. Future research should focus on the investigation of the effects of WM 
training in children who are considered to be at risk for developing learning disabili-
ties. In fact, these kinds of WM training activities could be particularly appropriate 
for low-performing children in order to minimize the future learning difficulties that 
result from WM deficits.

One final consideration regards the role played by emotional and motivational 
aspects in mathematical cognition (Cargnelutti, Tomasetto, & Passolunghi, 2016). 
Despite the clear importance of domain-general and domain-specific cognitive pre-
cursor of mathematical learning, future studies should consider a unitary a complete 
model which includes also emotional factors such as math anxiety. Even if  emotional 
factors have clearly a potential (negative or positive) impact on a child’s development 
of math skills, very few studies tried to provide a global profile, including both cogni-
tive and emotional factors. This important and topical issue will be further discussed 
in Chap. 3 of this book.
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Chapter 26
The Relation Between Spatial Reasoning 
and Mathematical Achievement in 
Children with Mathematical Learning 
Difficulties

Ilyse Resnick, Nora S. Newcombe, and Nancy C. Jordan

 Introduction

Although it is now widely recognized that mathematics learning difficulties (MD) 
stem from a range of general- and domain-specific cognitive competencies (Jordan 
et al., 2013; Rousselle & Noel, 2007), many investigators stress the primacy of basic 
weaknesses in understanding number and number relations (Clarke & Shinn, 2004; 
Jordan, Fuchs, & Dyson, 2015; Mazzocco & Thompson, 2005). For example, it is 
argued that core deficits in numerical magnitude understanding underpin dyscalcu-
lia (e.g., Butterworth, 1999, 2005; Butterworth & Reigosa-Crespo, 2007; Landerl, 
Bevan, & Butterworth, 2004). Dyscalculia is a severe type of MD that occurs across 
social classes and language groups (e.g., Butterworth, 1999, 2005). At the behav-
ioral level, children with dyscalculia perform much more poorly compared to their 
typically developing peers on tasks requiring them to identify which of two numer-
als is larger and to map symbols to quantities (Butterworth & Reigosa-Crespo, 
2007; Landerl et al., 2004; Rousselle & Noel, 2007). At the neural level, individuals 
diagnosed with dyscalculia have lower gray matter density in the intraparietal 
sulcus (Rotzer et al., 2008; Rykhlevskaia, Uddin, Kondos, & Menon, 2009), an area 
associated with numerical magnitude reasoning (Pinel, Dehaene, Rivière, & 
LeBihan, 2001).
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Positing a core number deficit, however, may underplay the potential role of 
cognitive processes in allied domains, either as allied deficits or as reservoirs of 
strength. One such domain is spatial reasoning. Spatial reasoning is broadly defined 
as the ability to mentally manipulate and understand the spatial relations between 
and within objects. Evidence from typically developing children reveals a close 
connection between spatial reasoning and mathematics achievement (for review, see 
Mix & Cheng, 2012). The relation between spatial reasoning and mathematics 
achievement across development can be characterized as consistent, predictive, and 
strengthening over time. Spatial reasoning is consistently correlated with mathe-
matics performance. Across a range of measures, adults and children with stronger 
spatial reasoning perform better at mathematics tasks (e.g., Ansari et  al., 2003; 
Burnett, Lane, & Dratt, 1979; Casey, Dearing, Vasilyeva, Ganley, & Tine, 2011; 
Delgado & Prieto, 2004; Geary, 2000; Lubinski & Benbow, 1992; Robinson, Abbott, 
Berninger, & Busse, 1996). The connection between spatial reasoning and mathe-
matics performance is evident even among young children (Geary & Burlingham- 
Dubree, 1989; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Gunderson, 
Ramirez, Beilock, & Levine, 2012; Lachance & Mazzocco, 2006; Rasmussen & 
Bisanz, 2005; McKenzie, Bull, & Gray, 2003; Holmes, Adams, & Hamilton, 2008; 
Alloway, 2007).

Spatial reasoning also predicts later mathematics outcomes while controlling for 
a range of variables; at age 3 spatial reasoning uniquely predicts 27% of the vari-
ance in mathematics skills at age 4 (Verdine, Irwin, Golinkoff, & Hirsh-Pasek, 
2014) and remains predictive of later high school mathematics achievement 
(Wolfgang, Stannard, & Jones, 2003). In two longitudinal studies, one spanning 
over 50  years and following approximately 400,000 people (Wai, Lubinski, & 
Benbow, 2009) and the other spanning 20 years and following approximately 600 
people (Shea, Lubinski, & Benbow, 2001), spatial reasoning predicted entry into 
STEM (science, technology, engineering, and mathematics) careers.

Finally, the relation between spatial reasoning and mathematics outcomes grows 
stronger over the course of development (Stannard, Wolfgang, Jones, & Phelps, 
2001; Voyer, Voyer, & Bryden, 1995). For example, early block play (a kind of spa-
tial reasoning, assessed using the Lunzer Five-Point Play Scale) was increasingly 
associated with mathematics performance over the intermediate grades (Wolfgang 
et al., 2003). In light of the strong and persistent links between spatial reasoning and 
mathematics in typical development, this chapter considers how the two domains 
might be related in students with MD.

In exploring the linkage, it is important to keep in mind that both spatial reason-
ing and mathematics are multidimensional constructs (Mix et  al., 2016; Mix & 
Cheng, 2012). Spatial reasoning is a broad term that encompasses many kinds of 
distinct spatial skills. For example, being able to imagine an object rotating (mental 
rotation) is a dissociable skill from being able to imagine the viewpoint from differ-
ent orientations (perspective taking; Hegarty & Waller, 2004) and being able to 
imagine an object breaking (mental brittle transformation; Resnick & Shipley, 
2013). In a recent meta-analysis of spatial training, Uttal et al. (2013) suggest that 
the broad suite of individual spatial reasoning skills can be categorized along two 
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basic dimensions: intrinsic (spatial relations among internal components of an 
object) versus extrinsic (spatial relations between two or more objects) and dynamic 
(the relation is moving) versus static (the relation does not move). For example, 
mental rotation involves dynamic intrinsic spatial reasoning (imagining how the 
internal structure changes as the object moves), whereas perspective taking involves 
dynamic extrinsic spatial reasoning (imagining how the relation between objects 
changes as you move to a different location in space). Spatial working memory, the 
ability to hold spatial information actively in mind, supports spatial reasoning by 
providing a limited capacity mental workspace to move and manipulate informa-
tion. See Fig. 26.1 for a conceptualization of spatial reasoning as a two-by-two grid 
and its relation to spatial working memory.

Similarly, mathematics performance can be thought of as a collection of separa-
ble, but interconnected, skills (Fuchs et al., 2010). For example, different patterns of 
numerical skills and general cognitive abilities support solving word problems 
versus calculation problems (Fuchs et al., 2010). There are also distinct cognitive 
processes involved in enumerating small sets (i.e., four or less) versus larger sets 
(e.g., Dehaene & Cohen, 1994). An important broad distinction is that mathematical 
skills can be categorized in terms of procedural knowledge versus conceptual 

Fig. 26.1 Spatial cognition is comprised of dissociable spatial skills that can be characterized as 
related to object manipulation (coding of the spatial structure of static objects and transformation 
of those relations) or to navigation (coding of the spatial structure of the environment and transfor-
mation of that structure). Spatial reasoning is supported (or fueled) by spatial working memory. 
(Adapted from Newcombe, 2018)

26 The Relation Between Spatial Reasoning and Mathematical Achievement…
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knowledge (Rittle-Johnson, Siegler, & Alibali, 2001). Procedural knowledge refers 
to knowing a sequence of actions (i.e., algorithm or computation) to complete a 
problem. Conceptual knowledge refers to understanding mathematics principles 
and how they relate to one another.

Given that spatial reasoning and mathematics performance are both comprised of 
somewhat dissociable skills, it should be no surprise that the strength of the relation 
between spatial reasoning and mathematics performance varies by task (e.g., 
Holmes et al., 2008; Mix et al., 2016). There are likely to be many different casual 
mechanisms and/or shared cognitive processes that connect individual spatial and 
mathematics skills (Mix & Cheng, 2012). For example, subtraction problems 
require spatial working memory, but multiplication problems do not (Lee & Kang, 
2002). Even more specifically, working memory is required only when subtraction 
problems involve carrying (Caviola, Mammarella, Lucangeli, & Cornoldi, 2014).

How does spatial reasoning relate to numerical knowledge in students with MD? 
To address this question, we begin with a review of research with typically develop-
ing children and then consider spatial reasoning skills and spatial working memory 
in children with MD. In the final section, we explore educational implications of the 
evidence, focusing on a specific mathematics area – numerical magnitude. We sug-
gest number line activities (i.e., spatial representations of magnitudes) to foster a 
connection between spatial reasoning and mathematical skills in children with MD.

 Numerical Magnitude and Spatial Reasoning in Typically 
Developing Children

Reasoning about numerical magnitude is supported by a cognitive representation 
referred to as the mental number line (e.g., de Hevia & Spelke, 2010; Dehaene, 
Bossini, & Giraux, 1993; Dehaene, Izard, Spelke, & Pica, 2008; Pinel, Piazza, Le 
Bihan, & Dehaene, 2004). Typically developing children begin with a “compressed” 
representation of whole number magnitudes, dedicating relatively more space on 
their mental number line to smaller values and relatively less space to larger values 
(Siegler & Booth, 2004; Siegler & Opfer, 2003). With increasing age, children 
develop an increasingly linear representation for an increasingly wider range of 
whole numbers (Siegler & Lortie-Forgues, 2014; Siegler, Thompson, & Schneider, 
2011). Eventually, they learn magnitudes of non-integer quantities, such as fractions 
and decimals. In fact, fraction magnitude estimation appears to be crucial skill; it is 
more predictive of later mathematics achievement than whole number magnitude 
estimation when controlling for general cognitive processes (Bailey, Hoard, Nugent, 
& Geary, 2012; Resnick et al., 2016; Siegler et al., 2011, 2012; Siegler & Pyke, 
2013). Children initially represent all fractions as being less than one, irrespective 
of the relation between the numerator and denominator (Resnick et al., 2016). Most 
students sequentially develop an accurate representation of fractions with numera-
tors smaller than the denominator (e.g., 2/3) and then fractions with numerators 
larger than the denominator (e.g., 3/2).

I. Resnick et al.
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Children with MD are not as accurate in estimating whole number (Geary et al., 
2007; Piazza et al., 2010; Van’t Noordende & Kolkman, 2013) and fraction (Jordan, 
Resnick, Rodrigues, Hansen, & Dyson, 2016) magnitudes compared to their typi-
cally developing peers. For both whole numbers and fractions, children with MD 
rely more heavily on initial representations: “compressed” for whole numbers 
(Geary, Hoard, Nugent, & Byrd-Craven, 2008) and “less than one” for fractions 
(Resnick et al., 2016). Evidence from whole number line estimation studies sug-
gests that core deficits in inhibition underlie difficulties understanding numerical 
magnitude in children with MD (Geary et al., 2008; Szucs, Devine, Soltesz, Nobes, 
& Gabriel, 2013) and in typically developing children (Friso-van den Bos, Kolkman, 
Kroesbergen, & Leseman, 2014; Kroesbergen, Van der Ven, Kolkman, Van Luit, & 
Leseman, 2009). Under this account, the executive control is required to inhibit 
children’s initial “compressed” representation. Indeed, children with MD often have 
broad deficits in inhibition (Geary et al., 2007; McLean & Hitch, 1999).

Developing a linear representation of numerical magnitude involves a spatial rea-
soning skill called spatial visualization, which is the ability to mentally manipulate 
2D, 3D, and 4D objects (including mental rotation and mental brittle transformation). 
A longitudinal study by Gunderson et al. (2012) examined the relation between the 
mental number line (assessed by the number line task), mathematics performance 
(assessed by an approximate symbolic calculation task), and spatial visualization 
(assessed by mental rotation) in a typically developing population. Number line esti-
mation acuity at age 6 mediated the relation between spatial visualization at age 5 and 
mathematics performance at age 8. These findings suggest that spatial visualization 
supports representation of an accurate mental number line, which, in turn, supports 
mathematics performance. Spatial visualization may assist students in representing 
and comparing numerical magnitudes on their mental number line.

 Spatial Reasoning in Children with MD

Although the question has yet to be fully explored, research suggests that students 
with MD may have similar levels of spatial reasoning skills as their typically devel-
oping peers (Butterworth, 1999, 2005; Landerl et  al., 2004). For example, 9- to 
10-year-old children with dyscalculia (defined here as falling under the 16th percen-
tile on a standardized mathematics test and average on other standardized tests, such 
as reading and vocabulary) and typically developing children performed simi-
larly on a test of mental rotation but not on tests of spatial working memory and 
inhibitory control (Szucs et al., 2013). Additionally, a study following 226 chil-
dren from kindergarten through third grade found that overall performance on the 
Developmental Test of Visual Perception—Second Edition (DTVP-2) in kindergar-
ten is not predictive of MD (defined here as having scores under the tenth percentile 
on the TEMA-2 and WJ-R Calculation) in grades two and three (Mazzocco & 
Thompson, 2005). The DTVP-2 includes items assessing understanding posi-
tions in space, disembedding (identifying shapes within more complex designs), 
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visual closure skills (identifying an object with only partial information), and 
matching shapes (Hammill, Pearson, & Voress, 1993). However, more studies are 
needed to confirm specific areas of spatial strengths as well as potential weaknesses 
in children with MD. For example, while no differences were observed between 
typically developing 9- to 10-year-old children and children with MD on mental 
rotation (Szucs et al., 2013), other spatial visualization skills have not been assessed. 
Spatial visualization skills such as mental folding, form board, and block design 
have all been found to predict mathematics performance (see Mix et al., 2016 for 
review) and should be investigated more fully in children with MD.

Children with MD do appear to have weaknesses in spatial working memory 
relative to typically developing children (e.g., Geary, 2004; Hitch & McAuley, 
1991; Keeler & Swanson, 2001; Passolunghi & Siegel, 2001). As noted earlier, 
spatial working memory is the ability to hold spatial information actively in short- 
term storage and functions as a mental workspace to hold and manipulate numbers. 
A meta-analysis (Swanson & Jerman, 2006) shows that children aged between 9 
and 10 years old with MD (defined here as children with average intelligence that 
fall below the 25th percentile on a given mathematics assessment) have lower spa-
tial working memory compared to typically developing students as well as to stu-
dents with other kinds of learning difficulties (i.e., reading). Importantly, while their 
spatial working memory may be impaired, some children with MD seem to have 
relatively strong verbal working memory (Andersson & Ostergren, 2013; McLean 
& Hitch, 1999). This suggests general working memory impairments may not 
underlie MD but, rather, more specific weaknesses in spatial working memory.

 Spatial Training to Support Children with MD

Spatial reasoning and mathematics achievement are related in the typically develop-
ing population. However, as noted, children with MD seem to have relatively strong 
spatial skills, with the exception of spatial working memory, which potentially can 
be leveraged to support their mathematics learning. For example, MD interventions 
could map content onto spatial and visually represented tools (e.g., the number line) 
to support understanding. However, learning activities for children with MD should 
also help students compensate for weaknesses in spatial working memory and 
inhibitory control. Below we discuss studies showing positive effects of spatial 
training on mathematics learning in the general population, which includes students 
with MD. We then focus on numerical knowledge, in particular, and discuss the use 
of number line activities to help students connect numerical magnitudes with spatial 
representations.

Relatively large bodies of evidence that suggest both spatial reasoning (Uttal 
et al., 2013) and number competencies (Frye et al., 2013) are malleable and can be 
developed in all or most children (including children with MD). Unfortunately, 
there are relatively few studies that assess the effects of specific types for spatial 
training on mathematics learning (Stieff & Uttal, 2015). One study, however, 
found that a single spatial training session on mental rotation improved accuracy in 
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mathematics calculation in 6- to 8-year-olds relative to their peers who completed 
crossword puzzles (Cheng & Mix, 2014). In the mental rotation training session, 
children had to rotate two parts of a geometric object to identify which of four pic-
tures showed the object as a whole. Improvements were associated with better per-
formance on calculation problems with missing terms (e.g., 3 + ___ = 10). Spatial 
training may support performance on missing term problems, because the problems 
involve mentally moving values around the equal sign. However, a study extending 
Cheng and Mix’s work to include training over a 6-week period found opposing 
results (Hawes, Moss, Caswell, & Poliszczuk, 2015). In this study, 6- to 8-year-old 
students either completed iPad games requiring the rotation of shapes or literacy 
training. The iPad training involved identifying which of four response options 
showed a target object rotated (and not its mirror image) and then completing puz-
zles that require the rotation of pieces. There were no observed differences between 
the spatial and literacy conditions on calculation problems with missing terms. 
Because Hawes et al. assessed mathematics performance 3 to 6 days after complet-
ing the program, compared to Cheng and Mix who assessed mathematics perfor-
mance immediately after the training session, these contrasting results may raise 
questions about the durability of the effects of spatial training at a delayed posttest. 
However, three key differences between the two studies may also account for the 
conflicting findings. Hawes et al. used a game-based format for spatial training, had 
children rotate familiar shapes (e.g., animals and letters), and differentiate between 
rotated vs. mirrored images. Cheng and Mix used more direct spatial training 
format rotating geometric shapes. Consequently, it is not clear if the spatial visual-
ization requirements were equivalent in the two studies.

Another study (Lowrie, Logan, & Ramful, 2017) examined the effects of 20 h of 
spatial training on mathematics achievement in 10- to 12-year-old children. Spatial 
training consisted of a variety of spatial visualization, mental rotation, and spatial 
orientation tasks. For example, students drew maps, read inverted maps, differentiated 
between mirrored and rotated images, practiced 2D rotation around a point and 3D 
rotation of objects, and so on. In a control condition, students completed a standard 
course curriculum. Students in both conditions were pretested within 2 weeks prior to 
starting the intervention and posttested within 2 weeks of completing the intervention. 
Students in the spatial training condition exhibited higher scores on a mathematics 
achievement test compared to their peers who did not receive the training. Using cur-
ricula emphasizing spatial skills in elementary school (Cunnington, Kantrowitz, 
Harnett, & Hill-Ries, 2014; Hawes, Moss, Caswell, Naqvi, & MacKinnon, 2017) and 
engaging younger kindergarten and first-grade students in spatial play (Grissmer 
et al., 2013) have also led to improved mathematics performance.

Although the above findings are sometimes conflicting, taken together, they sug-
gest a potentially causal relation between spatial training and mathematics 
 achievement. Thus, spatial training may help children with and without MD improve 
their mathematics achievement, although much more research needs to be conducted 
in this area before clear conclusions can be drawn.

Spatial training in the context of teaching mathematics is likely to be fruitful for 
students with MD. For example, given the central role of magnitude understanding in 
learning mathematics, the visual number line may be a key representational tool in 
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developing core number concepts (Gunderson et  al., 2012). Visual number line 
activities generally require young children to move left to right along a horizontal 
number line (e.g., 1 to 10) as part of a board game. Visual number line activities may 
be particularly effective for connecting spatial and numerical skills, including devel-
oping a mental number line that encompasses rationale numbers as well as integers. 
Visual number lines may also support spatial working memory, which, as noted previ-
ously, is a barrier for many children with MD (e.g., Swanson & Jerman, 2006).

Visual number line activities support understanding of whole number magni-
tudes in preschoolers (Ramani & Siegler, 2008; Whyte & Bull, 2008), as well as 
understanding of fraction magnitudes in older students (Fuchs et al., 2013, 2014; 
Saxe et al., 2007). Such activities encourage children to name numbers, count, and 
compare magnitudes (Ramani & Siegler, 2008). They provide a visual experience of 
placing numbers in a linear representation. Thus, students can see that each number 
is one more than the previous one and, for example, that the difference between one 
and nine is larger than the difference between four and six.

Numerical magnitude knowledge on the number line appears to be malleable 
through training. Only four 15-minute sessions with a linear board game led to 
improved and lasting understanding of whole number magnitudes among low- income 
preschoolers (Ramani & Siegler, 2008), and two 30-minute sessions with number 
lines improved symbolic fraction magnitude understanding among typically achiev-
ing second- and third-grade students (Hamdan & Gunderson, 2017). Intensive instruc-
tional approaches centered on the number line also improve fraction concepts in 
fourth graders with MD (Fuchs et al., 2014).

 Conclusions

There is a robust and tight connection between elements of spatial reasoning and 
mathematics achievement. While children with MD appear to show weaknesses in 
some spatial processes (i.e., spatial working memory), they do not in others (i.e., 
mental rotation). Further investigation needs to confirm these results and to examine 
a wider range of spatial processes in relation to mathematics outcomes in children 
with MD. Relative strengths in some areas of spatial reasoning may be underutilized 
resources for fostering mathematics learning in students with MD.  However, 
children with MD may need additional scaffolds to support their relative weak-
nesses in spatial working memory and inhibitory control. Further studies should 
address how visual/spatial tools, such as the number line, can reduce spatial work-
ing memory demands and encourage inhibitory control. Nevertheless, spatial repre-
sentational tools, such as the visual number line, may be particularly helpful for 
children with MD to develop magnitude knowledge.
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Chapter 27
The Language Dimension of Mathematical 
Difficulties

Susanne Prediger, Kirstin Erath, and Elisabeth Moser Opitz

In this chapter (which is a slightly modified version of Prediger, Erath, & Moser 
Opitz, 2018), we briefly (1) report on theoretical backgrounds and empirical studies 
showing strong connections between language factors and mathematics achieve-
ment (as a result of learning), (2) explain in which way language is relevant in the 
processes of learning, and (3) present instructional approaches for enhancing 
students’ language proficiency for supporting the learning of mathematics.

 Language Factors on Different Levels and Their Connection 
to Mathematics Achievement

Many empirical studies have shown that students’ mathematical difficulties are 
often tightly connected to language factors (Secada, 1992). But what exactly does 
language mean in these contexts? Whereas some researchers mainly refer to 
reading difficulties, other studies identify language factors on word, sentence, and 
text/discourse level, and all of them can contribute to mathematical difficulties.
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 Differences Between Everyday and Academic Language 
on Word, Sentence, and Text/Discourse Level

Language gaps concern not only multilingual learners but also monolinguals who 
are fluent in the everyday language. This phenomenon can be explained by the dif-
ference between everyday language and academic language, which goes back to 
Cummins’ (2000) distinction between Basic Interpersonal Communication Skills 
(BICS) and Cognitive Academic Language Proficiency (CALP). Whereas students 
from socially privileged families acquire CALP in their families, socially under-
privileged or immigrant students sometimes have less access to it, although it cor-
responds to a crucial register (Halliday, 1974) in the context of schooling  – in 
textbooks, exams, and learning tasks (Schleppegrell, 2004).

Researchers in education and linguistics have characterized the specificities of 
the school academic language similar to the technical languages of different scien-
tific disciplines (Bailey, 2007; Jorgensen, 2011; Schleppegrell, 2004; Snow & 
Uccelli, 2009). Table 27.1 summarizes typical features on the word, sentence, and 
text level (referring to written texts) as well as the discourse level (referring to oral 
discourse practices and their structures beyond the sentence level; see next 
section).

The school academic register as well as the technical register of each subject has 
its own characteristics and challenges. Morgan, Craig, Schütte, and Wagner (2014, 
p.  845) emphasize that “language has a special role in relation to mathematics 
because the entities of mathematics are not accessible materially.” Therefore, 

Table 27.1 Typical features of the school academic and technical register (compared to everyday 
register)

Word level (lexical features)
  Less familiar words with distinct meanings
  More complex word structures, nominalizations
  Relevance of other types of words (e.g., prepositions)
  Sentence level (syntactical and morphological features)
  More complex syntactical structures like prepositional phrases, more complex subordinate 

clauses
  Impersonal constructions like passive voice construction
  More subtle and precise use of morphological distinctions and connectives
Text level
  Specific text genres which are not used in the everyday practices (e.g., protocol, report, 

interpretation)
  More explicit and more complex markers of cohesion and coherence
  …
Discourse level
  Specific discourse practices (e.g., explaining why, arguing, etc.) with different norms of 

explicitness than in everyday practices.
  More abstract and more general talk
  ….
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 communication about mathematics requires symbols, drawings, and mathematical 
language and demands a high precision and abstractness, which are characterizing 
features of the academic language.

 Disentangling Language Obstacles on Word, Sentence, Text, 
and Discourse Levels and Their Connection to Mathematics 
Achievements

Different research groups have developed different approaches to disentangle lan-
guage factors and their connection to mathematics achievement: whereas some 
researchers exclusively refer to tests and differences on the item level (for all stu-
dents or for those with mathematical learning difficulties), other researchers (mainly 
mathematics education researchers and linguists) also investigate the learning pro-
cesses themselves (see next section).

 Obstacles on the Word Level

Linguistic structure of number words Among young children, the linguistic struc-
ture of the number words has an influence on their acquisition of numbers. In a study 
of Miura, Okamoto, Kim, Steere, and Fayol (1993), first graders from Asian coun-
tries who spoke languages which are organized so that numerals are congruent with 
the base-10 number system had higher counting competences and a better under-
standing of the base-10 number system than children from countries with less con-
gruent number words (e.g., France, Sweden). Moser Opitz, Ruggerio, and Wüest 
(2010) found similar results for Turkish-speaking kindergarten children (a language 
with number words congruent with the base number system) who had a higher count-
ing competence than Italian- and Albanian-speaking children. In many languages 
(e.g., Arabic, Czech, Danish, Dutch, German), pupils especially struggle with the 
challenge of inversion by transcoding Arabic numbers from and into number words 
(e.g., Zuber, Pixner, Moeller, & Nuerk, 2009). In the inversion property, the order of 
basic lexical elements in their syntactical organization is inverted in symbolic and 
verbal notation (e.g., in German, the number word for 32 is “zweiunddreissig” [two 
and thirty], Zuber et al., 2009). Klein et al. (2013, p. 4 f.) conclude that the numerical 
development is moderated by language, especially with regard to two-digit numbers. 
Therefore, it seems to be important to explicitly discuss the irregularity of number 
words in the respective languages when working with young children.

Mathematical vocabulary Different categorizations of mathematical vocabulary 
are possible, also depending on the linguistic feature of a specific language. 
Riccomini, Smith, Hughes, and Fries (2015, p. 238) distinguish (for English) the 
following categories: “(a) meanings are context dependent (e.g., foot as in 12 inches 
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vs. the foot of the bed), (b) mathematical meanings are more precise (e.g., product 
as the solution to a multiplication problem vs. the product of a company), (c) terms 
specific to mathematical contexts (e.g., polygon, parallelogram, imaginary num-
ber), (d) multiple meanings (e.g., side of a triangle vs. side of a cube), (e) discipline- 
specific technical meanings (e.g., cone as in the shape vs. cone as in what one eats), 
(f) homonyms with everyday words (e.g., pi vs. pie), (g) related but different words 
(e.g., circumference vs. perimeter), (h) specific challenges with translated words 
(e.g., mesa vs. table), (i) irregularities in spelling (e.g., obelus [÷] vs. obeli), (j) 
concepts may be verbalized in more than one way (e.g., 15 min past vs. quarter 
after), and (k) students and teachers adopt informal terms instead of mathematical 
terms (e.g., diamond vs. rhombus).”

Studies give evidence that such kind of lexical features can affect mathematics 
achievement. Haag, Heppt, Roppelt, and Stanat (2015) showed that increasing the 
difficulties of lexical features (e.g., more general and specialized academic vocabu-
lary) in test items increases the item difficulties. Schindler, Moser Opitz, Cadonou- 
Bieler, and Ritterfeld (in press) found a significant correlation between students’ 
mathematical vocabulary and arithmetical competence in a sample of fifth graders. 
With regard to different categories of mathematical vocabulary, the findings are 
inconsistent: Schindler et al. (in press) report that mathematical terms which have 
different meanings in the everyday language and the academic language (e.g., differ-
ence, product) and terms which are used in both languages with the same meaning 
(e.g., square, rectangle) seem to be especially difficult for fifth graders. In contrast, 
this does not seem to apply for tenth graders who seem to master polysemy without 
problems (Prediger, Wilhelm, Büchter, Gürsoy, & Benholz, 2018).

 Obstacles on the Sentence and Text Level

On sentence and text level, several factors have an impact on mathematics learning. 
Reading difficulties on the sentence and text level have often been shown to influ-
ence the students’ test achievement results (Abedi & Lord, 2001; Hirsch, 2003).

Syntactical complexities on the sentence level have to be taken into account for 
test and learning situations: complex prepositional clauses (Jorgensen, 2011), con-
ditional clauses, the use of nominalization (e.g., double – doubling; Schleppegrell, 
2004), and complex issues of cohesion on the sentence and the text level. In addi-
tion, text length and the number of noun phrases can appear as significant predictors 
for low achievement in mathematics for third graders (Haag et al., 2015), but not 
necessarily for tenth graders (Prediger, Wilhelm, et al., 2018).

However, it is important to realize that especially students with low language 
proficiency do not only encounter reading obstacles: A differential functioning anal-
ysis on a high-stakes test in Grade 10 has shown that all items with which students 
with low language proficiency had specific difficulties were items with high 
 conceptual demands, not high reading demands (Prediger, Wilhelm, et al., 2018). 
Haag et al. (2015) investigated if the linguistic simplification of test items affects the 
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mathematical performance of second-language learners. They found only a small 
effect with limited practical relevance. These results hint to difficulties in the learning 
processes rather than only test biases (see next section).

 Language Factors in the Achievement of Specific Groups

 Second-Language Learners

Since 25 years, research shows that language minority students often obtain lower test 
scores in mathematics than native speakers (Abedi & Lord, 2001; Haag, Heppt, Stanat, 
Kuhl, & Pant, 2013; Secada, 1992). They are often disadvantaged in school if their first 
language does not correspond to the language of instruction (Barwell, 2009; 
Schleppegrell, 2004). Whereas some researchers have investigated the language gaps 
between the students’ home language and the language of instruction in more cogni-
tive terms, e.g., problem of interferences between both languages for expressing num-
ber names (Krinzinger et al., 2011), other researchers have focused on cultural aspects 
and issues of identity and agency which apparently underprivileged language minority 
students more than the pure cognitive and communicative aspects (Norén, 2015; cf. 
Barwell et al., 2016, for an overview). That is why many researchers plead for avoiding 
deficit perspectives on multilingual students (cf. Barwell, 2009; Moschkovich, 2010).

Additionally, it is important to note very explicitly that the risk factor of second- 
language learners is not their multilingualism itself, because multilingualism can also 
provide cognitive benefits (e.g., shown by Cummins, 2000; Kempert, Saalbach, & 
Hardy, 2011; see Barwell et al., 2016, for an overview). In contrast, the major risk 
factor seems to be the proficiency in the language of instruction: Paetsch, Felbrich, 
and Stanat (2015) found a significant relationship between reading comprehension, 
vocabulary, and mathematics achievement of second-language learners (similarly 
Abedi & Lord, 2001). Also in a survey of tenth graders, the language proficiency was 
the factor with the strongest statistical connection to the mathematics achievement, 
stronger than multilingualism, immigrant status, or socioeconomic status (Prediger, 
Wilhelm, et al., 2018). That is why Moschkovich claims that “studies should focus 
less on comparisons to monolinguals and report not only differences between mono-
linguals and bilinguals but also similarities” (Moschkovich, 2010, p. 11).

However, second-language learners should not only be regarded as emergent 
language learners in the language of instruction. Their home language can be a 
resource which – if activated appropriately – allows a second access to mathematics 
(see last section).

 Students with Learning Disabilities in Mathematics and Reading

Even if problems with learning mathematics are widely known, researchers have 
not yet been able to agree on a single definition (e.g., Gunn & Wyatt-Smith, 2011; 
Scherer, Beswick, Deblois, Healy, & Moser Opitz, 2016). In addition, different 
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terms (learning disabilities, learning disorders) are used to describe the affected 
students, and different diagnostic approaches may lead to different results (Branum- 
Martin, Fletcher, & Stuebing, 2012). Without discussing this issue here, and also 
without discussing genetic factors (e.g., Petrill et  al., 2012) or neurobiological 
underpinnings (e.g., Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013), we use the 
term “learning disabilities” for referring to students with significant and long- lasting 
learning problems. For many years it was assumed that such problems in learning 
mathematics and reading are isolated impairments, and even nowadays, the ICD-10 
manual defines comorbid learning disorders in mathematics and reading as a “poorly 
defined residual category” (Deutsches Institut für Medizinische Dokumentation und 
Information, 2015).

This often led to the consequence that affected students had access to support 
either in mathematics or in reading. However, empirical evidence shows that sig-
nificant problems with reading and of mathematics often co-occur (Dirks, Spyer, 
van Lieshout, & de Sonneville, 2008). According to Mann Koepke and Miller 
(2013), 17–66% of pupils with learning disabilities in mathematics also have read-
ing disabilities. The research from Willcutt et al. (2013) gives evidence that signifi-
cant problems with reading and mathematics are distinct but related disorders that 
often co-occur because of shared neuropsychological weaknesses in working mem-
ory, processing speed, and verbal comprehension. Moll, Göbel, Gooch, Landerl, 
and Snowling (2016) found only verbal memory as a shared risk factor of pupils 
with reading and mathematics disorders and divergent other factors for reading 
impairment (slow verbal processing speed) and mathematics impairment (limita-
tions in temporal processing, verbal, and visuospatial memory). Fuchs, Geary, 
Fuchs, Compton, and Hamlett (2016) conclude that pathway to calculation and 
word-reading outcomes are more different than alike.

These findings have important implications: first, it has to be acknowledged that 
a considerable part of students meets substantial problems in both domains, reading 
and math, and therefore needs special support. Second, it has to be considered that 
the different cognitive profiles of students require interventions tailored to the spe-
cial needs of the affected students.

 Students with Specific Language Impairment and Mathematics Learning

The relationship between specific language impairment (SLI) and mathematics 
development is only scarcely investigated. The few results, which are available, 
show that students with SLI have lower mathematical achievement in some areas, 
compared with other students. According to Fazio (1996, 1999), children with lan-
guage impairment do understand the process of counting objects and the cardinality 
principle. However, they have difficulties acquiring the number sequences correctly. 
Other authors (Donlan, 2003, 2015; Donlan, Cowan, Newton, & Lloyd, 2007) 
report difficulties of SLI students in the production of number words, in calculation, 
and in understanding place value. In a study of Ritterfeld et al. (2013), students, 
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who attended a special school for children with SLI and followed the normal cur-
riculum, had a lower achievement in mental calculation than students in regular 
classrooms. However, they did not use more problematic counting strategies than 
pupils without SLI. Alt, Arizmendi, and Beal (2014) discuss multiple possible prob-
lem sources for the aforementioned difficulties of pupils with SLI: the manipulation 
of mathematical symbols, the use of working memory for patterns, and the combi-
nation of complex linguistic syntax plus mathematical symbols. Durkin, Mok, and 
Conti-Ramsden (2015) investigated the relationship of language factors and IQ in 
the core subjects language, science, and mathematics in a sample of students with 
SLI. Achievement in mathematics was predicted by IQ, but not by language factors. 
Other authors (Nys, Content, & Leybaert, 2013; Rhöm, Starke, & Ritterfeld, 2017) 
assume that deficits in working memory – especially in the phonological loop – 
influence the mathematics learning processes of students with SLI.

To sum up, SLI is a risk factor for a successful mathematical development, 
which seems to be caused by other factors than language. Schröder and Ritterfeld 
(2015) argue that that these SLI students are in need for qualitatively enriched 
interactions with their teachers for achieving a successful participation in mathe-
matical conversations. In this way, they promote to transcend the word and sen-
tence level and work on the discourse level also for the students with most serious 
language challenges.

 Language Dimensions in Learning Processes

 Language as a Learning Medium, Learning Prerequisite, 
and Learning Goal

Students with low language proficiency experience difficulties not only in test situ-
ations but – more importantly – in the learning situations themselves. This relates to 
the role of language as a learning medium in classrooms (Lampert & Cobb, 2003; 
Morgan et al., 2014): language in mathematics classrooms is at the same time a 
medium of knowledge transfer and discussion (communicative role of language) 
and a tool for thinking (epistemic role of language, Morek & Heller, 2012; Pimm, 
1987). Research in mathematics education repeatedly emphasizes the intertwine-
ment of language and mathematical thinking for all students, but especially for stu-
dents still acquiring the language of instruction (e.g., Moschkovich, 2015). As not 
all students have the same level of academic language proficiency, the learning 
medium turns into an unequally distributed learning prerequisite. In order to com-
pensate differential learning prerequisites more explicitly, language must be an 
explicit learning goal. Lampert and Cobb (2003, p. 237) stress that “Learning to 
communicate as a goal of instruction cannot be cleanly separated from communica-
tion as a means by which students develop mathematical understanding” linking the 
language as a learning goal to language in its epistemic role.
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 Discourse Practices as a Construct to Capture Language 
Demands on the Discourse Level

Whereas the lexical and syntactical features of academic language on the word and 
sentence level have been discussed in the first section, this section focuses on 
language demands on the discourse level which has been shown to be crucial for the 
meaningful learning of mathematics (e.g., Erath, Prediger, Heller, & Quasthoff, in 
press; Bailey, 2007; Moschkovich, 2015), especially for language learners.

Discourse is a construct frequently used in mathematics education (e.g., Erath 
et al., in press; Bailey, 2007; Barwell, 2012; Moschkovich, 2015) which is tied to 
different linguistic theories that can be united under the term “discourse analysis.” 
For example, Barwell (2012) refers to discursive psychology and conversation anal-
ysis for defining discursive demands; Moschkovich (e.g., 2015) refers to sociolin-
guistics in order to conceptualize academic literacy in mathematics for English 
learners; Erath et  al. (in press) introduce the theory of Interactional Discourse 
Analysis in order to contribute to an empirically grounded theorization of academic 
language proficiency on the discourse level. Here, we refer to the definition of dis-
course practices from Interactional Discourse Analysis since it is compatible with 
other definitions used in mathematics education. In addition, it allows to differenti-
ate between different subcategories of discourse. Explanations, arguments, descrip-
tions, etc. are defined by the task they solve in a speech community (e.g., a 
mathematics classroom):

Oral discursive practices are defined as multi-unit turns which are interactively 
co- constructed, contextualized and functionally oriented towards particular genres 
(Bergmann & Luckmann, 1995) such as narration, explanation or argumentation. 
By making use of conventionalized genres, discourse units in their joint achieve-
ment in interaction rely on patterns available in speech communities’ knowledge to, 
e.g., convey or construct knowledge (explanations) or negotiate divergent validity 
claims (argumentation). (Erath et al., in press).

In this perspective, discourse practices are patterns that can be observed repeatedly 
in a speech community (e.g., Cobb, Stephan, McClain, & Gravemeijer, 2001).

 Discourse Practices and Discourse Competence in Mathematics 
Classrooms

In mathematics classrooms, the most important discourse practices comprise 
(Prediger, 2016):

• Reporting on procedures.
• Explaining the meaning of concepts and operations.
• Arguing about the validity of a claim.
• Describing patterns in a general way.
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However, these most important practices appear with different frequencies in 
different classrooms (Erath et al., in press), and in addition, patterns are specific for 
different mathematics classrooms as Erath (2017a) shows for the case of explaining. 
Furthermore, it can be theoretically and empirically shown that talking about con-
ceptual knowledge (that Hiebert, 1986, defined in contrast to procedural knowl-
edge) is tightly linked to the shared discourse practice of explaining in whole class 
discussions (Erath, 2017a) and moderated small group work (Erath, 2017b).

Discourse analytic constructs allow mathematics education researchers to under-
stand how students’ low language proficiency is intertwined with restricted mathe-
matical learning opportunities. In this context, learning is conceptualized as “a 
process of enculturation into mathematical practices, including discursive practices 
(e.g., ways of explaining, proving, or defining mathematical concepts)” (Barwell, 
2014, p. 332; Vygotsky, 1978). When learning mathematics is linked to participa-
tion in classroom interaction, this specifically explains limits in acquiring concep-
tual knowledge in discourse practices like describing general pattern or explaining 
meanings of concepts (e.g., Erath et al., in press; Moschkovich, 2015): empirical 
studies on whole class discussions and moderated small group work (e.g., Erath, 
2017b; Erath et al., in press; Barwell, 2012) show that students with low language 
proficiency rarely participate in the conceptually interesting moments of discourses, 
often due to missing linguistic resources on the discourse level.

In Interactional Discourse Analysis, these resources are specified by the concept 
of discourse competence which distinguishes three facets (Quasthoff, 2011):

• Contextualization competence refers to a student’s ability to recognize if, for 
example, a question requires an answer with half a sentence or a longer utterance 
(i.e., a discourse unit). For a discourse unit, a student needs to recognize if a nar-
ration, an explanation, or an argument is required.

• Textualization competence refers to a student’s ability to structure the discourse 
unit according to the different requirements of explanations, arguments, etc. in 
the case of explanations in mathematics classrooms, this, for example, involves 
stating the procedure of an algorithm stepwise.

• Marking competence refers to a student’s ability to use language means that 
make the chosen discourse practice and the related textualization recognizable 
for the public. Language means for argumentations are, for example, “because” 
or “for this reason.”

These three subcompetences are required by students for participating in 
discourse practices in mathematics education (further potential mathematical chal-
lenges are not explicated here): they need to “recognize contextually when to place 
which discourse practice (e.g., explanation instead of narratives), master the specific 
textualization patterns (e.g. explicating general procedures step-by-step) and use a 
specific lexical and grammatical repertoire to mark it (e.g., ‘that’s why’ for explaining)” 
(Erath et al., in press).
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 General and Topic-Specific Lexical Means for Different 
Mathematical Discourse Practices

Beyond the general discourse competence and language means for generally 
marking specific discourse practices, topic-specific language means are required for 
each mathematical topic. We illustrate the differences for the case of a whole class 
discussion on flexible subtraction strategies (Grades 3–5) in which a student, Kevin, 
has suggested to calculate 12 – 5 by the auxiliary task 15 – 5 – 3: “If this were 15, 
then it would be 10, and then make 3 less.” As his ideas are not immediately 
understandable to the whole class, the teacher asks to explain Kevin’s ideas 
(Prediger, 2016). Table 27.2 shows three different discourse practices that might 
follow and the different general and topic-specific language means required for 
the discourse units.

The examples in Table 27.2 specifically illustrate the difference between a for-
mal, technical vocabulary (subtracting, adding, result) and meaning-related 
 vocabulary (giving away, borrowing, etc.). A second example can be given for per-
centages: the formal vocabulary comprises concepts like rate amount and base. To 
enable students to construct meanings for these concepts, it is important to engage 
them in the discourse practice of explaining meanings. For explaining, topic-spe-
cific meaning- related vocabulary is required such as “the old price,” “the new price,” 
“discount as a share of the new price,” etc. (Pöhler & Prediger, 2015). Scaffolding 
these meaning-related phrases allows students with low language proficiency to 
participate in these kinds of discourse practices.

Table 27.2 General and topic-specific lexical means for different mathematical discourse 
practices – examples for the auxiliary strategy 15 – 5 – 3 for calculating 12 – 5

.
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 Approaches for Fostering Students’ Language Proficiency 
in Mathematics

As language has turned out to be an important factor for different groups of students 
at risk, fostering students’ academic language proficiency is demanded all over the 
world. The Council of Europe claims it as a major approach for achieving more 
equity (Thürmann, Vollmer, & Pieper, 2010), and many empirical studies show that 
it might positively influence the mathematics learning (see below). However, the 
practices of fostering language (e.g., DfEE, 2000) are often criticized for being too 
restricted to vocabulary training (Moschkovich, 2013) without taking into account 
the discourse level. In this section, we give some examples on more enhanced 
instructional approaches.

 Enhancing Discourse Practices: Qualitative Output Hypotheses

Given the empirical results on the discourse level (see last section), enhancing 
discourse practices like explaining, arguing, etc. is an important instructional 
approach (Moschkovich, 2015). This is in line with the principle of pushed output 
formulated in second-language learning (Swain, 1995), according to which lan-
guage learning requires the enforcement of oral and written language production. 
Pushing output can be reached by suitable tasks and activity structures and can be 
accompanied by materialized scaffolds. This may include language frames and 
teachers’ continuous micro-scaffolding moves during the interaction (Bakker, 
Smit, & Wegerif, 2015).

Schröder and Ritterfeld (2015) emphasize the significance of enhancing dis-
course practices also for students with SLI on three dimensions: the dimension of 
the linguistic-interactive requirements and their supportive function, the didactical 
dimension of using materials and visualizations, and the dimension of mathematical 
knowledge, resp., knowledge acquisition.

 Enhancing Conceptual Knowledge: Relating Registers 
and Representations

In mathematics education, pushed output can be successfully combined with con-
tinuous activities of relating registers (the everyday, academic, and technical regis-
ter) and (symbolic, graphical, etc.) representations forward and backward, rather 
than sequencing through them once (cf. Fig. 27.1 from Prediger et al., 2016; similar 
in Moschkovich, 2013). These activities of translating between registers and finding 
coherences or differences offer very suitable, mathematically rich opportunities for 
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verbalizing, explaining, and arguing. At the same time, they have proven powerful 
for enhancing conceptual understanding, a critical point in the learning of students 
with low language proficiency.

Empirical evidence for the efficacy of this design principle has been provided, 
e.g., in a control trial in Grade 7 on an intervention designed for enhancing students’ 
conceptual understanding of fractions based on this design principle (Prediger & 
Wessel, 2013).

 Specifying Mathematical and Language Goals: The SIOP 
Model

One of the most widespread approaches for supporting language learners in subject 
matter education stems from the Sheltered Instruction Observation Protocol (SIOP 
model, Echevarria, Vogt, & Short, 2010). The SIOP model starts from specifying 
mathematical learning goals, deriving the discursive demands, and then figuring out 
the language objectives for realizing these discursive demands (Fig. 27.2). The nec-
essary words and phrases are offered in language frames and trained by initiating 
the necessary discursive practices.

Empirical evidence for the efficacy of this model has been offered in various 
control trials (for a summary see Short, 2017).

Fig. 27.1 Design principle of relating registers and representations (Prediger, Clarkson, & Bose, 
2016)
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 Combining Conceptual and Lexical Learning Trajectories: 
Macro-Scaffolding

Gibbons’ (2002) approach of macro-scaffolding suggests to combine the conceptual 
and lexical learning opportunities in well-sequenced trajectories. Table 27.3 gives an 
example for a macro-scaffolding approach for the mathematical topic of percentages: 
the conceptual learning trajectory is sequenced in six steps starting from students’ 
resources in informal thinking to informal strategies, formal procedures, and their flex-
ible use. Each step requires other discourse practices and different vocabularies which 
are sequenced in the lexical learning trajectory. Empirical evidence has been given that 
this intertwinement can be effective for mathematics learning (Smit, 2013; Pöhler & 
Prediger, 2015 with quantitative evidence in Pöhler, Prediger, & Neugebauer, 2017). 

 Including Home Languages: Activating Students’ Multilingual 
Repertoires

With respect to the group of multilingual students whose home language differs 
from the official language of instruction (which is the majority worldwide), another 
important instructional approach addresses the inclusion of home languages in 
order to activate the complete multilingual repertoire for mathematics learning.

Fig. 27.2 Categories and examples of language objectives in the SIOP model (Short, 2017, 
p. 4246)
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The demand for including all multilingual resources has often been formulated, 
and qualitative empirical insights have been offered for its benefits (Barwell et al., 
2016), such as participating in mathematical discourses activating everyday out-of- 
school experiences (Planas, 2014) or upgrading resources for meaning-making pro-
cesses (Clarkson, 2006; Norén, 2015) and increasing agency (Norén, 2015). 
However, the quantitative evidence for its efficacy for mathematics learning is still 
too weak (Reljić, Ferring, & Martin, 2015). Therefore, further research is required 
for strengthening the quantitative evidence.

 Conclusion

Language is a major learning medium used for communicative and epistemic pur-
poses in mathematics classrooms. Hence, language proficiency is an important 
learning prerequisite without which participation in classrooms tends to be 
restricted. This applies to different groups of students:

• Second-language learners.
• Students with learning disabilities in mathematics and reading.
• Students with specific language impairment.
• Monolingual students (often of low socioeconomic status) which have not yet 

had sufficient learning opportunities especially for the academic language.

For all these students with limited language proficiency, language thus has to 
become a learning goal, also in mathematics classrooms (Lampert & Cobb, 2003).

The language dimension is crucial for students with difficulties in mathematics 
not only in test situations but particularly during the whole learning process: 
Students with low academic language proficiency regularly meet challenges on 
word, sentence, text, and discourse levels.

Table 27.3 Combining conceptual and lexical learning trajectories: macro-scaffolding example 
for percentages (Pöhler & Prediger, 2015)

.
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Therefore, instructional approaches to support language learners should not 
isolate the word level from the discourse level. Instructional approaches seem to 
become most effective for supporting mathematics learning when they provide learn-
ing opportunities especially for the discourse practices of explaining meanings of 
mathematical concepts and operations and for describing general pattern. The lexical 
support of meaning-related vocabulary is therefore equally important to the formal 
technical vocabulary and specifically fruitful when offered in structured phrases 
rather than isolated words (Moschkovich, 2013; Prediger & Wessel, 2013).
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Chapter 28
Motivational and Math Anxiety 
Perspective for Mathematical Learning 
and Learning Difficulties

Elke Baten, Silvia Pixner, and Annemie Desoete

 Introduction

There are several arguments in favor of focusing on the predictors for mathematical 
learning and learning difficulties. Firstly, Duncan et al. (2007) demonstrated that 
mathematical achievement at the beginning of primary school is one of the strongest 
predictors of later academic success—stronger than early reading skills, even when 
important socioeconomic characteristics of the child and his or her environment are 
controlled for. In addition, pupils with high levels of mathematical performance 
were found to have a greater chance of later school success than pupils with low 
achievement levels in mathematics (Claessens & Engel, 2013). Moreover, Duncan 
and Magnuson (2009) revealed that children who kept having low scores in mathe-
matics during elementary school had a 13% lower chance of graduating from high 
school and a 29% lower chance of starting college education. Finally, a lack of 
mathematical skills was found to affect people’s ability to gain full-time employ-
ment and often restricted employment options to manual and often low-paying jobs.
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Several studies have provided evidence that mathematical learning is made up of 
multiple components and that mathematical learning disabilities (MLD) are not 
 unitary (Dowker, 2015; Gifford & Rockliffe, 2012; Pieters, Roeyers, Rosseel, 
Van Waelvelde, & Desoete, 2015). Some authors propose a subtype characterized 
by a delay in the “accuracy” of procedures used to solve simple arithmetic problems 
and a subtype characterized by a lack of “fluency” and by errors in the speed of the 
retrieval of arithmetic facts (Pieters et al., 2015).

In this chapter we focus on motivation and math anxiety as consequences of 
mathematical learning and learning problems with math “accuracy” and “fluency” 
in addition to known cognitive predictors. We first describe the opportunity–propen-
sity (O-P) model as a way of looking at more pieces of the puzzle of predictors of 
leaning and learning problems.

 Opportunity–Propensity Model

Byrnes and Miller (2006) proposed the O-P model to examine predictors for learning 
processes in a comprehensive way. This model explains mathematical achievement 
as a result of not only getting the right opportunities to learn (opportunity factors) but 
also being able to take advantage of these opportunities (propensity factors; Byrnes 
& Miller, 2006, 2016). Analyses on secondary data using this model reveal that 
58–81% of the variance in mathematical learning and learning problems can be 
explained by antecedent (A) factors, specific opportunity (O) factors, and propensity 
(P) factors (Byrnes & Miller, 2006).

Antecedent (A) factors include parameters such as socioeconomic status (SES), 
parent expectations, child expectations, parent values, and prior achievement, and 
they account for 28.8–43.0% of the variance in mathematical learning. In the case 
of MLD, mathematical learning problems appear to aggregate in families. The rela-
tive risk of MLD is substantially higher in first-degree relatives of individuals with 
these learning difficulties than in those without them (Desoete, Praet, Titeca, & 
Ceulemans, 2013). In addition, prematurity and very low birth weight increase the 
risk (Desoete & Baten, 2017).

Opportunity (O) factors include factors such as the home and school environ-
ment in which children are presented with content to learn or given opportunities to 
practice math skills, explaining between 11.2% and 44.1% of the variance in 10th- 
and 12th-grade mathematics. A longitudinal study revealed that not only the school 
environment but also the home environment mattered (Ceulemans, 2014). There 
was a significant relationship between the frequency of mothers spontaneously 
focusing on numerical cues at 24 months and the skills of children in solving arith-
metic problems at 48 months (Ceulemans, 2014).

Propensity (P) factors add 21.9–27.6% to the prediction of mathematical learn-
ing in the model. Propensity factors include cognitive and noncognitive predictors 
of math achievement later on. Prerequisite knowledge such as magnitude compari-
son (Ceulemans et al., 2014; Vanbinst, Ghesquière, & De Smedt, 2015); counting, 
seriation, and classification (Stock, Desoete, & Roeyers, 2010); language (Praet, 
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Titeca, Ceulemans, & Desoete, 2013); and intelligence (Desoete, 2008) as cognitive 
predictors explain some of the variance in math learning and learning problems 
(Desoete, 2014, 2015) (Fig. 28.1).

Also, affect and motivation are powerful factors that influence how students 
learn and master mathematics (Moore, Rudig, & Ashcraft, 2015). In the following 
sections, the research on these factors is reviewed.

 Motivation

 Definition of the Construct

Motivation is the processes that accounts for an individual’s intensity, direction, and 
persistence of efforts toward attaining a goal (Judge & Robbins, 2013).

Motivation refers to psychological forces that move people, bring them into action, and 
keep them going (Lens, Vansteenkiste, & Matos, 2008).

From the developmental perspective, children begin formal education with a very 
positive view of mathematics and with good feelings about their own abilities. There 
appears to be a reciprocal nature of the development of achievement and motivation, 
with both interest and motivation declining as children grow older (Moore et  al., 
2015). The Programme for International Student Assessment (PISA) ranking of 
mathematical literacy of 15-year-olds in 2015 demonstrated that although Flanders 
was in eighth place, children in Flanders disliked mathematics and felt uncertain 
when solving math problems. So paradoxically students with a high ranking were 
more afraid of math and showed low self-assessment. Moore and colleagues sug-
gested that affect and beliefs were crucial in learning and understanding math. 
Nevertheless, a longitudinal study by Garon-Carrier et  al. (2016) demonstrated 
that mathematics predicted intrinsic motivation and not the other way around. 

Fig. 28.1 Opportunity–propensity model. (Adapted from Desoete & Baten, 2017)
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Studies using the O-P model revealed that motivation (as propensity) accounted 
for 10% of unique variance on top of other propensity, opportunity, and antecedent 
predictors.

Despite the overall decline, self-rated interest in mathematics has a strong positive 
relationship with math-related success. This high correlation between interest and 
achievement might be caused by the fact that the more people are interested in a 
subject, the more knowledge they gain. Preknowledge seems to be a strong predictor, 
surpassing the influence of intelligence. In higher grades, variance in motivation (in 
terms of interest) and performance might be confounded, partly explaining why high 
motivation had a positive relationship with performance, with continued engagement 
in math classes and, subsequently, better achievement (Moore et al., 2015).

Some researchers differentiate here-and-now task engagement and longer-term 
patterns of engagement, with some students developing interest and enjoying alge-
braic puzzles but avoiding further mathematics coursework. In addition, they dif-
ferentiate situational interest and state-level preferences. Individual interest, 
exogenous instrumentality, goal orientations, and broader academic self-efficacy 
currently were found to lessen learners’ enjoyment of and persistence in challeng-
ing mathematics as they grow older (Middleton, Jansen, & Goldin, 2017).

Next to interest and engagement, there are several other ways to operationalize 
motivation as a complex construct. One of these conceptualizations is to investigate 
self-perceived abilities. Spinath, Spinath, Harlaar, and Plomin (2006) demonstrated 
in 1678 children that motivation in terms of ability, self-perceptions, and intrinsic 
values predicted achievement in mathematics and English more than general intel-
ligence (g). Although intelligence was the strongest predictor (25% of the explained 
variance), a substantial percentage of the variance could be explained by common 
variance and self-perceived abilities had an incremental validity (over g) of 5%. 
In 2010, researchers tried to replicate these findings in a population of 179 Chinese 
primary school pupils, but they could not confirm the incremental validity of moti-
vation beyond intelligence; only marginal significances were reported. Several 
explanations such as cultural differences (Europe versus China) and different con-
ceptualization of the construct of motivation were postulated (Lu, Weber, Spinath, 
& Shi, 2011). Kriegbaum, Jansen, and Spinath (2015) investigated the incremental 
role of motivation in academic achievement in 2003 and 2004 data from PISA and 
found extra explained variances in outcome of between 1% and 29% for several 
motivational factors. Task-specific self-efficacy was the strongest motivational pre-
dictor (Kriegbaum et al., 2015).

Another attempt to study motivation was self-determination theory (SDT), one 
of the leading theories in motivational psychology. SDT (Deci & Ryan, 1985) states 
that motivation is achieved by fulfilling three important needs, which are universal 
for every single person: autonomy, competence, and relatedness. Autonomy is the 
psychological concept of feeling free to make your own choices (Van Petegem, 
Soenens, Vansteenkiste, & Beyers, 2015), Competence is achieved when you attri-
bute successful performance to your own capacities (Gagné & Deci, 2005). 
Relatedness is described as the experience of feeling loved by significant others 
(Vansteenkiste & Ryan, 2013). Satisfaction of these needs was found to result in 
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positive outcomes such as psychological growth (Vansteenkiste & Ryan, 2013) and 
well-being in terms of self-esteem (Chen et al., 2015), whereas frustration of these 
needs resulted in stress and ill-being such as depressive symptoms or externalizing 
problems (Vansteenkiste & Ryan, 2013). In addition, SDT claims that the quality of 
one’s motivation is more important than the quantity. The more autonomous (versus 
controlled) the motivation is, the better (Vansteenkiste, Sierens, Soenens, Luyckx, 
& Lens, 2009).

On a continuum (see Fig. 28.2) from external regulation to intrinsic motivation 
or passion, different motivational categories are described that vary in terms of the 
quality of motivation and the level of self-regulation (Gagné & Deci, 2005; 
Vansteenkiste et al., 2009). Intrinsic regulation, at the end of the continuum, can be 
reached by fulfilling the three basic psychological needs described above. The dis-
tinction that is important for the purpose of this chapter is that between controlled 
motivation (CM) and autonomous motivation (AM).

Controlled motivation consists of external and introjected regulation. The force 
that drives you to fulfill a task in these types of regulation is hypothesized as com-
pletely outside yourself. For instance, external regulation means that you study 
mathematics because if you succeed on a test, your parents will give you a new bike. 
Introjected regulation is one step further on the continuum beyond external regula-
tion because there you tell yourself you have to study for an external reason. For 
instance, you tell yourself to study mathematics for the entire afternoon, because 
afterward you will have time to go a night out with friends.

Autonomous motivation consists of identified regulation, integrated regulation, 
and intrinsic regulation. Integrated regulation means that you find some aspects of 
the task really valuable; for instance, you study mathematics because you see the 
relevance for your later academic career. At the end of the continuum you find 
intrinsic regulation or intrinsic motivation where you study mathematics for instance 
because you feel that the task on its own gives you feelings of pleasure (Gagné & 
Deci, 2005).

There has been a long tradition of research on SDT, both theory-specific research 
and research on applying the theory in several domains of life—for instance, work, 
sports, relationships, and education (Milyavskaya & Koestner, 2011). In the field of 
education, most research on SDT has focused on physical education and sport 
(Moreno, Gonzalez-Cutre, Sicilia, & Spray, 2010; Ntoumanis, 2001; Standage, 
Duda, & Ntoumanis, 2003). However, research has also indicated significant 
positive relations between the level of autonomous motivation and achievement in 
 mathematics and reading (Grolnick, Ryan, & Deci, 1991). A meta-analysis of 

Fig. 28.2 The continuum of motivation. (Based on Vansteenkiste et al., 2009)
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18 studies on the relationship between SDT and general academic achievement 
revealed moderately strong positive relations of intrinsic motivation and introjected 
regulation with general school achievement. The different types of controlled moti-
vation had significant negative relations with academic achievement (Taylor et al., 
2014). In adults a significant positive correlation between autonomous motivation 
and the fluency of fact retrieval, but not between autonomous motivation and math 
accuracy, was found (Baten & Desoete, 2016), so the accuracy and speed of math-
ematics learning might be predicted by other (propensity) factors.

In addition, studies revealed that high motivation was negatively related to math 
anxiety (Zakaria & Nordin, 2008), serving as a strong moderator of the relationship 
between motivation and mathematics achievement. This construct is described in 
the next section.

 Math Anxiety

Math anxiety is very common. Beilock and Willingham (2014) report a prevalence 
of 25–50% of students with math anxiety in the USA. Math anxiety is defined as the 
negative affective reaction of an individual in situations that include numbers, quan-
tities, and calculating (Ashcraft & Moore, 2009). Negative consequences of math 
anxiety can acutely originate in impairment of the current performance, especially 
caused by impairment of working memory (Ashcraft & Krause, 2007; Krinzinger, 
Kaufmann, & Willmes, 2009). As is generally known, our working memory has a 
relatively limited capacity. Anxiety-provoking thoughts and worries about antici-
pated failure require a lot of the working memory’s capacity (Ashcraft & Krause, 
2007) and therefore leave little to no capacity for performing the current task. 
Furthermore, even long-term negative impairments in mathematical performance 
caused by math anxiety are kept up by a negative approach to mathematics and 
resulting avoidance behavior (Chinn, 2009). Avoidance behavior caused by math 
anxiety mostly leads to a vicious circle characterized by less calculation practice. 
With regard to the onset as well as its effects on the body, cognition, and behavior, 
math anxiety is comparable to other specific phobias.

On the student’s propensity side, the dynamic between motivation and achieve-
ment is clearly stated in a study by Jansen et al. (2013). With an adaptive computer- 
based approach they manipulated the success rate for solving mathematical tasks. 
The more success the tested children experienced in solving the mathematical prob-
lems, the higher they rated their subjective mathematical competencies and the less 
math anxiety they reported. This pictures a possible dimension of comparison, 
regarding one’s achievement: the more efficient I experience myself as being, the 
more I am willing to provide the performance. In school, however, children prefer 
to compare themselves to their peers (Maloney & Beilock, 2012). If their perfor-
mance is generally better than or roughly the same as that of their peers, the children 
attribute their upcoming failures externally, knowing that others also have not shown 
better performances in the past. Children who solve significantly fewer tasks or 
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produce more mistakes than their peers merely attribute their failures internally, 
since others have shown better performances, pointing to a complex interaction of 
motivation (self-perceived abilities, attribution) and affect (anxiety). This dynamic, 
identified by Jansen et al. (2013), could be an explanation for the phenomenon of 
increasing math anxiety according to the duration of formal schooling (Krinzinger 
et al., 2009). Not only does the number of experiences of failure rise with time, but 
also mainly the success rate decreases because of more complex issues. According 
to Maloney and Beilock (2012), two important factors—social influence (most 
notably the influence of the teachers) and cognitive predispositions—are of major 
interest in the development of math anxiety. In our opinion, also emotional disposi-
tions have an important influence, since some people’s personality and their avail-
ability of coping strategies make them react with anxiety faster and more intensely. 
To Maloney and Beilock (2012), cognitive predisposition includes not just general 
cognitive competencies like attention, intelligence, or memory, but also basic 
numerical competencies. Therefore, it is also postulated that children with dyscal-
culia are more likely to develop math anxiety due to their poor basic numerical 
competencies. However, we want to point out that not only children with dyscalcu-
lia suffer from math anxiety. When social factors are inspected more carefully, we 
find that especially teachers—but also parents in homework and other learning situ-
ations—play an important role in forming an important basis concerning the 
approach to arithmetic (Zhao, Valcke, Desoete, & Verhaeghe, 2012; Zhao, Valcke, 
Desoete, Verhaeghe, & Xu, 2011).

There is also evidence of environmental opportunity factors that might serve as 
risk or protective factors that influence the development of math anxiety. There 
seems to be a more general link between teachers’ behavior and students’ math 
performance (Beilock & Willingham, 2014). The higher the teachers’ math anxiety 
is (most primary school teachers are female), the lower their female students’ math 
achievement is. The second possible factor is the kind of feedback the teacher gives 
and also how the teacher reacts when the student struggles. This results from the 
teachers’ epistemological beliefs. An epistemological belief indicates an opinion on 
the source of knowledge. When the source of the child’s knowledge is considered 
innate and static, the feedback will go in that direction of skills and turn out to limit 
the student’s achievement. On the other hand, when the teacher believes that math-
ematical knowledge can be learned and improved with the right strategies, the feed-
back will, rather, include those strategies. Gradually the student’s epistemological 
beliefs are shaped through the teacher’s belief (Brownlee & Bertelsen, 2008). 
Consequently, the student stabilizes his or her belief on the source of knowledge 
based on the teacher’s belief.

The phenomenon of epistemological belief and the impact on achievement is 
also represented in the attribution theory (Kelley, 1973). Arkin, Kolditz and Kolditz 
(1983) showed that children with great math anxiety attribute failures rather inter-
nally and stably to their poor abilities. Shores and Shannon (2007) confirmed the 
importance of failure attribution for mathematics in sixth-grade students. This 
closes the vicious circle that accompanies math anxiety, even if we are not sure 
where it starts. Poor abilities; the belief that they are stable, innate, and not or hardly 
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changeable; the epistemological belief that makes teachers alter their style of teach-
ing and feedback to the student; the attribution over success and failure; or the math 
anxiety itself—which influences mathematical competencies not only acutely but 
fairly long term—could mark the beginning of the vicious circle that accompanies 
the phenomenon of math anxiety. This naturally influences the children’s motiva-
tion to deal with arithmetic tasks and makes the situation difficult for students and 
their surroundings. The only ways to retrieve the child from the vicious circle of 
math anxiety are knowledge of this dynamic and active attempts to take action 
against it.

 Conclusions and Implications

Our overview has demonstrated that noncognitive factors such as motivation and 
math anxiety should not be overlooked in the assessment of mathematical learning 
and learning problems. If we want more children to be motivated we should also 
provide chances for autonomy, relatedness, and competence in our math lessons. 
Only then will we maintain a positive view, autonomous motivation, and interest 
without anxiety in mathematics. In addition, math accuracy and fluency might be 
predicted by other propensity factors. Furthermore, it seems important to keep in 
mind that variables are mostly correlated. A comprehensive model can help us to 
overcome dichotomous interpretations as either consequences or causes, which 
make biased conclusions seem indicated. The opportunity–propensity model might 
help us to take into account the reciprocally interrelationship between predictors. 
Future research using this model is important to develop and study interventions 
that tackle the real sources of variance in different mathematical abilities and learn-
ing problems.
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Chapter 29
Mathematics and Emotions: The Case of 
Math Anxiety

Vitor Geraldi Haase, Amanda Paola Lobo Guimarães, and Guilherme Wood

 Introduction

Math is important, difficult, and emotion-arousing. Math achievement and level of 
mathematical training are demographically associated with employability and wages 
(Dougherty, 2003; Parsons & Bynner, 2005). In a knowledge-based society, math 
abilities constitute an important economic asset (Beddington et al., 2008). This is 
recognized by educators, policy-makers, and the wider public opinion (Budd, 2015). 
Cognitive capital (e.g., math ability) and social capital (e.g., a democratic and stable 
legal order) are determinants of human development (Newson & Richerson, 2009).

At all grades, math is perceived as the most difficult subject matter in the academic 
curriculum (Mazzocco, Hanich, & Noeder, 2012). Math contrasts with reading. 
Reading acquisition may be systematized in two hierarchical levels: word reading and 
text comprehension (Gough, 1996). It takes the child 3 to 4 years of hard work to 
automatize word reading (Dehaene, 2009). Text comprehension is a more complex, 
lifelong task (Oakhill, Cain, & Elbro, 2014). Math is a complex topic from the 
beginning, and its complexity increases steadily. The arithmetic curriculum is, at least 
partially, hierarchically organized in successive steps of increasing complexity 
(Clements & Sarama, 2009). Progression in the math developmental trajectory requires 
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mastery of a succession of abilities. At all levels of math  development, the child’s 
processing capacity is challenged (Bull & Lee, 2014; McLean & Rusconi, 2014).

It is no surprise then that math arises (sometimes strong) emotions. Even highly 
accomplished mathematicians experience some degree of negative emotions, such as 
anger, frustration, and anxiety, when solving math problems. Accomplished mathema-
ticians’ attitudes and coping strategies differed widely from those of novices (McLeod, 
Metzger, & Craviotto, 1989). Experts perceive math problems as challenging and use 
a more flexible and varied problem-solving approach. Novices feel overwhelmed, use 
less varied and rigid strategies, and attribute failure to internal, negative traits. It seems 
that experts work at the left side of the Yerkes-Dodson inverted-U curve relating 
arousal do performance, while novices work on the right side.

Interactions between math and emotions are complex and bidirectional. Math 
activities may elicit both positive and (more often) negative emotions. High perfor-
mance is associated with joy. Lower performance may cause frustration, anger, 
revolt, resentment, tension, dread, anxiety, shame, lower self-esteem, hopelessness, 
and emotional detachment. In the long run, persistent math difficulties are a risk 
factor for both externalizing and internalizing psychiatric disorders (Auerbach, 
Gross-Tsur, Manor, & Shalev, 2008; Parsons & Bynner, 2005). Therefore, both 
positive and negative emotions influence math performance.

In the last 60 years, research on math and emotions has focused mainly on math 
anxiety (MA) (e.g., Artemenko, Daroczy, & Nuerk, 2015, Dowker, Sarkar, & Looi, 
2016. Moore, Rudig, & Ashcraft, 2014, Suárez-Pellicioni, Núñez-Peña, & Colomé, 
2016). In this chapter, we will review the relevance of MA in the context of math 
learning and its difficulties, introducing the construct, its relations to motivation, its 
antecedents, consequents, relationships with math achievement, neurocognitive 
underpinnings, assessment, and interventions.

 Math Anxiety as a Construct

MA has been classically defined as a “feeling of tension and anxiety that interferes 
with the manipulation of numbers and the solving of mathematical problems in a 
wide variety of ordinary life and academic situations” (Richardson & Suinn, 1972) 
and as a “feeling of tension, helplessness, mental disorganization and dread pro-
duced when one is required to manipulate numbers or to solve mathematical prob-
lems” (Ashcraft & Faust, 1994). According to Chinn (2009), MA definitions vary 
according to a focus on performance (feelings of tension, apprehension or fear that 
interferes with math performance) or on the self (state of discomfort, which occurs 
in response to situations involving mathematics tasks that are perceived as threaten-
ing to self-esteem).

The phenomenology of MA is highly similar to a specific phobia (Faust, 1992; 
Krinzinger, Kaufmann, & Willmes, 2009). MA is considered to be a stimulus- and 
situation-specific learned reaction in predisposed individuals, manifesting itself at 
different levels: cognitive (negative attitudes, worrisome rumination, feelings of 
helplessness, low self-esteem, self-efficacy, etc.), affective (dysphoria), behavioral 
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(avoidance, hurry-up to finish math tasks, etc.), and physiological (sweating, trem-
bling, high pulse rate, etc.). MA is thus a multidimensional construct. The structural 
validity of MA will be discussed in the section on Assessment of MA.

The construct of MA is not officially recognized as a psychiatric disorder 
(American Psychiatric Association, 2013). MA guards also similarity to other 
performance- related anxiety manifestations such as reading (Piccolo et al., 2017), 
test, and social anxiety. Increasing levels of manifestation of MA from childhood to 
adolescence and college-age as well as associated feelings of shame and fear of 
losing face suggest a connection with social phobia. Correlations between MA and 
other anxiety-related constructs are moderate to low (Hembree, 1990), indicating 
the existence of both shared and non-shared sources of variance.

MA is considered a significant educational and clinical problem although not as 
a psychiatric disorder. There is no external golden standard or diagnostic cut-off 
scores available, and its prevalence is difficult to establish in a reliable manner. 
Most studies are based on the application of self-report instruments to samples of 
students at different grades. Those students with scores higher than an arbitrary cut- 
off are considered to have MA. For example, if the chosen cut-off score is on the 
75th percentile, prevalence will correspondently be situated around 25% of the 
population. MA is considered especially important in certain professional catego-
ries such as nurses and elementary school teachers (Beilock, Gunderson, Ramirez, 
& Levine, 2010; Hembree, 1990; McMullan, Jones, & Lea, 2012). Thus, prevalence 
rates vary widely from 2–6% to 68% according to the sample and diagnostic criteria 
investigated (Dowker et al., 2016).

MA is a relatively specific construct. MA is subject-specific, and correlations 
with other manifestations of anxiety are low to moderate, with r’s between 0.35 
and 0.52, according to the meta-analysis by Hembree (1990). Some data suggest 
that MA is associated with math performance but not with literacy performance or 
other forms of maladaptive behaviors and that its cognitive correlates are important 
from elementary school onward, distinguishing typical achievers from children with 
math learning difficulties (Haase et al., 2012).

 Math Anxiety and Motivation

At the cognitive level of manifestations, MA is related to several motivationally 
relevant constructs. Cognitive perceptions associated with MA may focus on the 
school subject or the self (Chinn, 2009). Attitudes toward math refer to “a liking or 
disliking of mathematics, a tendency to engage in or avoid mathematics activities, a 
belief that one is good or bad at mathematics and a belief that mathematics is useful 
or useless” (Neale, 1969, p. 623).

Cognitive perceptions focused on the self are math self-concept and math self- 
efficacy. Math self-concept consists of one’s perception of personal math 
 accomplishments, and math self-efficacy refers to one’s conviction or belief about 
their capability to engage successfully in math activities (Lee, 2009).
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The distinction between self-concept and self-efficacy is problematic, as the two 
constructs considerably overlap (Lee, 2009). According to Bong and Skaalvik 
(2003), the self-concept refers to perceived competence or knowledge and percep-
tions about oneself in math achievement situations. The self-concept results from 
past reinforcement by significant others. The self-concept is domain- and context- 
specific, past-oriented, and stable. In contrast, self-efficacy consists of perceived con-
fidence or convictions for successfully performing given math tasks. Self- efficacy 
results from previous personal experiences accomplishing math tasks. Self- efficacy is 
domain- and context-specific and future-oriented.

The construct of math self-efficacy is of great motivational significance. Self- 
efficacy expectations concern a person’s beliefs about their ability to successfully 
perform a given math task. Self-efficacy is thus a major determinant of whether a 
person will engage in math tasks and indicates how much effort and persistence will 
be expended (Akin & Kurbanoglu, 2011). Self-efficacy beliefs are at least as predic-
tive of math performance as intelligence (Pajares & Kranzler, 1995). Pajares and 
Graham (1999) found self-efficacy to be associated negatively with math anxiety. 
This is in accordance with the postulates of social learning theory that verbal per-
suasion and vicarious experience are weak and enactive mastery experience and 
physiological arousal are strong builders of self-efficacy (Babad, 2009; Bong & 
Skaalvik, 2003). Akin and Kurbanoglu (2011) observed that math attitudes act as a 
mediator between math self-efficacy and math anxiety. Moreover, these authors also 
showed that math self-efficacy positively predicts positive attitudes and negatively 
predicts negative attitudes. Math self-efficacy and positive attitudes predict MA in a 
negative way, and negative attitudes predicted MA in a positive way (Akin & 
Kurbanoglu, 2011). Finally, the positive influence of math self-efficacy on perfor-
mance and its negative influence on MA can be used in the planning of interventions 
based on errorless learning or successful mastery experiences.

 Antecedents of Math Anxiety

In this section, we will discuss the genetic, personal, and environmental antecedents 
of MA. In the following sections, we discuss cognitive and math achievement cor-
relates of MA, as they are both antecedents and consequents.

 Genetics

The diathesis-stress model widely used in psychiatry has been successfully applied 
to several forms of phobias (van Houtem et al., 2013). According to the diathesis- 
stress model, psychopathological manifestations arise from the interaction of indi-
vidual vulnerabilities (diathesis) and negative experiences. However, some current 
models tend to emphasize the role of genetic influences over experience in the 
development of phobic disorders (Kendler, Myers, & Prescott, 2002).
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To the best of our knowledge, there are only two behavioral genetic study of MA 
in twins reported in the literature (Malanchini et al., 2017; Wang et al., 2014). Wang 
and coworkers’ study uncovered a heritability estimate of 40% and genetic correla-
tions with other forms of anxiety such as general anxiety. Wang and coworkers’ 
results suggest that MA emerges from the interaction between genetic influences on 
math and general anxiety. General anxiety, by its turn, emerges from the interaction 
between its own genetic and non-shared environmental influences. This is accor-
dance with the diathesis-stress model. In this scenario, MA emerges in anxiety- 
prone individuals with math difficulties, who have more negative experiences in the 
context of math activities. Malanchini et al. (2017) obtained similar results, indicat-
ing a role for genetic and non-shared environmental factors and for both shared and 
specific genetic influences on spatial and math anxiety.

We were unable to find any research specifically investigating genetic influences 
on MA at the molecular level. This contrasts with other phobias, for which a role of 
genetic polymorphisms in neurotransmitters’ metabolism and activity were reported. 
This also contrasts with other pediatric anxiety disorders for which a host of candi-
date genes and molecular mechanism were reported (see review in Sakolsky, 
McCracken, & Nurmi, 2012).

 Age

Levels of MA grow up with age, as kids progress from childhood to adolescence 
(Hembree, 1990; Ma & Kishor, 1997). Two-thirds of 11-year-olds rate math as their 
favorite subject, but only a few 16-year-olds do so (Blatchford, 1996). Significant 
mathematics anxiety can be observed even among early primary school children 
(Haase et al., 2012; Krinzinger et al., 2009; Ramirez, Chang, Maloney, Levine, & 
Beilock, 2016; Ramirez, Gunderson, Levine, & Beilock, 2013; Thomas & Dowker, 
2000; Wu, Barth, Amin, Malcarne, & Menon, 2012). Dowker et al. (2016) com-
mented that this trajectory of growing MA in adolescence coincides with the greater 
incidence of anxiety disorders and to cumulative exposure to other people’s nega-
tive attitudes, stereotypes, and a more demanding curriculum. MA associated with 
dyscalculia is present already in the very early school years. MA unaccompanied by 
math learning difficulties makes its debut later, around the third to fifth grades.

 Gender

At all grades, MA levels are significantly higher in females than males (Hembree, 
1990). Gender differences can be detected in young children and tend to increase with 
age (Dowker, Bennett, & Smith, 2012). MA is correlated with text anxiety in boys and 
girls. Both MA and test anxiety negatively correlate with math performance (Devine, 
Fawcett, Szűcs, & Dowker, 2012). Removal of the more general effect of test anxi-
ety reduces the impact of MA on the scores of boys but not of girls. Higher levels of 
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MA in females contrast with absence or negligible presence of gender differences in 
average math performance (Lindberg, Hyde, Petersen, & Linn, 2010; Wai, Cacchio, 
Putallaz, & Makel, 2010). Several hypotheses have been raised to explain gender 
differences in MA, such as female proneness and willingness to admit anxiety 
symptoms (Chapman, Duberstein, Sörensen, & Lyness, 2007; McLean, Asnaani, 
Litz, & Hofmann, 2011), stereotype threat (Spencer, Steele, & Quinn, 1999), and 
social transmission of MA by female teachers (Beilock et al., 2010).

Stereotype threat is the dominant explanation in the literature. In situations where 
women are reminded of the stereotype that males are better at mathematics than 
females, their performance drops (Spencer et al., 1999). It was also observed that 
stereotype threat activates ventral cerebral areas associated with negative emotional 
processing and inhibits dorsal areas relevant for controlled and math processing 
(Krendl, Richeson, Kelley, & Heatherton, 2008). Stereotype threat as a dominant 
explanation of MA in females was questioned by Stoet and Geary (2012). These 
authors observed that studies only uncovered stereotype effects when prior math 
performance was statistically controlled. This may have attenuated the effects of 
previous math performance influences.

Other line of research indicates that cognitive differences may underlie MA gen-
der proneness. For example, Stoet and Geary (2013) observed gender differences 
favoring boys at the extremes of the performance distribution. These subtle but sig-
nificant differences may be cancelled out when averaged. Additionally, higher MA 
levels in girls and undervaluation of girls’ math abilities by parents are independent 
of socioeconomic development and gender equity in a cross-national comparison 
(Stoet & Geary, 2016). In another study, lower MA levels in boys was mediated by 
better visuospatial processing abilities (Maloney, Waechter, Risko, & Fugelsang, 
2012). These subtle but potentially relevant cognitive differences could originate 
from fetal testosterone levels (Stoet & Geary, 2016).

It seems safer then to conclude that gender differences in MA are related to a 
host of biological and cultural factors. Cultural influences such as stereotype threat 
and gender-specific transmission of MA are susceptible to psychosocial interven-
tions with the goal of stimulating participation of women in math and science.

 Culture

Cultural stereotypes and practices also exert an effect on MA: Math is generally 
considered to be a “difficult subject matter,” “it is normal to have difficulties with 
maths,” “girls do worse and Asians do better in maths,” etc. (Aronson et al., 1999; 
Krendl et al., 2008). As an example, White male’s performance is susceptible to the 
stereotype that Asians do better in math (Aronson & Lang, 2010). Harsh disciplin-
ary practices and parental pressure on the belief that effort rather than ability is the 
primary source of success could also be associated with MA (Stankov, 2010; Tan & 
Yates, 2011). In general, higher economic development is associated with better 
math performance and lower MA levels (Stoet & Geary, 2016). However, some 
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notable exceptions exist. Although math performance and MA usually negatively 
covary, dissociations also occur (Lee, 2009). Math self-concept is extremely low in 
some Asian countries with high math performance, and conversely, math self- 
concept is high in some developing countries with low math performance. This 
raises the questions of the price eventually paid in terms of stress and suffering for 
improvements in math performance, and of the lack of awareness regarding poor 
math teaching and/or performance in other settings.

 Teachers

Negative experiences of embarrassment with teachers and colleagues caused by 
being socially exposed to math failure are recognized as an important risk factor for 
MA (Ashcraft, Krause, & Hopko, 2007). Higher MA levels are associated with 
negative experiences with teachers and with traditional teaching characterized by 
high demands for correctness and little cognitive and motivational support 
(Bekdemir, 2010; Meece, Wigfield, & Eccles, 1990; Turner et al., 2002).

Elementary school teaching is a career with a female preponderance. MA levels 
in teachers are high (Beilock et al., 2010; Hembree, 1990) and negatively correlated 
with teaching efficacy (Gresham, 2008; Swars, Daane, & Giesen, 2006). Teachers 
report feeling better prepared to teach literacy over math (Bursal & Paznokas, 2006). 
Then, it is no surprise that evidence indicates an intergenerational transmission of 
MA between female teachers and female pupils (Beilock et al., 2010). Awareness of 
the potential role of teachers in transmitting negative attitudes and emotions toward 
math to their pupils indicates the need of better preparing teachers to teach math 
or transforming math in a specialized subject matter assigned to mathematicians.

 Parents

For better and for worse, the family is a major source of influence on math perfor-
mance and interest (Chiu & Xihua, 2008). Some positive correlates are family SES, 
literacy level of parents, and possession of books. Some negative correlates are 
single parenthood, immigration, and speaking foreign language at home as well as 
resource dilution through many siblings. Boys may be especially susceptible to 
influences from maternal MA (Batchelor, Gilmore, & Inglis, 2017).

Parents influence MA through expectancy socialization, role models, overcon-
trol, reinforcement, and attachment (Batchelor et  al., 2017). Parents influence 
children’s mathematics achievement by calibrating expectations and reducing 
MA, particularly in more difficult math topics (Vukovic, Roberts, & Green Wright, 
2013). Parents’ role models in homework help to moderate effects of parents’ MA 
on children’s math performance and MA (Maloney, Ramirez, Gunderson, Levine, 
& Beilock, 2015). Overcontrol and punishment could explain the  dissociation 

29 Mathematics and Emotions: The Case of Math Anxiety



476

between high math achievement and low math self-concept observed in some 
countries by Lee (2009, see also Stankov, 2010). Finally, insecure attachment 
is correlated with low IQ and math performance and high MA (Bosmans & De 
Smedt, 2015).

Parental involvement in math activities at home has a beneficial effect on math 
performance and interest (Berkowitz et al., 2015). This relationship is moderated, 
however, by some parental and child characteristics, such as parents’ own MA, 
educational background, and disciplinary style (Chiu & Xihua, 2008; Maloney et al., 
2015). A child’s disruptive and oppositional behavior may transform homework 
involvement in a source of conflict (Sibley et al., 2016; Wong & Goh, 2014).

 Peers

Adolescents are especially sensitive to peer influences. Accordingly, one can 
expect that peers influence math performance and interest for better and for worse. 
A positive contagion influence on math interest was described in college students 
(Hazari et al., 2017). Evidence also indicates that, besides previous mastery experi-
ences and self-efficacy beliefs, recognition by peers is an important precursor of 
math identity (Cribbs, Hazari, Sonnert, & Sadler, 2015). Correspondingly, Frenzel, 
Pekrun, and Goetz (2007) observed low to moderate associations between peer 
attitudes and adolescents’ emotional involvement with math. Finally, segregation 
of adolescents in classes according to performance level has a positive effect on 
math interest for those on the higher-performing end and a negative effect for those 
on the lower- performing extreme of the distribution (Frenzel, Goetz, Pekrun, & 
Watt, 2010). These results can be interpreted under the social learning theory 
(Babad, 2009). Verbal persuasion is ineffective in increasing but extremely effec-
tive in lowering self-efficacy beliefs. Mixed classes with low- and high-performing 
students allow for both upward and downward social comparisons.

 Math Achievement

Cognitive performance and math achievement are both antecedents and consequents 
of MA and manifest themselves as state and trait levels (Carey, Hill, Devine, & 
Szücs, 2016). The correlation between math achievement and MA is significant 
(Hembree, 1990). Poor math achievement raises the probability of MA. Low grades 
in math are an antecedent of MA in younger kids (Krinzinger et al., 2009) and in 
adolescents (Ma & Xu, 2004). Individuals with developmental dyscalculia are at 
risk of developing MA (Rubinsten & Tannock, 2010). Successful treatment of MA 
improves math performance (Hembree, 1990) even in individuals with developmen-
tal dyscalculia (Kamann & Wong, 1994).

Poor math achievement arises also because of MA.  On a short-term range, 
effects of MA on performance are mediated by disruption of processing in working 
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 memory (WM), as it will be discussed later. On the long run, MA interferes with 
 performance through attitudes (Akin & Kurbanoglu, 2011) and avoidance behavior 
(Dew, Galassi, & Galassi, 1984). Negative attitudes toward math and avoidance of 
math activities reduce opportunities to learn mathematics and feed MA retroac-
tively. Avoidance of math courses and heavily math-demanding careers may have 
lifelong consequences (Dew et al., 1984; Hembree, 1990; McMullan et al., 2012).

In Fig. 29.1, we systematize the possible relationships between MA and achieve-
ment. Two main pathways are postulated: a cognitive one, through which MA exerts 
short-term effects on math performance by disrupting WM processing, and a long- 
term one related to the development of negative perceptions toward math, such as 
negative attitudes and low self-efficacy. A behavioral pathway mediates effects of 
MA on performance by avoidance of math activities. A direct pathway between MA 
and math achievement and additional pathways between perceptions, WM, and 
avoidance should also be investigated.

 Cognitive Mechanisms

A host of cognitive mechanisms has been implicated in MA. Although IQ is signifi-
cantly correlated with math achievement, IQ is generally not associated with MA 
(Hembree, 1990). Interest on working memory impairments remains in the fore-
front, but basic numerical processing deficits also catch increasing attention.

 Working Memory

WM has called most attention as a potential locus of cognitive impairments in 
MA. Six, not mutually exclusive, mechanisms have been characterized:

Fig. 29.1 Possible pathways between (math) anxiety and (math) achievement. In the cognitive 
pathway, the relationship between anxiety and achievement is mediated by perceptions (attitudes 
toward math and self-beliefs). In the behavioral pathway, avoidance behavior mediates between 
anxiety and achievement
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 (a) Speed-accuracy trade-offs: In some circumstances, individuals with high MA 
solve calculation problems faster and less accurately compared to individuals 
without MA (Ashcraft & Faust, 1994). This speed-accuracy trade-off may 
result from the wish to terminate anxiety-eliciting situations as soon as 
possible.

 (b) Competition for resources in working memory: According to the processing effi-
ciency theory (Eysenck & Calvo, 1992), experiencing anxiety will draw on 
working memory capacities and therefore will compromise cognitive perfor-
mance. Studies using the dual task paradigm have consistently shown that MA 
interferes more with complex tasks, heavily demanding on controlled process-
ing, such as mental multi-digit calculation, than with more simple and automa-
tized tasks, such as simple facts retrieval (Ashcraft & Faust, 1994; Ashcraft & 
Kirk, 2001; Faust, Ashcraft, & Fleck, 1996). The hypothesis is that anxious 
rumination competes for scarce processing resources in WM.

 (c) Lack of inhibition: The inhibition theory predicts that performance should be 
proportionally reduced to the number of distractors present in the task (Hasher 
& Zacks, 1988). This mechanism was suggested in a study by Hopko, Ashcraft, 
Gute, Ruggiero, and Lewis (1998). In a dual-task paradigm, highly anxious MA 
individuals had their performance impaired as the number of distractors was 
raised.

 (d) Attentional bias: Compared to individuals with low MA, those with high MA 
suffered more interference by mathematics-related distractors comparatively to 
neutral distractors (Hopko, McNeil, Gleason, & Rabalais, 2002; Suárez- 
Pellicioni, Núñez-Peña, & Colomé, 2014, 2015). This suggests the effect of an 
attentional bias toward emotionally negatively laden math information.

 (e) Abnormal response to errors: In a series of studies, Suárez-Pellicioni, Núñez- 
Peña, and Colomé (2013a, 2013b) compared the performances of individuals 
with high and low MA levels in a neutral and in a numeric interference task. 
Evoked electrophysiological error negativities were enhanced in response to 
errors in the numerical in comparison to the non-numerical task. Emotional 
negativity to errors may thus represent a marker of vulnerability to MA and 
interference with WM processing.

 (f) Arousal: Relationships between MA and WM processing are not straight linear. 
In some studies, individuals with high WM capacity are more susceptible to 
MA interference than those with lower WM capacity (Ramirez et al., 2013). 
This could be related to complex interactions between WM capacity and emo-
tional arousal (Mattarella-Micke, Mateo, Kozak, Foster, & Beilock, 2011). 
Individuals with low WM capacity rely more on heuristics to solve arithmetic 
problems, and their performance is not affected significantly by individual dif-
ferences in salivary cortisol. The situation is different for individuals with high 
WM capacity, who rely more on this ability to solve arithmetic problems. In 
individuals with high WM capacity, higher cortisol levels were associated with 
worsening of performance.
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 Numerical Abilities

Research initially suggested that numerical tasks susceptible to MA interference 
were those more demanding on WM resources. For example, Maloney, Risko, 
Ansari, and Fugelsang (2010) observed that MA impaired the performance in count-
ing but not in subitizing tasks. Other evidence indicates that low-MA individuals 
use a plausibility strategy to discard large split errors in an arithmetic operation veri-
fication tasks and high-MA participants need to resort to controlled processing even 
in relatively easy items with large splits (Suárez-Pellicioni et al., 2016). This effect 
could be related to an impairment in some decision or evaluation stage of perfor-
mance on the part of highly anxious participants. Otherwise, the impairments could 
rest on the low accuracy of numerical representations, predisposing these individu-
als to MA. The second hypothesis is suggested by studies uncovering impairments 
in both symbolic and nonsymbolic numerical processing tasks (Dietrich, Huber, 
Moeller, & Klein, 2015; Lindskog, Winman, & Poom, 2017; Maloney, Ansari, & 
Fugelsang, 2011; Núñez-Peña & Suárez-Pellicioni, 2014).

 Visuospatial Abilities

Two studies indicate that impairments in visuospatial processing may be associated 
with risk of MA. Individuals with high MA reported a worse sense of direction and 
lower performance in behavioral tests of small- and large-scale spatial skills 
(Ferguson, Maloney, Fugelsang, & Risko, 2015). Gender differences in MA are 
moderated by visuospatial processing abilities (Maloney et  al., 2012). As some 
forms of math performance are dependent on visuospatial processing, impairments 
in these abilities could predispose the individual to MA.

 Neurobiological Underpinnings of Math Anxiety

The literature on the neurocognitive underpinnings of MA is increasing in size 
(Artemenko et  al., 2015). Some patterns are emerging. Interpretation of results 
should consider that MA is related to test anxiety and both may be considered vari-
ants of social anxiety. MA inhibits the workings of dorsal hippocampus-derived 
regions associated with controlled and math-related processing such as the posterior 
parietal and dorsolateral prefrontal cortices (Young, Wu, & Menon, 2012). At the 
same time, MA activates ventral areas related to fear processing, such as the amyg-
dala (Young, Wu, & Menon, 2012); regions such as the anterior insula, related to 
body discomfort and pain; and the cingulate gyrus, related to monitoring, social 
rejection, and psychological suffering (Lyons & Beilock, 2012a, 2012b). Activations 
in the insula and cingulate cortices are more salient in the anticipation than during the 
execution of math activities (Lyons & Beilock, 2012a, 2012b).
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Functional neuroimaging studies suggest that MA is related to the activation of 
two emotional systems: monitoring and anticipation of psychological suffering and 
feelings of fear. These results fit to the extant knowledge on the neurofunctional 
bases of social anxiety. Hyperactivity of the cingulate cortex has been linked to feel-
ings of rejection, embarrassment, and shame (Bastin, Harrison, Davey, Moll, & 
Whittle, 2016; Eisenberger, Lieberman, & Williams, 2003). Besides that, genetic 
relevance to social anxiety in the dopaminergic and serotonergic systems was asso-
ciated with abnormal activations in the amygdala, insula, and cingulate areas 
(Eisenberger, Way, Taylor, Welch, & Lieberman, 2007; Frick et  al., 2015; Hariri 
et al., 2002; Klumpp et al., 2014).

 Assessment of Math Anxiety

The phenomenology of MA may be subtle, such as mild feelings of apprehension 
and dislike, or more intense and easily observable, such as genuine fear or dread 
(Ashcraft & Ridley, 2005). Manifestations may be antecedent, concomitant, or 
following the engagement in math activities. At the cognitive level, MA is associ-
ated with rumination and expression of negative thoughts and feelings related to 
math itself and to the individual’s own math ability. Affectively, MA manifests as 
tension, annoyance, frustration, anger, revolt, despair, shame, etc. Physiological 
manifestations consist of palm sweating, nausea, tension in the stomach, heart-
burn, breathlessness, fever, etc. Behavioral concomitants are avoidance of engage-
ment in math activity, lack of concentration, inability to follow teachers’ 
instructions, etc.

Few studies have assessed the physiological components of MA, using, for 
example, determination of salivary and hair cortisol levels (Mattarella-Micke et al., 
2011; Pletzer, Wood, Moeller, Nuerk, & Kerschbaum, 2010; Sarkar, Dowker, & 
Kadosh, 2014). For clinical, educational, and research purposes, MA is usually 
assessed using self-report scales. The psychometric properties of the most widely 
used scales for children, adolescents, and adults are generally good and reviewed, 
respectively, in Tables 29.1, 29.2, and 29.3.

MA self-report scales are built to assess the cognitive (attitudes, worry, and 
self- representations) and affective (emotions and distress) dimensions of the 
construct. These two-factor structure has been replicated across instruments 
(Dew et al., 1984), age ranges (Richardson & Suinn, 1972; Suinn & Edwards, 
1982; Suinn, Taylor, & Edwards, 1988), and countries (Ho et al., 2000; Wood 
et al., 2012). Lack of reliable biological and cognitive markers and gold standard 
or criterion validity of MA scales is unfortunate. Decisions regarding interven-
tion must ultimately rely on clinical judgment as to the academic and psychoso-
cial impact of MA.

V. G. Haase et al.
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 Interventions for Math Anxiety: From the Lab 
to the Classroom

Ideally, interventions tailored to mitigate MA should consider early recognition, 
prevention, classroom practices, new learning technologies, math tutoring, func-
tional cognitive training, cognitive-behavioral therapy, and might include even neu-
romodulation, and so on. Interventions should also consider the four levels of MA 
manifestations and their interactions. For example, psychoeducation and cognitive 
restructuring act on attitudes and beliefs, potentially reducing avoidance behaviors. 
At the behavioral level, experiences of programmed success contribute to changes in 
motivation. Relaxation and emotional reassurance reduce the affective and physio-
logical components, potentially reflecting on the other levels.

As MA is both an antecedent and a consequent of poor math performance, mea-
sures to promote math achievement should be effective in preventing MA. It has 
been shown, for example, that preschool math education is an important long-term 
predictor of future achievement (Melhuish et al., 2008). Data on the intergenera-
tional transmission of attitudes toward math and MA indicate that psychoeduca-
tional measures promoting parents’ math talk are effective (Berkowitz et al., 2015; 
Gunderson, Ramirez, Levine, & Beilock, 2012; Levine, Suriyakham, Rowe, 
Huttenlocher, & Gunderson, 2010; Maloney et al., 2015). Moreover, fostering pri-
mary teachers math self-efficacy (Beilock et  al., 2010; Gunderson et  al., 2012; 
Swars et al., 2006; Tooke & Lindstrom, 1998) could play an important role. Media 
campaigns may focus on social stereotypes and promote positive attitudes toward 
math education and STEM careers (Budd, 2015). Initiatives such as the Math 
Olympics yearly attract an increasing number of students and potentially stimulate 
math interest and achievement (Biondi, Vasconcellos, Menezes-Filho, & Cristia, 
2012). Programs have also been developed focusing on gender stereotype threat 
(Johns, Schmader, & Martens, 2005).

Classroom practices also play an important role in the development and mainte-
nance of MA. Traditional teaching based on high demand for correctness and little 
cognitive or motivational support is associated with MA (Bekdemir, 2010; Turner 
et al., 2002). Several pedagogical practices have been suggested to prevent or allevi-
ate MA. In general, teachers should cope with their own fears and negative attitudes, 
promoting a positive climate toward learning math. Learning should be as fun as 
possible. As an example, block constructions and board games have been used to 
promote math achievement (Siegler & Ramani, 2009; Wolfgang, Stannard, & Jones, 
2001). Some traditional resources such as math magics and math stories have gained 
renewed attention (Berkowitz et al., 2015; Budd, 2015; Hassinger-Das, Jordan, & 
Dyson, 2015; Tahan, 1993). Finally, new technologies in learning analytics 
(Baalsrud-Hauge et al., 2015) can be employed both to improve the math learning 
experience and to help identifying MA and mobilizing available psychosocial and 
cognitive resources to mitigate it.

Reducing working memory load is an important goal, as MA competes with 
task-related demands in working memory and leads to extremely aversive process-
ing capacity overload. Approaches to reduce working memory load include use of 
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concrete materials, explicit instruction and practice, worked examples, errorless 
learning, programmed learning, etc. (Sweller, Ayres, & Kalyuga, 2011). Timed tests 
should probably be avoided (Faust et al., 1996). Moreover, the use of game elements 
in math tasks may help enhance working memory capacity (Ninaus et al., 2015) by 
increasing the level of concentration on the task and away from maladaptive nega-
tive emotional reactions.

Moreover, feedback from teachers and parents is important. Negative influences 
may originate not only from harsh educational practices but also from teachers and 
parents trying to console for failure. Consolation for math failure may deliver the 
implicit message that the task is above the student’s capacity (Beilock & Willingham, 
2014; Rattan, Good, & Dweck, 2012). This supports a fixed mind set, according to 
which achievement is more dependent on a limited capacity than on effort. Thus, 
reinforcement should be conditional on effort and not on ability. Accordingly, a 
customized achievement assessment is in order. Teaching is an exercise in theory of 
mind (Strauss & Ziv, 2012). Teachers and parents should be aware of what is going 
on in their own and their students’ and children’s minds and of the hazardous poten-
tial associated with even inadvertent negative commentaries. The Hippocratic pre-
cept of primum non nocere could be generalized for math teaching.

Children with poor math performance are an important target group. Math learn-
ing difficulties are a risk factor for MA (Rubinsten & Tannock, 2010). Therefore, 
considering the bidirectional relationship between MA and math achievement, early 
recognition and intervention for poor math achievement are important to prevent 
spiraling positive feedback loops that worsen both math difficulties and MA. Data 
indicate that math tutoring is effective to alleviate MA (Hembree, 1990; Supekar, 
Iuculano, Chen, & Menon, 2015), and successful treatment of MA improves perfor-
mance in children with math learning difficulties (Kamann & Wong, 1994).

Established MA can be addressed by psychotherapy. Several forms of psycho-
therapy, based on cognitive-behavioral approaches such as relaxation, desensitiza-
tion, restructuring, and self-management, have proven efficacy, with effect sizes 
ranging from 0.30 to 0.60 on math achievement (Hembree, 1990). Expressive writ-
ing of math anxiety has been proposed as a technique that can be used in the class-
room with adolescents as well as college students (Park, Ramirez, & Beilock, 2014; 
Ramirez & Beilock, 2011). The rationale is to reappraise anxiety and reduce rumi-
native thoughts, thus freeing working memory resources to focus on the task and not 
on the anxiety itself. Training to achieve mindful states is also effective to reduce 
MA on the short time range (Brunyé et al., 2013).

Finally, some new technologies have raised enormous educational and therapeu-
tic interest (Kadosh, Dowker, Heine, Kaufmann, & Kucan, 2013). Interest in com-
puter games to promote numerical and arithmetical abilities dates back to the 1960s, 
and effect magnitudes are in the order of d = 0.30 (Räsänen, 2015). It has been dif-
ficult, however, to integrate computer-assisted technologies in the classroom and in 
the therapeutic setting (Young et al., 2012). The playability of such games is low as 
compared to leisure videogames. Notwithstanding the lack of prescriptive evidence, 
videogames exert a powerful motivational effect and contribute to attitude changes 
regarding math and self-efficacy (Butterworth & Laurillard, 2010; Cezarotto & 
Battaiola, 2016; Ninaus et al., 2015; Räsänen, 2015). Enjoyable videogames could 
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help to offload emotional and cognitive demands associated to difficult and/or repet-
itive tasks. Noninvasive micro-current brain stimulation has been also proposed as 
a technique to both improve arithmetic performance (Iuculano & Kadosh, 2014; 
Pasqualotto, 2016) and reduce MA (Sarkar et al., 2014). Evidence of efficacy is still 
preliminary, and effectiveness outside the experimental setting is unknown. Use of 
neurophysiological signals to control mental states by means of neurofeedback 
holds promise in the treatment of MA. Evidence for the efficacy of neurofeedback 
in the treatment of anxiety disorders is growing (Micoulaud-Franchi et al., 2015; 
Schoenberg & David, 2014). To the best of our knowledge, there are no studies 
reporting effects of neurofeedback procedures on MA. Home-based portable neuro-
feedback appliances could be used to augment ecological validity and generaliz-
ability of interventions for MA.

 Conclusion

The complete reach of MA as an impairment of math learning still has to be deter-
mined in both basic and applied educational and neuroscientific research. However, 
data suggest it is an increasingly important problem in our knowledge society. MA 
also raises questions related to gender equity.

Progress has been made in the measurement and evaluation of the cognitive and 
emotional aspects of MA.  In the near future, the agenda should include reliable 
assessments of the psychosocial impact of MA as well. The traditional approach of 
categorizing individuals in a sample according to their performance level on self- 
report scales does not provide information on the real impact of the condition in 
daily and academic life. Another limitation of current research is the reliance on 
self-report measures that assess only the cognitive and affective dimensions of this 
multidimensional construct. Research efforts should integrate the physiological and 
behavioral dimensions of MA.

The good news is that parents and teachers are more aware of the nature and 
extension of MA as a real and severe problem, which costs a huge amount of human 
capital and may become more active and influence policymaking and research 
funding. These good news were absolutely necessary. The increasing level of depen-
dence on high technology in modern societies opens several new niches for the 
emergence of MA among individuals who would not be affected a century ago. 
The main challenge posed by our modern times is to understand how to mobilize the 
cognitive and emotional resources available to individuals with different degrees of 
interest and competencies before the demands of life in technological societies gen-
erate suffering and maladaptation. Relatively simple and effective behavioral and 
cognitive measures both at home and at school are available, helping to prevent and 
reduce the negative consequences of MA. Moreover, if they are barely sufficient 
to cope with the demands offered by our present technological stand, much more 
research is necessary to prepare for the ever-growing demands of mathematics 
abilities we will encounter in modern society in the near future.
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Chapter 30
Cognitive and Motivational Underpinnings 
of Mathematical Learning Difficulties: 
A Discussion

Mark H. Ashcraft

The nine chapters in Part III are all devoted to different facets of the same question: 
What factors are responsible for mathematical learning difficulties, or, as it is 
frequently called, dyscalculia? The answer to the question is important, quite 
obviously, in that identifying the factors responsible for the difficulties, even if each 
identified factor is only part of the answer, should give us improved methods for 
intervening with children (or adults) who experience the difficulty. (In this chapter, 
the terms MLD for mathematical learning difficulties and DD for developmental 
dyscalculia will be used interchangeably.) Equally important, of course, is the 
approach taken in investigating MLD. Uniformly, the overall approach presented in 
this section is a cognitive science approach.

Reflect for a moment on the importance of theoretical approach. To take a rather 
extreme example from psychology’s past, imagine that your theoretical approach to 
learning was a behaviorist viewpoint; learning about number magnitude and arithme-
tic would be an issue of reinforcement, with rewards delivered repeatedly for correct 
performance. From such a standpoint, a child who experiences MLD would be 
“treated” with an enhanced regimen of learning trials – more reinforced learning – in 
order to strengthen correct responses and weaken incorrect responses. In practice, 
such an intervention would involve repeated drill, rote rehearsal, flash cards, repeti-
tion, and the like, with no consideration of any of the subtleties or different types of 
knowledge that are used to perform numerical tasks. There likely would be no differ-
ence in “treating” a child who makes occasional, non-systematic errors in subtrac-
tion like 13–7 = 5 and one who makes a systematic error like 13–7 = 14. The latter 
error is now widely acknowledged to be due to the common “smaller from larger” 
bug (e.g., VanLehn, 1990), a mistaken procedure in the child’s knowledge of 
subtraction.
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In contrast, far more is known about numerical cognition today, about the mental 
processing involved in a variety of tasks that tap into our knowledge of number, and 
about the cognitive, affective, and biological factors that can influence learning and 
performance. These are the topics covered in Part III. In this chapter, I summarize 
the chapters in this section, seeking especially to identify common themes across 
chapters and areas of research. As appropriate, areas of consensus as well as of 
disagreement will be noted, and important gaps in the existing literature will be 
pointed out as well. An overarching sense of the chapters is that a tremendous 
amount of progress has taken place in our understanding of mathematics learning 
difficulties, much of that progress coming in the past 20 years or so.

 Chapter 21: Carvalho and Haase

In the first of their two chapters, Carvalho and Haase discuss the role of genetics 
in developmental dyscalculia (DD) and the literature that reflects recent research 
that has searched for evidence of that genetic role. They note at the outset that math 
abilities tend to run in families, at both ends of the ability distribution, and mention 
that twin studies have shown at least moderate heritability of math abilities. A diffi-
culty in all of this research, however, is the heterogeneous nature of the MLD or DD 
phenotype; there are many different ways in which an individual can be impaired in 
math ability, and samples of such individuals, for twin studies or genotype assays, 
surely reflect that heterogeneity. A second prominent reason for the slow progress in 
this field involves different criteria that have been used to define DD, with some studies 
using a discrepancy criterion, some a threshold criterion, and some a response-to-
intervention criterion; samples with different inclusion criteria will, of course, be 
difficult to compare, and within-sample variation can still be large, depending on 
the criterion. A final source of sample variation is the degree to which DD is often 
comorbid with other disorders, e.g., dyslexia, ADHD, and language impairment, and 
how those comorbidities will compromise the results of genetic testing.

The chapter explains current methods for conducting genetic studies and portrays 
the results of the relatively few studies that have examined MLD or DD, noting that 
progress in this area has been unfortunately slow, due to the aforementioned hetero-
geneity of the phenotype of DD. The authors’ second chapter proposes a possible 
solution to this dilemma.

 Chapter 22: Haase and Carvalho

In their second chapter, Haase and Carvalho explore the concept of a cognitive endo-
phenotype, an intermediate cognitive phenotype that might exist between the genetic/
environmental etiologic level and the phenotypic level of DD. That is to say, our phe-
notype of DD, our category so to speak, is a broad, complicated, and heterogeneous 
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one, and might be reconceived as having several subtypes or endophenotypes, each 
with its own separate set of characteristics or abilities. The search for genetic 
patterns underlying developmental dyscalculia might be advanced if meaningful 
subtypes – endophenotypes – can be identified, according to the authors’ proposal.

To further this idea, the authors adopt the four-way set of abilities originally 
proposed by Wilson and Dehaene (2007): (1) basic number processing, including 
the quantification of sets and transcoding between different notations; (2) phono-
logical processing; (3) visuospatial and visuo-constructional processing; and (4) 
working memory and executive functioning. After a discussion of these abilities, the 
authors turn to evidence about several genetic disorders known to affect mathemati-
cal abilities, to see how those effects map onto the four-way set of abilities. The 
syndromes considered include Turner, Klinefelter, Williams, and Fragile X. After 
reviewing these, the authors conclude that the genetic evidence to date supports all 
but the fourth category, the working memory and executive functioning set of abili-
ties, as viable endophenotypes; disruptions in working memory and executive func-
tion appear to be common to all the reviewed syndromes, so lack the necessary 
specificity to be a useful candidate for an endophenotype in DD.

 Chapter 23: DeSmedt, Peters, and Ghesquière

DeSmedt, Peters, and Ghesquière’s chapter concerns the neurobiological evidence 
about dyscalculia, in particular the evidence we now have about dyscalculia afforded 
by modern brain scanning technology, functional magnetic resonance imaging 
(fMRI). This research is of course quite new; as the authors point out, MRIs only 
became available as research tools in the early 1990s. Nonetheless, a sufficient 
number of studies have been conducted on adults, typically developing children, 
and dyscalculic children, using tasks that assess knowledge of magnitude and arith-
metic, to draw several important conclusions about dyscalculia’s neurobiological 
signature, both in terms of brain structure and function.

Two types of numerical knowledge were examined in the research reviewed in 
DeSmedt et al.’s chapter: knowledge of numerical magnitude and arithmetic. For 
clarity, it seems important to be explicit about the methods used to test such knowl-
edge in the behavioral research literature, and then how these methods are translated 
into the MRI environment.

The common way of testing magnitude knowledge is the magnitude comparison 
task. In the symbolic version of the task, participants are shown a pair of digits, say 
5 and 8, and are asked to make a speeded judgment to indicate which digit is larger, 
the one on the left or on the right (we could just as easily ask for which digit is 
smaller). We typically would then organize the data by looking at reaction time (RT) 
as a function of the difference between the values, such that all pairs with a differ-
ence of 1 (the pairs 1 2, 2 3, 3 4, etc.) would be grouped together, and likewise for 
all pairs with differences 2, 3, etc. The standard effect, observed repeatedly, is that 
RT decreases significantly as the distance between the digits grows larger. In other 
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words, the “numerical distance effect” is basically a classic discrimination effect; 
the more distant two digits are in terms of their magnitude, the more easily they are 
discriminated, and the easier it is to decide which is larger (smaller). This effect is 
robust and is routinely obtained both for adults and for children who know the 
values of the digits. Children with dyscalculia, as noted by DeSmedt et al., show 
significant deficits in this task when their timed performance is examined. This is 
critical, of course, since symbolic magnitude comparison is a strong predictor of 
later mathematical achievement.

The nonsymbolic magnitude comparison task is similar in that two stimuli are 
displayed on each trial, but the stimuli are not digit symbols. Instead, two arrays are 
displayed, typically arrays of dots, with one array containing more dots than the 
other. As before, the participant must indicate whether the left or the right display is 
larger (or smaller, depending on instructions). As in the symbolic version of the 
task, a numerical distance effect is also obtained here as well. The effect is easily 
obtained with typically developing children and adults. Interestingly, it is also 
obtained even with very young children, including those who do not yet know the 
number system, and if the ratios between the two displays are large enough, even 
lower animals can make these discriminations (see, e.g., Agrillo, 2015, and Brannon 
& Park, 2015, for reviews). Several theorists argue that this evidence for magnitude 
effects in nonsymbolic comparisons suggests that sensitivity to magnitude is an 
inherent ability, that is, a genetically provided ability of the human system, a part of 
our biology sometimes referred to as the approximate number system (ANS).

Results of nonsymbolic magnitude comparisons are less consistent with children 
with dyscalculia; some studies show deficits, and some do not. Overall, however, 
children show greater involvement of the frontal cortex than do adults, signifying 
greater need for attentional resources on the part of children, whereas adults showed 
greater involvement of the bilateral (intra)parietal cortex than children. Of concern, 
as DeSmedt et al. note, are the few studies showing that children with dyscalculia 
showed lower IPS (intraparietal sulcus) activity than their matched peers when 
doing nonsymbolic magnitude comparisons. Given the wealth of evidence showing 
IPS involvement in number processing (e.g., Dehaene, 1992), this would clearly be 
an area of research in need of further attention.

Tests of people’s knowledge of arithmetic generally involve showing participants 
arithmetic problems, most typically the so-called basic facts of addition, subtrac-
tion, multiplication, and division (division has seldom been tested), i.e., 0 + 0 up to 
9 + 9 for addition and 0 × 0 up to 9 × 9 in multiplication, and the inverses of those 
for subtraction and division. Typically, one problem is shown per trial, and the par-
ticipant states the answer to the problem, although sometimes the problem is shown 
with a proposed answer and the participant makes a true/false decision (especially 
in fMRI settings) via a simple button press response. We routinely time participants’ 
performance and use both RT and errors as indices of performance. The overwhelm-
ingly common result, as DeSmedt et al. note, is called the “problem size effect,” that 
is, that RT (and errors) will increase as the size of the problem increases, whether 
size is indexed by the answer or the operands of the problem. This foundational 
effect is found across all four arithmetic operations, at all ages, and across all cultures 
that have been tested.

M. H. Ashcraft



509

It is particularly important to note that, for children especially, a major part of the 
problem size effect is due to reliance on time-consuming strategies. The major 
change across schooling, in other words, is a change in the basis of performance, 
with a decreasing reliance on strategies like counting and an increase in fact retrieval; 
fact retrieval is widely viewed as the fastest and most efficient method for perform-
ing arithmetic and importantly the least demanding on working memory resources 
(e.g., Ashcraft, 1992).

DeSmedt et al. review evidence that indicates children with dyscalculia have dif-
ficulties in understanding and executing procedural strategies in arithmetic and also 
show fact retrieval deficits. That is, as normally developing children begin to aban-
don reconstructive strategies in favor of fact retrieval, children with MLD persist in 
relying on strategies for solving basic facts, despite the tendency for those strategies 
to generate errors (losing track in a sequence of steps, losing track during counting) 
and to drain the resources of working memory.

When fMRI scans are considered, DeSmedt et al. summarize by saying that the 
typical adult shows a frontoparietal network that is consistently active during number 
processing and arithmetic, frontal areas indicating attentional and executive control 
functions and parietal regions indicating especially active networks involving num-
ber. Comparisons of adults and typically developing children showed similar fronto-
parietal activations, but also greater hippocampal activity in the children, suggestive 
of formation of long-term memories for the arithmetic facts. There have been only a 
few fMRI studies with children with dyscalculia, unfortunately, so the results are not 
yet consistent. There is some evidence, however, that typically developing children 
show an increase in activation in the frontoparietal network when confronted with 
more challenging arithmetic problems, whereas there is no such change in activation 
for children with dyscalculia. As noted, this could be because the dyscalculic chil-
dren continue to use the same immature strategies for all problems, simple as well as 
more challenging, whereas the normally developing children have switched to fact 
retrieval for the simple problems (see Geary, 2011, for details).

 Chapter 24: Krinzinger

Krinzinger’s chapter differs from the other chapters in this section in that it is not 
intended to be an extensive review of a particular area, in this case the area of 
ADHD research and its relationship to MLD. Instead, Krinzinger describes a criti-
cal dilemma in this area and then presents the results of a study aimed at addressing 
this dilemma. The dilemma is the issue of comorbidity of MLD and ADHD, and 
whether a child diagnosed with both should be considered (and treated) as suffering 
primarily from MLD or ADHD. She identifies this as pMLD for primary mathemat-
ical learning disability and sMLD for secondary mathematical learning difficulty 
due to ADHD (or other primary disorders such as depression). She then reviews 
attempts in the assessment literature to test for MLD, noting the deficiencies or dif-
ficulties that have been encountered. In particular, the more general cognitive effects 
of ADHD will impact attentional and working memory functions, affecting a child’s 

30 Cognitive and Motivational Underpinnings of Mathematical Learning Difficulties…



510

math performance, even though the child’s core numerical abilities may be unaffected. 
On the other hand, a child with pMLD should show evidence of core numerical 
deficits, regardless of attentional or working memory difficulties.

Krinzinger then presents new evidence from a study of adolescents, where the 
nature of their errors on a battery of math tests has been examined. The adolescents 
were asked to complete a number line estimation task, to perform some number 
counting tasks, and then to take a math test involving simple through complex arith-
metic problems. Analysis of the error types that were made revealed some interest-
ing patterns across the several groups of participants. Several types of errors did not 
discriminate between the pMLD and sMLD groups, e.g., making table errors in 
retrieval, making trading errors in subtraction, or making counting and trading 
errors in combination. These can all be attributed to attentional and working mem-
ory lapses, she reasoned. But changing the unit (1s) value in a counting backward 
by 10s task, or changing from 100s to 10s when counting backward by 100s, 
occurred only in the pMLD groups and was suggestive of conceptual errors that are 
unrelated to attentional or WM difficulties. Overall, she found that procedural errors 
(e.g., multiplying instead of adding) and incorrect generalizations occurred in more 
than half of the children in the pMLD group vs. only 16% of the children in the 
sMLD group.

The importance of such results, if confirmed with follow-up research, is that 
appropriate interventions, often provided by the schools, are often available for 
children diagnosed with ADHD, whereas school-provided interventions for MLD 
often are not. Thus, a child may be diagnosed with MLD when in fact the correct 
diagnosis is secondary MLD due to (primary) ADHD. Only when there is a core 
deficit in numerical magnitude representation, and corresponding errors in concep-
tual aspects of performance, would a primary MLD diagnosis be warranted.

The overarching issue of importance here, from a broader perspective, is the les-
son that current assessments of MLD appear not to carefully distinguish between 
difficulties that can be attributed to the core numerical deficits that Kringinger 
discusses and depressed performance on math that might be attributable to nonnu-
merical difficulties like ADHD. The general issue, then, is one of the precision of 
assessments, and therefore the equivalence (or lack thereof) of individuals identified 
as having MLD. This is an especially important cautionary note for anyone with a 
stake in devising assessments or interventions based on assessments.

 Chapter 25: Passolunghi and Costa

Passolunghi and Costa present a chapter on the topic of working memory (WM) and 
its relation to the learning of math. This is a topic that has been researched in ways 
very parallel to investigations of working memory’s role in language comprehen-
sion, for example. That is, two common paradigms have been commonly used. 
In the first, we have participants perform a primary task, here one testing math 
performance, along with a secondary task, one involving a load on WM. Such a 
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dual-task format then examines performance to see how much the math task is 
disrupted when it is deprived of sufficient WM resources. In the second paradigm, 
we pretest our participants on a WM task, to determine their WM span, then test 
them on the math task of interest, interpreting differences in performance as a func-
tion of the groups’ differences in WM capacity.

As Passolunghi and Costa note, the research shows, both with normal adults 
and typically developing children, that arithmetic and math performance depends 
on the resources of WM. Adults are often found not to rely on WM resources 
for the simple basic facts of addition and multiplication, these being performed 
routinely by rapid fact retrieval. But any arithmetic or math involving more 
complexity than this is generally found to require the resources of WM, e.g., for 
carrying in two-column addition (e.g., Ashcraft & Kirk, 2001), for larger subtrac-
tion facts (Seyler, Kirk, & Ashcraft, 2003), and so forth (see Ashcraft & Krause, 
2007, for further discussion).

Developmentally, the role of working memory is larger, of course, since children 
do not rely heavily on fact retrieval for simple arithmetic until well into their school 
years. All reconstructive and strategy-based performance, therefore, can be expected 
to depend on WM processing, and therefore to be affected by the child’s available 
WM resources. Evidence that children with MLD have reduced WM capacity or 
resources, therefore, suggests that these children will experience learning difficulties 
for this reason.

More particularly, Passolunghi and Costa discuss three important types of execu-
tive functioning with WM that are especially important, and especially a concern in 
dyscalculia, those being inhibition, updating, and switching. Inhibition refers to inhi-
bition of attention to irrelevant information or stimuli, for example, aspects of a word 
problem that are irrelevant to a problem’s solution. Updating refers to the mental 
process of performing running calculations and updating a mental register with 
newly calculated values as part of the running calculations, as well as keeping track 
of now-completed or yet-to-be-completed steps in a multistep problem. And finally, 
switching refers to any kind of necessary switch, say from one strategy on one 
problem to a different one on a new problem when the new problem requires a 
different strategy. According to the authors, all three of these types of executive func-
tions may be deficient to a degree in children with MLD.

The chapter concludes with a discussion of training studies, that is, studies that 
have implemented a training regimen in which WM functions have been subjected 
to a training program in order to improve the functioning of WM and hence improve 
mathematics performance. Although the authors concede there is some debate in the 
literature regarding the overall success of such training programs, with some studies 
showing positive effects of training while others show no such effects, they focus 
especially on several studies that have shown positive outcomes in young children 
with initially low numerical abilities. They conclude that such training programs 
can indeed work and that improvements in working memory functioning indeed can 
lead to improvements in math performance.

Given the nature of the current debate in the literature, and the extent of that 
debate, it is probably prudent to remain somewhat skeptical about studies showing 
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positive training effects. A very thorough review of training programs, and the 
methodological issues that need to be satisfied for adequate evidence to support 
their conclusions, has concluded that there is currently no solid evidence that such 
training programs actually deliver genuine “far transfer” effects on working mem-
ory or cognitive processes in general (see McCabe, Redick, & Engle, 2016; Simons 
et al., 2016). That is, a program that provides training and practice on a selected 
WM task, say the n-back task, will show significant, long-term gains on the trained 
task itself, but little or no transfer to other WM tasks, much less to other cognitive 
tasks thought to rely on WM processes (i.e., math tasks). Long-term follow-ups on 
training gains, many of which failed to compare gains to appropriate controls, were 
often either missing in the literature or were nonsignificant when conducted. 
Significantly, many of the studies reviewed by Simons et  al. overlap with those 
discussed by Passalunghi and Costa. Thus, there is reason to be very cautious in 
accepting the conclusion that WM training interventions can be successfully applied 
in cases of MLD to overcome deficiencies in children’s WM.

 Chapter 26: Resnick, Newcombe, and Jordan

Resnick, Newcombe, and Jordan review the area of spatial reasoning and mathe-
matics achievement, especially for typically developing children and those with 
MLD. The rationale for this focus is the well-established finding that spatial reason-
ing is strongly predictive of children’s math achievement. As the authors note, how-
ever, spatial reasoning is a rather broad, multidimensional category, composed of 
many different skills. Likewise, math achievement and performance refer to a mul-
titude of skills, are measured in a variety of ways, and are also multidimensional. As 
such, different components of each would be expected to show varying degrees of 
relationship. Nonetheless, at the global level, there is a close relationship, in typi-
cally developing children, between spatial reasoning and math achievement.

One particular reflection of MLD children’s difficulties is found in how they 
reason about magnitude, that is, how they represent numerical magnitude men-
tally. MD children are less accurate on number line estimation tasks than typi-
cally developing children, both for whole number and for fraction magnitudes. 
Typically, all children show evidence of a “compressed” representation of mag-
nitude early on, but then later begin to estimate in a more linear fashion as they 
adopt a linear  representation of magnitude. MLD children tend not to shift as 
readily from compressed estimates, possibly due to a failure to inhibit the com-
pressed representation.

The authors then focus especially on one aspect of spatial reasoning, mental rota-
tion, which has been found not to differ between typically developing children and 
children with MLD. If so, they reason that this relative strength on the part of MLD 
children could serve as a “reserve of strength” that could be used to help develop 
math achievement. That is, by presenting number lines visually, in instructional 
settings, and using number lines as a way of reinforcing notions about relative 
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 magnitudes of numbers, a teacher could convey magnitude knowledge in an 
 accessible fashion to MLD children, taking advantage of their spatial reasoning 
strength involving mental rotation and spatial visualization.

Of course, this possibility needs further research, as the results on MLD chil-
dren’s spatial visualization skill are sparse. The authors do review some training 
studies that have attempted to improve MD children’s math performance via spatial 
training, pointing out that considerably more research needs to be conducted before 
firm conclusions can be drawn (see also the caveat offered in remarks concerning 
Passolunghi and Costa’s chapter). It is nonetheless an intriguing possibility that a 
relatively unnoticed “preserved” skill in MLD children might be leveraged to provide 
a somewhat customized way of teaching about number magnitude and, eventually, 
mathematical competence.

 Chapter 27: Prediger, Erath, and Opitz

The Prediger et al. chapter focuses on the role language plays in children’s mastery 
of mathematics, and in particular the difficulties that can arise, especially for chil-
dren with math difficulties, due to features both of their own native language and in 
the “language of math.” To begin with, they note the distinction between an indi-
vidual’s knowledge of everyday, conversational language, and what Cummins 
(2000) termed cognitive academic language proficiency (CALP), the more formal, 
precise, and abstract language we use in the context of schooling. Whereas children 
from relatively privileged families acquire CALP, and therefore face no great diffi-
culties in school, less privileged children, or those struggling to learn a new lan-
guage, may suffer and lag behind.

Discussion is also provided of the well-documented difficulties that arise from the 
language’s structure for naming numbers. Many children benefit from a native lan-
guage that has a regular number-naming system, i.e., has number words that are 
congruent with the base-ten number system. Such children acquire those number 
words rather easily, learn to count earlier, and understand the base-ten system earlier 
and more easily than children whose language involves irregularities, i.e., word 
inversions or other irregular number words. The standard example of a regular lan-
guage for number naming is Chinese. After acquiring the 1–10 count string of novel 
words, children then encounter a regular system for two-digit count words; starting 
with 11 on, Chinese number words are (translated into English) ten-one, ten-two, 
ten-three, and so on. The word for 20 is two-ten, 21 is two-ten-one, and so forth. 
In contrast, French substitutes novel words for 11 through 16, novel but unique 
decade terms up through 60, but then for 70 uses sixty-ten; for 80 it uses four-twenty 
(as in 4 × 20), and for 90 it uses four-twenty-ten (as in 4 × 20 + 10). Word inversion is 
characteristic throughout German (e.g., 21 is one-and-twenty) and related languages. 
In all cases, departures from regular base-ten order disrupt children’s learning 
and math achievement, for typically developing children and certainly for children 
struggling with number and math.
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The chapter continues with a discussion of the comorbidity of language and math 
difficulties, and how these relate to overall learning difficulties. The focus turns espe-
cially to students struggling with language barriers (e.g., immigrant children who are 
just learning the language of instruction), and how their deficiencies appear in both 
reading and math. For such children, participation in the most meaningful aspects 
of classroom activities will be rather severely restricted, due to their lower language 
proficiency. As such, when examined at the discourse level, they cannot participate 
fully in the classroom conversation during which explanation, argument, and knowl-
edge are transmitted. Thus, aside from not having mastered the more formal, school-
based language (CALP), they also lack the more basic language proficiency to join 
the classroom discourse that transmits mathematical knowledge and understanding.

The chapter concludes with some indications of effective educational efforts to 
overcome language difficulties in the math classroom or to support language learn-
ers as they study various math topics. The point emphasized by the authors here is 
that for a large number of settings, true in many places, language proficiency must 
be the learning prerequisite for successful learning in any classroom; in other words, 
language has to become a learning goal, even in the math classroom.

 Chapter 28: Baten, Pixner, and Desoete

Baten et al. pursue the interesting idea that math anxiety and motivation might be 
useful factors to explore in seeking a greater understanding of math learning diffi-
culties. They approach this possibility by couching their discussion in terms of the 
Byrnes and Miller (2006) opportunity-propensity model. The model takes into 
account a variety of antecedent factors (e.g., SES, parent expectations), opportunity 
factors (e.g., home and school environment), and propensity factors (e.g., existing 
math knowledge, self-regulation, motivation, math anxiety) in order to explain math 
achievement. The focus for their chapter, in particular, involves the propensity fac-
tors of motivation and math anxiety.

The discussion of motivational factors covers the topics of interest in math, 
engagement with the topic of math, and self-perceived abilities in math and culmi-
nates in a careful discussion of the continuum from controlled motivation under 
external regulation to autonomous motivation under intrinsic regulation. This 
 discussion then turns to math anxiety, and its relationship to motivation. The inter-
play between motivation, number knowledge, and other factors – from the stand-
point of propensity factors – is quite useful in thinking about a child’s trajectory in 
school. That is, the authors propose that lower number knowledge and fewer coping 
strategies may yield math anxiety reactions among some children and that children 
with dyscalculia may be more prone to develop math anxiety because of poor 
numerical competencies (hence lower desirable propensities). This scenario would 
be made even more dire if environmental opportunity factors were further risk 
factors, e.g., poor school environments. Desirable school environments, of course, 
would be protective factors.
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The authors conclude by, in essence, imagining a somewhat ideal learning 
 environment for children in school, by examining factors – propensity factors – that 
can be influenced and designing classroom features to support autonomy, relatedness 
and competence in math lessons.

 Chapter 29: Haase, Guimarães, and Wood

Haase et al. present a thorough review of the literature on math anxiety in their chap-
ter, examining the relevance of math anxiety to math learning and mathematical learn-
ing difficulties from the standpoints of motivation, antecedents of math anxiety, its 
relation to math achievement, its neurocognitive underpinnings, its assessment, and 
possible interventions. Noting that math anxiety matches the classic definition of a 
phobia and that it manifests itself at four different levels (cognitive, affective, behav-
ioral, and physiological), the authors point out that math anxiety is widely viewed as 
both an educational and a clinical problem, though not a psychiatric disorder. Given 
that it involves issues of motivation and self-efficacy, it also has a strong association 
with math achievement and therefore is relevant to a discussion of MLD.

A variety of antecedent factors for math anxiety are discussed. There is some evi-
dence for a genetic component to math anxiety, involving people who are genetically 
prone to anxiety who also have math difficulties, and also a possible role for genetic 
influences on spatial anxiety. Levels of math anxiety grow with increasing age, with 
likely earlier onset for children with dyscalculia. Females demonstrate higher levels 
of math anxiety than males, although the literature has not yet fully agreed on the 
reasons for this gender difference. Cultural factors are also associated with math 
anxiety, with complicated relationships found between cultural values for success, 
for disciplinary practices, and stress. Evidence on teacher and parent effects is now 
becoming quite clear in terms of transmission of math anxiety to children both in 
the classroom and at home. Peer effects, finally, are also discussed, including the 
unfortunate finding that segregating adolescents into different classes based on per-
formance level yields little improvement in self-efficacy for the high- performance 
group but substantial declines in self-efficacy for the low-performance group.

The review then turns to cognitive factors, mechanisms that yield math anxiety 
effects due to various cognitive processes that are undermined by math anxiety. 
These include speed-accuracy trade-offs during performance, competition for work-
ing memory resources that are compromised by math anxiety, a lack of inhibition to 
irrelevant or distracting information, attentional bias or an increase in interference 
by math-relevant distracting information, abnormal responses to errors, and arousal 
factors, with greater disruption on the part of individuals with higher working mem-
ory capacity. There is also increasing evidence of visuospatial processing impair-
ments playing a role in math anxiety, with a noted relationship to gender differences 
in visuospatial abilities. Finally, an increase in research on the neurobiological 
underpinnings of math anxiety is discussed, with the finding that math anxiety 
seems to activate two emotional systems in the cortex.
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The chapter closes with a brief discussion of assessment of math anxiety, 
 including a useful table that provides the psychometric properties of the most widely 
used math anxiety assessment scales. It also considers various intervention princi-
ples that have been tried in attempts to both alleviate math anxiety and improve 
math achievement. As noted elsewhere, the conclusion offered is that the “knowl-
edge society,” with its increasing reliance on technology, will require greater degrees 
of mathematical fluency from its citizens, thus increasing the pressure for our field 
to both understand and devise successful interventions for math anxiety.

 Common Themes

Heterogeneity within MLD Note that the goal of the Haase and Carvalho’s chapter, 
a refined set of subtypes of DD, is essentially the same goal articulated by Krinzinger 
in her chapter on the comorbidity of MLD and ADHD. Of course, the purposes of 
the two chapters are quite different; Krinzinger wants to refine the MLD category 
(yielding primary MLD vs. secondary MLD after primary ADHD diagnosis) in ser-
vice of educational goals, whereas Haase and Carvalho have the goal of specifying 
subtypes of DD in order to advance research into genetic indicators of dyscalculia. 
But the efforts have an overwhelmingly similar starting assumption: we currently 
have an overly inclusive, heterogeneous category of individuals labeled with MLD 
or DD. The category contains individuals with widely varying skills and abilities. 
They have widely differing deficiencies, often differing qualitatively, making it 
inappropriate to study them as if they were all the same. And, as Resnick et al. noted 
in their chapter, some of these individuals also have some preserved (and underap-
preciated) strengths, which also needs to be taken into account in our studies.

Indeed, this common theme, the great variability of the category known as MLD 
or DD, occurs throughout many of the chapters in this section. Prediger et al. point to 
this variability from the standpoint of language, and the current situation that many 
children in today’s world are struggling to learn math in a second language, and are 
probably mistakenly labeled as MLD for language-related reasons, rather than math-
related reasons. Baten et al. broaden the basis for this variability within the MLD cate-
gory by noting the likely contributions of motivational and emotional factors to MLD, 
and the likelihood that math anxiety may be a more likely outcome for children with 
MLD who have lower desirable propensities for normal achievement. It even seems 
plausible that some of the equivocal results reported in DeSmedt et al., e.g., that MLD 
children may be less affected in their nonsymbolic magnitude estimations than typi-
cally developing children, may also be explained by the heterogeneity problem.

Involvement of WM The second common theme, running through several of the 
reviewed chapters, is the central role of working memory to a full appreciation of 
math achievement and a better understanding of math learning difficulties. The neu-
roimaging results discussed in DeSmedt et  al.’s chapter, with clear evidence of 
attentional and working memory involvement in number magnitude and arithmetic 
processing, are consistent with the discussions of the central role that WM plays in 
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understanding MLD, for instance, in the Passolunghi and Costa review and the 
Haase et al. contribution on math anxiety, with the notable result that WM is com-
promised by math anxiety during math processing. Also telling is the review by 
Carvalho and Haase, finding that the fourth category of abilities, involving atten-
tion, executive function, and working memory, was a pervasive set of abilities 
throughout all the evidence on MLD. The central role of WM to math processing 
has been firmly established in the literature on adult performance, and on perfor-
mance by typically developing children, so it is not surprising that WM and WM 
difficulties also play a prominent role in understanding MLD.

 Concluding Remarks

For whatever kind of work is involved, whether basic research, intervention studies, 
or classroom practice, it would seem critical to be certain that a child labeled as 
MLD or DD has a true disorder in number and math, as opposed to a comorbid dif-
ficulty. This is the central message in Krinzinger’s chapter, of course, that a child 
identified as MLD not be mistakenly identified due to a comorbid primary ADHD, 
for instance. Such a comorbidity would disrupt cognitive processes more generally, 
thus impairing learning and performance not only in math but also a variety of other 
school-based domains. Efforts to remediate the MLD would be relatively less effec-
tive, of course, because they would in essence be treating the wrong disorder. Other 
subtype possibilities of MLD would also appear to exist, e.g., little or no disruption 
in nonsymbolic magnitude tasks, i.e., in the ANS, but difficulties representing sym-
bolic number and arithmetic procedures. As research on MLD continues, the field 
clearly needs to settle on a set of “best practices” for defining and assessing MLD, 
or different MLD subtypes, to enable comparisons across studies, meta-analyses, 
and consensus to emerge on the nature and characteristics of the disorder.

A second useful aim, it would appear, would be to broaden the research base to 
examine performance beyond the magnitude and arithmetic domains that have been 
examined so far. It was actually surprising, in the DeSmedt et al.’s chapter, to read 
that brain imaging studies have almost exclusively been limited to magnitude com-
parison and arithmetic tasks. Although this is somewhat characteristic of the 
research literatures on adults and typically developing children too, these latter lit-
eratures have also recently examined fraction magnitudes, number line estimations, 
and algebra problem-solving. The Resnick et al. chapter reminds us of the few stud-
ies showing apparently preserved abilities on the part of MLD children in the area 
of spatial reasoning, suggesting that other numerically related areas remain to be 
investigated with respect to MLD.  Such research might possibly find additional 
areas of preserved abilities, but at the very least could reveal additional insights, and 
possible methods of intervention, for other numerical skills that are problematic for 
MLD individuals. As part of this effort to extend our understanding of higher math, 
additional efforts could be made to understand how to build motivation, especially 
among the MLD population, to persist in attempts at mastery of the critical life 
skills represented by numerical and mathematical processing.
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Chapter 31
Counting and Basic Numerical Skills

Emily Slusser

You’re enjoying a lovely day at the park with your 3-year-old nephew. A paddling of ducks 
waddles by and you start a conversation, “Hey Charlie, look at the ducks! How many are 
there?”

A pretty straightforward question. Your nephew jumps at the opportunity to demonstrate his 
skills. Faithfully pointing to each duck, one-by-one, he responds, “one…, two…, three…, 
four…, five!”

Ah, he’s brilliant. You knew as much. Let’s keep this conversation going. “That’s right!” 
you say. “So, how many ducks are there?”

He immediately responds, “Eight!”

Right! Wait…what?

This narrative, having played out in countless situations, is likely familiar to any 
caretaker or educator. Indeed, the phenomenon is well documented: while most 
children appear to have learned to count by the time they are 2 or 2 ½ years old 
(Fuson, 1988), most often, they are simply demonstrating their ability to reproduce 
a counting routine. Consequently, their behavior is often difficult to interpret – it is 
not, as we would be inclined to presume, a reliable indicator of their number knowl-
edge. This is similar (and not unrelated) to that other pre-scholastic phenomenon of 
reciting the alphabet without yet having developed an understanding of orthography 
or phonics.

In fact, even after a successful counting routine is achieved, children continue to 
face several underlying challenges on their way to acquiring early number concepts 
and basic counting skills. One of the core challenges follows from the fact that there 
is an important dissociation between conceptual and procedural knowledge of 
counting. In early phases of number acquisition, conceptual knowledge lags far 
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behind that of procedural knowledge. Our nephew in the anecdote above has clearly 
learned some basic counting procedures (and recognizes that the question “how 
many” prompts these procedures) well before he will ultimately understand how 
this activity reveals the correct answer to this question. In fact, only over the next 
couple years will his incremental advances in both procedural and conceptual 
knowledge culminate in the ability to form and maintain precise representations of 
natural number (e.g., Carey, 2010).

 Number Sense

While ubiquitous in discussions of early education and mathematics, the term num-
ber sense is often used to refer to a variety of abilities and behaviors. Early child-
hood curricula and assessments often use the term to broadly describe children’s 
“fluidity and flexibility with numbers, the sense of what numbers mean and an abil-
ity to perform mental mathematics… and make comparison” (e.g., Gersten & 
Chard, 1999). The following review, however, will adopt the term’s primary defini-
tion, referring specifically to the evolutionarily primitive ability to represent non- 
symbolic quantity (Dantzig, 1967; Dehaene, 2011). This definition includes the 
ability to subitize (i.e., the ability to recognize the exact number of items in a small 
set without counting1; Kaufman, Lord, Reese, & Volkmann, 1949), which manifests 
from our ability to represent and track individual items (e.g., Feigenson & Carey, 
2003). This definition of number sense also includes the ability to represent rough 
estimates of magnitude and number (e.g., Xu, 2003).

 Small Number Representations

It’s time for a snack. You offer your nephew two cookies but he immediately recognizes that 
you have given yourself three. He raises the alarm. “How did he know?” you think to yourself, 
“didn’t we just establish that he doesn’t know how to count yet?”

We can chalk this one up to the ability to represent and visually discriminate 
arrays of one, two, or three items, an ability available to even very young infants 
(Xu, 2003). Consider the following experiment: 10- to 12-month-old infants were 
presented with two adjacent buckets, one containing just 1 cracker and the other 
containing 2 crackers. When given the opportunity, the infants in this study consis-
tently chose (crawled to) the bucket with 2 crackers over the bucket with 1 (wouldn’t 
you?) (Feigenson, Dehaene, & Spelke, 2004). Similarly, the infants chose the bucket 
with 3 crackers when the other had just 2 or 1. However, with choices of 4 vs 6, 3 vs 4, 
2 vs 4, and even 1 vs 4 crackers, infants chose at random. Taken together, these 

1 The term “subitize” also enjoys many definitions across early childhood curricula and assessment. 
The present chapter, however, will adopt and adhere to the definition provided above.
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results show that infants’ preference for the greater number does not depend on the 
relative quantity, or the ratio of the two sets (infants consistently chose the bucket 
with 3 crackers to a bucket with 2 but seemed perfectly happy to go to either bucket 
when presented with a choice between 4 vs 6 crackers). Instead, their ability to 
make a meaningful choice is contingent upon absolute quantity (in this case the 
number of crackers), and their ability to represent these exact quantities is capped at 
three items. This limited (though impressive) ability has been demonstrated across 
a variety of experimental paradigms, each yielding similar results (e.g., Clearfield & 
Mix, 1999; Feigenson & Carey, 2003; Starkey & Cooper, 1980).

While greater number is generally correlated with greater continuous quantity 
(such as summed spatial extent or volume) in the natural world, these studies exten-
sively control for continuous properties showing that these discriminations are 
based on number alone. Moreover, these representations are not limited to the 
visuospatial modality. Infants also assess exact quantities (up to 3) when presented 
with a series of temporal events and auditory sequences (e.g., puppet jumps and 
sounds; Wynn, 1996).

This representational system then allows us to easily identify small, exact quanti-
ties immediately, accurately, and without counting (cf., Cordes, Gelman, Gallistel, 
& Whalen, 2001). The signature limits of this system, however, remain relatively 
constant over the course of development (though older children and adults are often 
able to represent up to 5 or possibly 7 items in a set; Mandler & Shebo, 1982; Trick 
& Pylyshyn, 1993) such that subitizing does not present a viable pathway to the 
representation of large, exact numbers like 27 or 308.

 Approximate Number Representations

So we’ve righted our mistake. Both of us now have three cookies. Phew. Wait… your astute 
(and somewhat righteous) nephew notices that yours has more chocolate chips! It seems 
there are a gazillion chocolate chips in each cookie, so we are well beyond subitizing. 
And, he’s not counting… Enter the Approximate Number System.

The ability to represent large approximate quantities and detect differences 
between two large sets is supported by the approximate number system (ANS), a 
cognitive resource that is also available in early infancy (e.g., Lipton & Spelke, 
2003). Early access to this system is often demonstrated through the use of a habitu-
ation paradigm. For example, infants (as young as 6 months) are presented with a 
series of pictures, each with an array of 8 dots. Then, when presented with a picture 
with 16 dots, infants look longer at the novel array, showing that they discern the 
difference between sets of 8 and 16. While infants also respond to changes in overall 
spatial extent (e.g., summed area and/or contour length; Clearfield & Mix, 1999), 
several studies that have controlled for alternative dimensions of quantity have 
shown that infants are able to make judgements on numerosity alone.

Judgments supported by the ANS, however, are imprecise, and the threshold for 
a just noticeable difference follows Weber’s law, such that numerical discrimination 
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is a function of the ratio between the two magnitudes under comparison, and not 
their absolute difference (e.g., Halberda & Feigenson, 2008). Importantly, and 
unlike the small number representation system discussed above, ANS precision 
improves over the course of development (Halberda & Feigenson, 2008; Odic, 
Libertus, Feigenson, & Halberda, 2013). On average, 6-month-olds can reliably 
discriminate 1:2 ratios (such as was presented in the example above; Lipton & 
Spelke, 2003), 9-month-olds can discriminate 2:3 ratios (Xu & Spelke, 2000), 
3-year-olds discriminate 3:4 ratios, 4-year-olds discriminate 4:5 ratios, and 5-year- olds 
discriminate 5:6 ratios (Odic et al., 2013); and adults can discriminate 10:11 ratios 
(Halberda & Feigenson, 2008).

Notably, individual differences in ANS acuity within these age groups are associ-
ated with math achievement. In fact, several studies have shown that individuals 
with more precise ANS acuity perform better on tests of formal mathematics 
(Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, 2012; Lyons 
& Beilock, 2011). In one study, performance on the Test of Early Math Ability 
(TEMA-3; Ginsburg & Baroody, 2003) could be predicted from ANS acuity mea-
sured at 6 months (Libertus et al., 2011). In another, numerical acuity measured in 
14-year-olds correlated with their performance on standardized math tests as far 
back as kindergarten (Halberda, Mazzocco, & Feigenson, 2008). Furthermore, there 
is evidence to suggest that ANS acuity is malleable and may be influenced by envi-
ronmental factors (Tosto et al., 2014) and formal instruction (Halberda, Ly, Wilmer, 
Naiman, & Germine, 2012; Piazza, Pica, Izard, Spelke, & Dehaene, 2013).

 Summary

Together, these two systems are considered core cognitive resources that serve as a 
foundation for the construction of natural-number concepts (Carey, 2010). Each is 
clearly necessary for the development of counting and basic number skills; how-
ever, neither is sufficient. The following sections will review how children’s devel-
oping understanding of the verbal count list (e.g., individual number words such as 
one, two, and three) ultimately allows for the construction of natural-number con-
cepts (i.e., the ability to represent exactly 27 or 308).

 Number Language

As discussed above, the ability to represent small, exact numbers and large, approx-
imate numerosity is available in early infancy, but mapping these representations to 
symbolic representations of number (e.g., number words) is no small feat. Whereas 
children as young as 2 years old have little difficulty mapping approximate quanti-
fiers (such as more and a lot) to representations of quantity (Dale & Fenson, 1996), 
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children can spend upward of 2 years sequentially assigning meaning to individual 
number words and figuring out how the verbal count list works.

While a long and protracted process, the acquisition of number language is a 
crucial milestone in children’s quantitative development (Fuson, 1988; Gelman & 
Gallistel, 1978; Wynn, 1990, 1992). As the following section will discuss, the lan-
guage system itself is largely responsible for the ability to represent large exact 
number. In fact, children who experience significant language barriers, such as 
those born deaf to hearing parents, show delays not only in their acquisition of indi-
vidual number words but also in later math achievement (Kritzer, 2009). Moreover, 
individuals who grow into adulthood without learning to count proficiently demon-
strate poorer performance on tasks assessing representations of exact number and 
cardinality (Frank, Everett, Fedorenko, & Gibson, 2008; Spaepen, Coppola, Spelke, 
Carey, & Goldin-Meadow, 2011).

 Knower Levels

“The kid’s really put one over on me,” you think. When it comes to cookies, he clearly 
knows what he’s talking about (three cookies is more than two, and don’t even think about 
saving the cookie with more chocolate chips for yourself!). But you’re not entirely satisfied 
so you decide to put it to the test…

You give him the whole bag of cookies, but ask him if you can have just one. He happily 
obliges. One cookie, no problem. “Can you give me two cookies?” you ask. Sure, he hands 
you two. One last time for good measure – this time you ask for three cookies. “Sure!” he 
says as he hands over as many as he can grab. Not three, not two, but an entire handful!

While seemingly inconsistent and unpredictable, it turns out that our nephew’s 
response is not unusual for a 3-year-old. In fact, it often takes 2 or more years to 
learn even a subset of number words, during which time children work out the car-
dinal meanings of each number word one at a time and in order (Le Corre, Van de 
Walle, Brannon, & Carey, 2006; Sarnecka & Lee, 2009; Wynn, 1990, 1992). 
Interestingly, as they go through this process, children appear to traverse a predict-
able series of knowledge states, or “knower” levels (see Sarnecka, Goldman, & 
Slusser, 2014 for review).

This incremental progression shows up on assessments such as the Give-N (or 
Give-a-Number) task in which children are asked to create sets in response to spe-
cific prompts (e.g., “Can you give three bananas to the puppet?”) (Wynn, 1992; see 
Fig. 31.1). In such tasks 2- to 4-year-olds, who can generally recite the count list up 
to 10 or so without error, are often unable to give the correct number of items when 
asked for those same numbers in the Give-N task. In response to a Give-N trial 
asking for six bananas, for example, these children may simply grab a handful of 
items without counting, even when prompted to count or check their response (e.g., 
“Can you count and make sure you gave the puppet six bananas?” or “Can you fix it 
so that the puppet gets six bananas?”) (e.g., Le Corre et al., 2006).
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At the earliest knower level (often referred to as the “preknower” level; e.g., 
Slusser, Ditta, & Sarnecka, 2013), children’s responses to any given prompt are 
generally unrelated to the number of items requested. These children may give just 
one item, or even a handful of items, regardless of the specific prompt. At the next 
level, children reliably give 1 item when asked for one but give 2 or more items 
when asked for any other number. Note that their responses seem to be simple 
guesses, not counting or estimation errors (Sarnecka & Lee, 2009), and these chil-
dren appear to understand that number words that they do know are not used to refer 
to sets of any other size (i.e., they will not offer 1 item when asked for any number 
other than one; Wynn, 1990, 1992). The one-knower level is followed by the “two- 
knower” level, then the “three-knower” level, and sometimes the “four-knower” 
level. At each N-knower level, children demonstrate predictable and accurate 
performance up to but not beyond N. Eventually, around the time they reach the 
three- or four-knower level (often 2 years after they first entered the one-knower 
level), children realize that the final number word in their count sequence refers to 
the cardinal value of the set they are enumerating. At this point they may be said to 
have induced the “cardinality principle” (Gelman & Gallistel, 1978) and can hence-
forth employ counting procedures felicitously to create any set size within their 
count list (Sarnecka & Carey, 2008; Wynn, 1990; cf. Davidson, Eng, & Barner, 
2012). It has been argued that, as children progress through these individual knower 
levels, they are incrementally assigning each of the first three or four number words 
to their representations of small, exact sets (Carey, 2010). Numbers exceeding the set 
size limit of 3 or 4 items must then be represented through counting. For this reason, 
we don’t typically see children who would be characterized as “five-,” “six-,” or 
“seven- knowers” (cf. Wagner & Johnson, 2011).

The one- through four-knower levels are found not only for speakers of English 
but also for speakers of Japanese (Sarnecka, Kamenskaya, Yamana, Ogura, & 
Yudovina, 2007), Mandarin Chinese (Li, Le Corre, Shui, Jia, & Carey, 2003), 

Fig. 31.1 The Give-a-Number task can be used to assess children’s number-knower levels (e.g., 
Wynn, 1992). For this task, children are typically asked to create set sizes of 1 to 6 items. Children 
are given the opportunity to check and fix their responses after each trial
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and Russian (Sarnecka et  al., 2007). Furthermore, bilingual children who have 
memorized the counting lists in both of their languages before learning the exact 
meanings of these words in either language show the same or similar knower-levels 
in both languages (Goldman, Negen, & Sarnecka, 2014).

There is, however, a notable variability across children with different learning 
backgrounds and experiences. For example, while children from relatively high 
socioeconomic backgrounds typically reach an understanding of cardinality some-
time between 3 and 4 years old (see Sarnecka & Lee, 2009), children from less 
privileged backgrounds often do not reach this level of understanding until well 
after their fourth birthday (e.g., Dowker, 2008; Jordan & Levine, 2009).

While the cardinality induction is often recognized as a major conceptual 
achievement, we will put this aside for now (but revisit it in the “Counting Principles” 
section below). The following sections will instead explore what subset- knowers 
(a term used to describe children at the one-, two-, three-, and four-knower levels; 
Le Corre et al., 2006) know and have yet to learn about number.

 Discrete Quantification

One piece of knowledge that is integral to understanding natural-number concepts 
is the idea that number is a property of sets and that sets are comprised of discrete 
individuals. Indeed, a conceptual dissociation between continuous substances (such 
as water and sand) and discrete objects (such as blocks and coins) is available in 
infancy (Hespos, Ferry, & Rips, 2009), and as children acquire language, they 
reflect this distinction through their appropriate use of linguistic morphology (i.e., 
the English singular/plural marking) to denote the difference between mass and 
count nouns (e.g., Barner, Thalwitz, Wood, & Carey, 2007).

To determine whether children with an incomplete understanding of number 
words (i.e., subset-knowers) understand that number words, in general, are used to 
refer only to sets of discrete individuals, we invited a group of subset-knowers 
(2–4 years old) to complete the Blocks and Water task (Slusser, Ditta, & Sarnecka, 
2013; see Fig. 31.2). For this task, children watched as an experimenter placed five 
objects (e.g., blocks) in one cup and five scoops of a continuous substance (e.g., 
water) in another cup. Four trials asked children about a number word outside the 
range of numbers known by any subset-knower (e.g., “Which cup has five?”), and 
another four trials asked about a quantifier (e.g., “Which cup has more?”).2 For half 
of the trials, the cup with discrete objects was full; for the other half, the cup with 
the continuous substance was full. Results showed that, while children correctly 
chose the full cup when asked which cup has “more,” they had to have reached the 
three-knower level before reliably choosing the cup with discrete objects as an 
example of “five.” A series of follow-up experiments seem to indicate that one- and 
two-knowers have an emergent but tenuous understanding of this constraint but are, 

2 Note that approximate quantifiers such as “more” and “a lot” can take a wide range of referents, 
with few constraints, while number words refer only to collections of discrete individuals.
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in general, as likely to extend the word “five” to continuous substances as to sets of 
discrete objects.

Thus, it seems that children come to understand that number words are used for 
discrete quantification only after learning the precise meanings of at least a subset 
of number words. It is possible then that children use their understanding of the 
number words “one” and “two” to draw inferential connection between number 
words and discrete objects. Alternatively, children may use the linguistic context 
that generally occurs in natural speech to form this connection (Bloom & Wynn, 
1997). This argument arises from the observation that number words reference 
nouns morphologically coded according to their conceptual category (i.e., count vs 
mass) – that is to say, count nouns take the plural marking, “-s,” whereas mass nouns 
do not. After first confirming that number words are in fact most often accompanied 
by an adjacent count noun and plural marking (e.g., “Look, five ducks!”) in both 
child and child-directed speech (Slusser, 2010), we tested whether children use this 
information to establish that number words reference count nouns, and consequently 
collections of discrete objects.

The 2- to 4-year-old children in this study completed the Blocks and Water task 
above, but in this iteration each test question was presented within a syntactically 
“rich” linguistic context (Slusser, 2010; see Fig.  31.2). For example, children 
were asked, “Which cup has five things?” rather than “Which cup has five?” 
Results show that English-speaking children connect number words to discrete 
quantification before learning the specific meaning of any number words so long 
as the number word is paired with an adjacent count noun and plural marking. 

Fig. 31.2 The Blocks and Water task was used to determine whether and when children under-
stand that number words reference discrete sets (Slusser, Ditta, & Sarnecka, 2013) and whether 
linguistic context (in the form of a count noun + plural marking in English or the general noun 
classifier, 個 [ge], in Mandarin) facilitates this understanding (Slusser, 2010) (Figure adapted from 
Slusser, Ditta, & Sarnecka, 2013). (* Prompt differed according to the experiment and trial type. 
Note: The cup with continuous substance is full for half of the trials. Red circles indicate the cor-
rect response)
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Similarly, Mandarin-speaking children demonstrate similar learning trajectories 
when presented with a number word in isolation and when accompanied by the 
noun classifier 個 (pronounced “ge”).

Overall, this series of experiments shows that children use their emerging under-
standing of number words as well as linguistic cues that occur in natural speech to 
connect number words to discrete quantification. Moreover, these data constrain 
future hypotheses on how children learn number words: the fact that this process 
may involve generalization from certain exemplars and surrounding language pro-
vides evidence that number word knowledge is not entirely built upon a priori 
principles.

 Numerosity

Connecting number words to discrete quantification is only one step in acquiring an 
understanding of natural numbers. Children must also understand that number 
words denote numerosity (and not, for example, some other characteristic of set, 
such as total volume or spatial extent). Setting out to address this question, Sarnecka 
and Gelman (2004) invited 2- to 5-year-old subset- and CP-knowers to complete the 
Transform-Sets task. For this task, the experimenter placed a certain number of 
objects in a box while saying (e.g.), “I’m putting six buttons in this box.” The exper-
imenter then performed some action with the box (either shaking it, turning it 
around, adding one object, or removing one object). The children were then asked 
(e.g.), “Now how many buttons are in the box? Five or six?” Results show that 
subset-knowers (and CP-knowers) do indeed understand that the number word 
should change when an item has been added or removed from the box (and that the 
number word does not change when a non-numerical transformation takes place, 
such as when the experimenter simply shakes the box). It seems that, while they 
still do not understand the precise meanings of the number words five and six (as 
illustrated through their performance on the Give-N task), subset-knowers do 
understand something about these number words – that they denote some aspect of 
quantity.

Note the use of the term quantity, not numerosity. Upon careful inspection, we 
see that the Transform-Sets task does not disambiguate number or numerosity from 
the broader dimension of quantity. Remember, children’s intuitive number sense 
supports representations of both numerosity and continuous spatial extent (see sec-
tion on “Approximate Number Representations” above). In the Transform-Sets task 
described above, the number of items in the box changed, but so did other  dimensions 
of quantity (i.e., area, volume, weight). While subset-knowers clearly associate 
number words with quantity, it is not entirely clear whether they understand that 
number words refer specifically to numerosity.

To address this specific confound, we developed a Match-to-Sample task with 
careful controls and manipulations of continuous spatial extent (either summed area 
or contour length, depending on the trial) so as to pit dimensions of quantity directly 
against numerosity (Slusser & Sarnecka, 2011; see Fig. 31.3). For this task, children 
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were presented with a sample picture as the experimenter said (e.g.), “This picture 
has four turtles.” The experimenter then presented two additional pictures and said 
(e.g.), “Find another picture with four turtles.” One picture had the same number of 
items as the sample but different overall spatial extent (e.g., 4 small turtles). The 
other had a different number of items, but the same overall spatial extent (e.g., 8 
small turtles). Results showed that while CP-knowers understand that two sets of 
the same numerosity should be labeled with the same number word, subset-knowers 
are as likely to extend that number word (e.g., four) to other dimensions of continu-
ous quantity (by, in this case, selecting a picture of 8 small turtles).

 Summary

Taken together, these findings reveal that subset-knowers’ understanding of num-
bers matures as they acquire the meanings of individual number words. In addition 
to enriching our understanding of how children’s understanding develops over time, 

Fig. 31.3 A Match-to-Sample task was used to determine whether children understand that num-
ber words denote numerosity, rather than some other dimensions of quantity (e.g., summed spatial 
extent) (Slusser & Sarnecka, 2011) (Figure adapted from Slusser & Sarnecka, 2011). (Note: On 
this particular trial, there is no possible match on the characteristics of the individuals comprising 
the set (e.g., the color or mood of the turtles))
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these studies highlight a series of additional conceptual and linguistic challenges 
that are often overlooked in the development of early childhood curricula and 
assessments.

 Counting Principles

The previous section discusses how children learn each of the number words in their 
count list one-by-one and in order. The process appears to take upward of 2 years, 
and as they do this, they learn some of the fundamental properties of number (i.e., 
number words refer only to discrete sets and are used to denote numerosity, not 
continuous quantity). Whereas the counting routine, in and of itself, does not appear 
to be integral to this process, children are certainly gaining experience and learning 
about counting procedures over this period of time.

As Gelman and Gallistel (1978) pointed out in their seminal work on Young 
Children’s Understanding of Numbers, in order to count productively, children 
(and adults) must at the very least (1) recite the count list in the same sequence 
every time (e.g., one, two, three, four and not one, four, three, two), (2) count each 
object in a set without skipping or double-counting, (3) understand that they can 
count the objects in any order (e.g., counting from left to right yields the same 
answer as when counting from right to left), and (4) understand that the last num-
ber word recited in the counting routine indicates the total number of items in the 
set. While the first three rules seem to unfold with experience and practice, the 
following sections will focus on the final counting principle in this list – the car-
dinality principle.

 Cardinality Principle

After your little experiment with the cookies, you think back to your conversation about the 
ducks in the park. Your nephew did recite the count list in order; he did count each duck in 
one-to-one correspondence, and he didn’t seem too concerned with the order or arrange-
ment of the ducks. But wait… there’s just one thing missing. He did not seem to understand 
that the last word in his count list should indicate the total number of ducks. Well, jeez, that 
seems simple enough…

When considered a part of Gelman and Gallistel’s (1978) list of counting prin-
ciples, the cardinality principle (or “last word rule”) simply stipulates that the last 
number word in a count sequence represents the cardinal value of that set. In reality, 
however, it seems children’s understanding of this specific procedure is contingent 
upon a crucial conceptual induction – often referred to as the cardinality principle 
induction (Carey, 2010). As mentioned previously (section “Knower Levels”), prior 
to this induction, children progress through a series of intermediate knowledge 
states (knower levels), during which time they do not seem to understand how 
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counting is used to generate or identify specific set sizes (e.g., Le Corre et al., 2006). 
Importantly, children who understand the cardinality principle (i.e., CP-knowers) 
perform differently from subset-knowers on a variety of tasks assessing early num-
ber knowledge. Some of these tasks explicitly involve counting. For example, on the 
Give-N task, CP-knowers use counting to generate specific set sizes and can fix 
their answers when they make mistakes. While subset-knowers often engage in 
counting behaviors (extensively abiding by the counting principles outlined above), 
they fail to use counting to generate specific set sizes. Some tasks, however, do not 
explicitly involve counting. Examples of these include the Blocks and Water and 
Match-to-Sample tasks discussed above, which reveal that subset-knowers do not 
yet understand the fundamental properties of number words (i.e., that they are used 
for discrete quantification and denote exact numerosities).

Another notable difference between subset- and CP-knowers is that only 
CP-knowers understand that any set with N items can be put into one-to-one corre-
spondence with any other set labeled with the same number word (N) – an idea 
referred to as “equinumerosity” (Muldoon, Lewis, & Freeman, 2009; Sarnecka & 
Wright, 2013). Like many of the skills outlined above, children’s understanding of 
equinumerosity seems to align closely with their induction of the cardinality prin-
ciple. For example, if one child were to have a handful of grapes for a snack and the 
other were offered the same (both snacks are recognized to be “just the same” 
through one-to-one correspondence), then each snack should also be labeled with 
the same number word. Results on a task that evaluated children’s understanding of 
this concept show that only CP-knowers know that sets that are “just the same” are 
labeled with the same number word (and if the sets are not the same, then a different 
number word should be used) (Sarnecka & Wright, 2013).

Furthermore, there is emerging evidence to suggest that children tap into ANS 
representations as they learn how counting represents number (Carey, Shusterman, 
Haward, & Distefano, 2017; Chu, van Marle, & Geary, 2015; Shusterman, Slusser, 
Halberda, & Odic, 2016; van Marle, Chu, Li, & Geary, 2014). One such study 
tracked 2- to 4-year-old’s understanding of individual number words and counting 
procedures (through the Give-N task) as well as their ANS acuity over a 6-month 
period (Shusterman et  al., 2016). Results show that children’s acquisition of the 
cardinality principle is tightly linked to marked improvement in ANS acuity and 
that there is little evidence to suggest that ANS representations underlie advance-
ments across subset-knower levels (e.g., moving from the one-knower to two- 
knower level) (see Fig. 31.4). These findings provide further evidence for the notion 
that the cardinality principle is not just a counting rule – it is essential to the creation 
and representation of natural-number concepts.

Importantly, children did not have an opportunity to count when completing any 
of the tasks introduced above (including the Block and Water and Match-to-Sample 
tasks  discussed above), showing that children who understand the cardinality 
 principle know more than the route counting procedures  – they have developed 
deeper insight about numbers and number words. Thus the promotion from subset- 
to CP-knower seems to be far more profound than it initially appears.
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 Successor Function

With the cardinality principle comes an understanding of the successor function, 
which reflects another fundamental property of number – with each additional item 
in a set, we advance one step (i.e., word) along the verbal count list. In conjunction 
with the cardinality principle, an understanding of the successor function allows 
children to represent the cardinal meanings of every word in their count list 
(Sarnecka et al., 2014).

To explore children’s understanding of the successor function, Sarnecka and 
Carey (2008) showed a group of 2- to 4-year-old children a box with 5 items inside. 
Similar to the Transform-Sets task described above, experimenters explained (e.g.), 
“There are five apples in this box,” and then added an item to the box. In this task, 
however, the experimenter asked (e.g.), “Now how many are in the box? Six or 
seven?” As with the tasks reviewed above, only the CP-knowers seemed to under-
stand that adding 1 item to a set moves the total count one step (word) forward along 
the count list (and adding 2 items moves the count two steps forward).

Fig. 31.4 A 6-month longitudinal study evaluating children’s developing number knowledge, 
counting skills, and ANS acuity shows that the acquisition of the cardinality principle is tightly 
linked to notable increases in ANS acuity (Shusterman et al., 2016). Note that ANS acuity is not 
clearly linked to advances across number-knower levels. (Figure adapted from Shusterman 
et al., 2016)
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Together, children’s understanding of the cardinality principle and successor 
function is often considered to be “the final piece of the puzzle” (Sarnecka et al., 
2014) – the last thing that children must figure out in order to use counting to construct 
natural-number concepts.

 Summary

While your 3-year-old nephew at the beginning of this chapter has clearly memo-
rized several words in the verbal count list and has acquired at least some of Gelman 
and Gallistel’s (1978) counting principles, it seems that this routine serves no mean-
ingful purpose other than offering the expected response to the question “how 
many?”. Gradually, however, over the next several months or years, he will come to 
realize that counting is used to determine the exact number of items in a set and that 
cardinality changes with each additional item.

 Facilitating the Acquisition of Exact Number Concepts

The sections above outline several challenges that children inevitably face as they 
develop counting and basic numerical skills while presenting the argument that chil-
dren must confront and conquer these challenges in order to construct and represent 
exact number concepts. Moreover, recent research has identified these achievements 
as central to children’s eventual success in school (Aunio & Niemivirta, 2010; 
Bartelet, Vaessen, Blomert, & Ansari, 2014; Duncan et al., 2007; Göbel, Watson, 
Lervåg, & Hulme, 2014), with the unfortunate caveat that children who start 
school without these fundamental number concepts are at a serious disadvantage, 
both in the short and long term (Dowker, 2008; Jordan, Kaplan, Ramineni, & 
Locuniak, 2009):

Even though you realize that your simple “judgement calls” on who has more chocolate 
chips will have to be supported with clear empirical evidence from here on out, you never-
theless decide to help your nephew out (that’s what family’s for, right?). Lucky for you, 
researchers’ evaluations of both small- and broad-scale interventions have culminated in a 
collection of best practices that can be easily implemented even in informal settings.

 Facilitating the Acquisition of Individual Number Words

In addition to the four counting principles outlined in the  section “Counting 
Principles” above, Gelman and Gallistel (1978) noted that children must also under-
stand abstraction – the idea that number is an inherent property of any set of discrete 
items and that a set of 10 apples, for example, shares something in common with a 
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set of 10 oranges (who said that we can’t compare apples and oranges?). 
Unfortunately (though interestingly), many researchers who have attempted to 
teach children the meaning of a new number word (e.g., teach a two-knower the 
exact meaning of the word three) find limited success. Whereas these children may 
come to recognize that the new number word can be used to label a set of, e.g., three 
marbles, they often do not understand that the word three can be applied or general-
ized to other sets of 3 (e.g., 3 blocks, 3 buttons, 3 meals) (Carey et al., 2017; Huang, 
Spelke, & Snedeker, 2010; Mix, Huttenlocher, & Levine, 2002).

To explore this phenomenon further, we introduced a group of two-knowers to 
the word three (Slusser, Stoop, Lo, & Shusterman, 2017) through one of three train-
ing conditions (Fig. 31.5). Children randomly assigned to the Number Word Only 
condition were presented with several pictures of 3 animals and were told, “This 
picture has three.” Children in the Count Noun condition were presented with this 
same series of pictures but were told, (e.g.) “This picture has three dogs.” And chil-
dren in the Superordinate Category condition were told, “This picture has three 
animals.” Following training trials with corrective feedback, two-knowers in the 
Count Noun and Superordinate Category conditions failed to extend the new num-
ber word (three) to sets of new animals (e.g., lions) or objects (e.g., shoes), while 
children in the Number Word Only condition succeeded. These findings suggest that 
the specificity of the linguistic context in which a number word is introduced influ-
ences children’s ability to generalize newly acquired number words. Thus, while a 
rich linguistic context seems to facilitate children’s understanding of number word 
semantics (see “Discrete Quantification”), when introducing a specific number 
word, it seems adults and educators should provide varied input and avoid coupling 
a number word with a specific noun or category label unnecessarily.

Fig. 31.5 Examples of training and test trials: To evaluate the role of linguistic context in chil-
dren’s acquisition of individual number words, we designed 3 training conditions. Children who 
were trained with the Number Word Only were more likely to generalize the newly acquired num-
ber word to new sets than children assigned to the Count Noun or Superordinate Category 
conditions
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 Facilitating the Acquisition of the Cardinality Principle

Efforts to teach children the cardinality principle over a short period of time have 
also been met with mixed success (e.g., Mix, Sandhofer, Moore, & Russell, 2012). 
Nevertheless, it seems there is growing evidence that adults can effectively scaffold 
children’s understanding of the cardinality principle by presenting the counting rou-
tine in close temporal contiguity with an appropriate label of cardinality. Most 
recently, Paliwal and Baroody (2017) found that modeling a counting procedure 
that emphasizes the total number of items in a set facilitates children’s understand-
ing of the cardinality principle. For this study, 3- to 5-year-olds were randomly 
assigned to one of the three training groups. Children practiced counting 1–6 items 
with an experimenter several times over a 6-week period. Upon posttest (which 
included a measure similar to the Give-N task described above), children who 
practiced counting using a procedure that emphasized the total number of items in 
a set (e.g., “One, two, three. Three. There are three elephants!”) outperformed 
children who simply counted the items (e.g., one, two, three) without repeating or 
emphasizing the cardinal value of the set.

Notably, however, adults often do not approach counting activities in this way 
(Mix et al., 2012). While they may count or provide a cardinal label, they do not 
often do both. This coupled with the observation that number talk, in general, is 
relatively rare in everyday interactions (Levine, Suriyakham, Rowe, Huttenlocher, 
& Gunderson, 2010) suggests that many children are not, on a daily basis, exposed 
to input that facilitates this understanding.

 Broad-Scale Intervention

Following participation in “broad-scale” mathematics intervention programs 
(meaning that they include a multitude of both classroom- and home-based activi-
ties), children from low and middle socioeconomic backgrounds have consistently 
demonstrated improved performance on composite mathematical assessments 
(e.g., Arnold, Fisher, Doctoroff, & Dobbs, 2002; Starkey, Klein, & Wakeley, 2004). 
Not only do children’s math scores improve, but other numerically related skills, 
such as measurement and problem-solving, also improve.

One notable demonstration of these benefits follows Greenes, Ginsburg, and 
Balfanz’s (2004) evaluation of their Big Math for Little Kids program. This curricu-
lum, designed to increase mathematical competency among 4- to 5-year-old chil-
dren, includes a series of engaging number-based games that encourage and 
facilitate critical thinking related to number. The studies presented in the following 
two sections, however, suggest that meaningful experience and intervention need 
not take the form of established curriculum. Instead, it seems that parents and 
educators can facilitate children’s counting and basic numerical skills by simply 
offering or creating numerically based games and toys and by incorporating “number 
talk” into daily conversations.
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 Numerically Based Toys

Over the last several years, researchers have begun to study the direct cognitive 
benefits associated with children’s play with numerically based toys. One study 
linked cognitive benefits of play with numbered board games in preschoolers from 
low-income backgrounds (Siegler & Ramani, 2008). Children (ages 4–5) completed 
4 sessions of play using a board game with squares labeled 1–10. Even though they 
initially struggled with math-related tasks as compared to their more affluent peers 
at pretest, these children consistently demonstrated improvements at posttest, sug-
gesting that numerically based play can have profound effects on mathematical 
cognition.

More recently, in a study funded by the toy manufacturing giant Mattel©, 3- and 
4-year-old children were randomly assigned to one of the four conditions, each with 
a specific toy predicted to support development within a particular cognitive domain 
(Slusser et al., 2013). Children in the Number Condition were given a set of ten 
small race cars (think Hot Wheels™) and a parking garage. Each car was labeled 
with a numeral from 1 to 10, and the parking garage included a series of parking 
spaces, each with an array of 1–10 dots. After a 1-month period (during which time 
children were encouraged to play with the toy but received no other specific instruc-
tion from the researchers), children’s counting and basic numerical skills increased 
dramatically, significantly more than children assigned to any other condition3 
(see Fig.  31.6). Thus, simply playing with numbered toys appears to promote 
improvement in numerical understanding.

3 Children in the other conditions received either a set of ethnically diverse dolls, dress-up clothes, 
or wooden blocks.

Fig. 31.6 Children’s independent play with numerically based toys (left) over a 1-month period 
promotes their numerical understanding (right) (Slusser, Chase, et al., 2013)
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 Number Language

Even without the use of games or toys, recent research has shown that exposure 
to number language facilitates children’s acquisition of number word meanings. 
In fact, children’s knower levels can be predicted by the quality and quantity of 
number- specific language at home (Gunderson & Levine, 2011; Levine et al., 2010), 
and interventions that help parents engage in meaningful number talk can facilitate 
children’s progress toward understanding cardinality (Berkowitz et al., 2015).

This important link between number knowledge and early language exposure is 
further demonstrated through a recent study that evaluates and models the influence 
of parent education, general vocabulary, ANS acuity, and number word knowledge 
on children’s early math achievement (Ribner, Shusterman, & Slusser, 2015). For 
this study, we first evaluated the receptive vocabulary, number-knower level, and 
ANS acuity of a diverse group of 3- to 5-year-old preschoolers. We then administered 
the TEMA-3 approximately 1 year later, as they entered kindergarten. We found that 
children’s early language (general vocabulary and number word knowledge) fully 
mediates the relationship between parent education and math ability. Additionally, 
number word knowledge mediates the noted relationship between ANS acuity and 
early math (see Fig. 31.7).

Fig. 31.7 A diagram that illustrates the relationship of parent education and early math. Results 
from a 1-year longitudinal study following preschoolers through kindergarten show that early lan-
guage skills are linked to number word knowledge and these factors fully mediate the relationship 
between parent education and math ability (Ribner et al., 2015)
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Even with a clear need for additional research, these findings carry implications 
for early education and intervention. For example, while proposals for early inter-
vention to support children’s developing number sense (ANS acuity; e.g., Wang, 
Odic, Halberda, & Feigenson, 2016) remain justified, these findings suggest that an 
increased focus on number language and general vocabulary may help to minimize 
disparities in math ability as children enter kindergarten.

 Summary

In sum, a sampling of research across various disciplines (including early educa-
tion and instruction, child development, psychology, and cognitive science) shows 
that children’s intuitive number sense, their understanding of individual number 
words, and their procedural and conceptual counting knowledge serve as key 
building blocks for future math ability. While idiosyncrasies in each result in pre-
dictable developmental outcomes, researchers have identified a series of effective, 
low-cost, and practical interventions that can be easily adopted by parents and 
practitioners alike.
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Chapter 32
Multi-digit Addition, Subtraction, 
Multiplication, and Division Strategies

Marian Hickendorff, Joke Torbeyns, and Lieven Verschaffel

It has long been recognized that children’s arithmetic is characterized by strategy 
variability. Children use a variety of different strategies to solve arithmetic prob-
lems. This variability is characterized by both interindividual variability, meaning 
that different individuals rely on different strategies to solve a given arithmetic task, 
and intraindividual variability, referring to one individual using different strategies 
to solve different tasks or even the same task at different moments and/or in differ-
ent settings (e.g., Siegler, 2007). Furthermore, with increasing age and experience, 
children not only tend to develop from using less efficient to more efficient strate-
gies but also become increasingly adaptive in their strategy choices, as described in 
Siegler’s (1996) overlapping waves theory.

To optimally enhance children’s arithmetic learning, it is important to know 
what strategies children use and what obstacles they encounter in acquiring these 
strategies. There are many studies on children’s strategy use in single-digit arith-
metic (for a review, see, for instance, Verschaffel, Greer, & De Corte, 2007), but 
research in the domain of multi-digit arithmetic is rather limited, in particular for 
multi-digit multiplication and division. This is problematic since the upper grades 
of primary school are usually devoted to instruction and practice in solving multi-
digit arithmetic problems, and children may experience quite large difficulties in 
that domain.

The current chapter’s aim is therefore to give an overview of what is known 
about primary school children’s strategy use in multi-digit arithmetic, defined as 
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addition, subtraction, multiplication, and division tasks in which at least one of the 
operands contains two or more digits. Furthermore, we aim to identify obstacles 
children encounter in developing, selecting, or executing these strategies, in the 
population of all learners as well as specifically in the group of children with math-
ematical difficulties.

 Multi-digit Arithmetic Solution Strategies

Strategies for multi-digit arithmetic differ from those for single-digit arithmetic. 
In single-digit arithmetic, an important distinction is between computational strate-
gies and retrieval. In computational strategies (also called backup strategies), the 
answer is computed in subsequent solution steps, for instance, by counting on from 
the larger integer (9 + 3 = 9, 10, 11, 12) or by reference to another easier or already 
known problem (derived facts: e.g., 9 + 3 = 10 + 3 – 1 = 13 – 1 or 12). Retrieval 
concerns recalling the answer from long-term memory as an arithmetic fact, without 
intermediate computational solution steps (e.g., 9 + 3 = (immediately) 12). Generally 
speaking, children’s single-digit arithmetic development is characterized by the 
progression from concrete counting strategies via derived fact strategies to the final 
mastery of retrieval of the arithmetic fact (e.g., Verschaffel et al., 2007). By contrast, 
in multi-digit arithmetic retrieval of the outcome as an arithmetic fact is not feasible: 
the outcome needs to be computed. Hence, in multi-digit arithmetic the question is 
how the numbers are manipulated in order to find the answer. That is what we call a 
(solution) strategy.

An important characteristic of multi-digit strategies is how the numbers are oper-
ated on: respecting the place value the single digits of those numbers represent or 
not. This distinction yields two major types of strategies: number-based strategies 
and digit-based strategies (for reviews, see Fuson, 2003; Kilpatrick, Swafford, & 
Findell, 2001; Verschaffel et al., 2007).1 In number-based strategies, the place value 
of the digits in the numbers is respected (e.g., the number 83 may be split into 80 
and 3), whereas in digit-based strategies, the place value of the digits is ignored 
(e.g., 83 may be split in the digits 8 and 3, ignoring that the 8 actually stands for 8 
tens = 80). The most common digit-based strategies are the written algorithms of 
long addition, subtraction, multiplication, and division, operating on single digits in 
a proceduralized way, usually from right to left. In the current chapter, we also dis-

1 Some authors use the terms mental computation strategies and written arithmetic instead of num-
ber- and digit- based arithmetic, where mental computation strategies may refer to either operating 
on numbers with the head or entirely in the head, whereas written arithmetic refers to the execution 
of digit-based algorithms usually with paper and pencil (for more details, see Verschaffel et al., 
2007). Since the most important distinguishing feature between the different types of multi-digit 
strategies is operating on numbers versus on digits (rather than mental versus written computa-
tion), we prefer the terms number-based versus digit-based strategies.
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cuss so-called column-based strategies: a specific form of number-based strategies 
that in some reform-based mathematics curricula, such as in realistic mathematics 
education (RME) in the Netherlands, are instructed as an intermediate strategy to 
make the transition between number-based strategies and the digit-based algorithm 
smoother and more insightful (e.g., van den Heuvel-Panhuizen, 2008; van den 
Heuvel-Panhuizen & Drijvers, 2014). These column-based strategies have elements 
of the digit-based algorithmic approaches, since they also involve a structured, ver-
tical, notation. However, they operate on whole numbers instead of digits, and they 
proceed from left to right, which are two characteristics that clearly distinguish 
them from the digit-based algorithms. Some authors (e.g., Buijs, 2008) therefore 
call these column-based strategies stylized mental computation strategies (where 
mental refers to computing with the head instead of entirely in the head; see also 
Footnote 1). Similar approaches can be found in other innovative mathematics 
learning-teaching methodologies, such as the open calculation based on numbers in 
Spain (Aragón, Canto, Marchena, Navarro, & Aguilar, 2017).

Given that there are several possible strategies to solve multi-digit arithmetic 
problems, the question arises how children select a particular strategy from their 
repertoire. This question has intrigued cognitive psychologists already since the 
1950s (e.g., Siegler, 2007) and is also relevant from a mathematics education per-
spective: an important goal of contemporary mathematics education around the 
world is that children acquire the competence to solve mathematical problems effi-
ciently, creatively, and flexibly or adaptively with an array of meaningfully acquired 
strategies (e.g., Hatano, 2003; Star et al., 2015). Scholars use different definitions of 
flexibility and adaptivity. In the current chapter, we use flexibility and adaptivity 
interchangeably as selecting the optimal strategy for a given problem in a given set-
ting for a given person. Verschaffel, Luwel, Torbeyns, and Van Dooren (2009) dis-
cuss that adaptivity can be conceptualized with respect to task characteristics (i.e., 
Does the child select the strategy that is best for that problem given a rational task 
analysis?), subject characteristics (i.e., Does a child select the strategy (s)he per-
forms best with?), and contextual characteristics (i.e., Does a child select the strat-
egy that is optimal given the circumstances, such as the value of speed over 
accuracy?). According to that conceptualization, a child behaves adaptively if (s)he 
chooses the strategy that is the optimal one, taking into account the features of the 
task at hand, his/her mastery of the various strategies available in his/her strategy 
repertoire, and the sociocultural setting wherein (s)he is confronted with the task 
(Verschaffel et al., 2009)

In the following, we will discuss the research literature on children’s strategy 
competencies in the additive domain (i.e., multi-digit addition and subtraction) and 
the multiplicative domain (i.e., multi-digit multiplication and division). In both 
parts, we start with presenting a comprehensive framework of the different number- 
based and digit-based strategies, followed by a review of empirical findings regard-
ing children’s use of these strategies and ending with a discussion of the obstacles 
in developing these strategies.
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 Multi-digit Addition and Subtraction Strategies

 Strategies Framework

Table 32.1 shows an overview of the number-based and digit-based strategies for 
multi-digit addition and subtraction, based on earlier categorizations (Peltenburg, 
van den Heuvel-Panhuizen, & Robitzsch, 2012; Torbeyns, De Smedt, Stassens, 
Ghesquière, & Verschaffel, 2009). A first dimension along which the strategies can 
be categorized is the operation that underlies the solution process: addition or sub-
traction. In multi-digit addition there is only way of carrying out the operation, as 
direct addition: one operand is directly added to the other. By contrast, in multi-
digit subtraction, there are three different ways in which the operation can be carried 
out: as direct subtraction in which the subtrahend is taken away from the minuend, 
as indirect addition in which one adds on from the subtrahend until the minuend is 
reached (also called adding-on strategy), and as indirect subtraction in which one 
determines the difference by how much has to be taken away from the minuend to 
reach the subtrahend.

A second, complementary, dimension concerns how the numbers are dealt 
with. In sequential strategies (also called jump or N10 strategies), the numbers 
are primarily seen as objects on the (mental) number line and the operations as 
forward or backward movements along this number line. By contrast, in decom-
position strategies (also called split or 1010 strategies; e.g., Beishuizen, 1993; 

Table 32.1 Overview of solution strategies for multi-digit addition and subtraction

Number-based strategies

Digit- 
based 
algorithm

Sequential Decomposition Varying

Column- 
based 
strategy

Addition
e.g., 
38 + 46

Direct 
addition

38 + 40 = 78;
78 + 6 = 84

30 + 40 = 70;
8 + 6 = 14;
70 + 14 = 84

38 + 50 = 88;
88–4 = 84

38
46+
70
14+
84

1

38
46+
84

Subtraction
e.g., 
82 – 69

Direct 
subtraction

82 – 60 = 22
22 – 9 = 13

80 – 60 = 20;
2 – 9 = −7;
20 –7 = 13

For example, 
compensation
82 – 70 = 12;
12 + 1 = 13

82
69−
20
−7
13

7 12

82
69−
13

Indirect 
addition

69 + 3 = 72;
72 + 10 = 82;
3 + 10 = 13

9 + 3 = 12
60 + 10 = 70
3 + 10 = 13

69 + 1 = 70;
70 + 12 = 82;
1 + 12 = 13

Indirect 
subtraction

82 – 10 = 72;
72 – 3 = 69;
10 + 3 = 13

80 – 10 = 70;
2 – 3 = −1;
10 + 3 = 13

82 – 20 = 62
62 + 7 = 69
20 – 7 = 13
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Blöte, van der Burg, & Klein, 2001), the numbers are primarily seen as objects 
with a decimal structure, and the operations involve partitioning or splitting the 
numbers. The category of varying strategies includes diverse strategies that 
involve the adaptation of the numbers and/or operations in the problem, such as 
in the compensation strategy where one of the operands is rounded up to a near 
round number (e.g., subtracting 70 instead of 69 and compensating back the 1 
that was subtracted too much). Besides these three types of strategies, we distin-
guish – in line with Dutch (RME-based) mathematics educators – a fourth num-
ber-based strategy in Table 32.1: the column- based strategy, which essentially 
consists of the same numerical approach as the decomposition strategy. In the 
Dutch RME, this strategy is explicitly instructed as a separate strategy, function-
ing as an intermediate strategy bridging the gap between number-based strate-
gies and digit-based algorithms, by its “hybrid” nature of, on the one hand, 
operating on numbers rather than digits but, on the other hand, doing so in a 
standardized step-by-step sequence accompanied by a structured vertical 
notation.

In most countries the digit-based algorithms fall in the category of direct addi-
tion or subtraction.2 The main difference with the number-based strategies is that the 
integers are dealt with as digits, ignoring the place value they represent. For instance, 
in the digit-based addition strategy, one starts by adding the unit integers 8 + 6 = 14, 
then writes down the 4 and holds the 10 in memory as a 1, and then adds the tens 
integers 3 + 4 + 1 = 8. It is not before the 8 is combined with the 4 that the 8 turns 
out to represent 8 tens. The digit-based addition and subtraction algorithms proceed 
from the right to left (i.e., starting with the units, then the tens, etcetera).

 Children’s Strategy Use: Empirical Findings

As discussed in Verschaffel et al. (2007), studies on children’s number-based and 
digit-based strategy competencies conducted in the 1900s and early 2000s revealed 
that children rely on different types of number-based strategies before the standard 
digit-based strategies are introduced at school. The level of strategy variety tends to 
depend on the nature of the provided instruction: Children who received instruction 
that focused on the mastery of a given number-based decomposition or sequential 
strategy with hardly any attention for strategy variety tend to rely on only the 
instructed strategy and to demonstrate less strategy variety than children who 
experienced instruction that focused on strategy variety.

Furthermore, Verschaffel et  al. (2007) discuss how children’s use of number- 
based strategies is typically challenged by the introduction of the digit-based algo-
rithms for multi-digit addition and subtraction at school: Once the digit-based 

2 In some countries, such as Germany, the digit-based algorithm via indirect addition is used for 
subtraction; see Verschaffel et  al. (2007) for an example. This is also called the Austrian 
algorithm.
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algorithms are explicitly taught to the children, they tend to prefer these algorithms 
over the previously learnt number-based strategies, also on tasks for which the use 
of (specific) number-based strategies would be equally or even more efficient, such 
as 601 – 598 = _. However, children do not necessarily apply these newly learnt 
digit-based algorithms more efficiently, as illustrated by the frequent occurrence of 
errors due to the application of so-called “buggy procedures”–systematic erroneous 
procedures whereby one or more specific steps of the correct procedure are over-
looked or executed wrongly (e.g., always subtracting the smaller from the larger 
digit when applying the digit-based subtraction algorithm, resulting in errors as 
258 – 179 = 121).

Since Verschaffel et al.’s (2007) review, quite a number of researchers have con-
tinued to deepen our understanding of the variety, frequency, efficiency, and adap-
tiveness of children’s number-based and digit-based multi-digit addition and 
subtraction strategies. One particularly interesting way they did so was by using a 
more sophisticated research paradigm than before: the so-called choice/no-choice 
method developed by Siegler and Lemaire (1997); see also Luwel, Onghena, 
Torbeyns, Schillemans, and Verschaffel (2009). In this method, children solve prob-
lems in two different condition types: the choice condition where they are free to 
select their strategy, and in two or more no-choice conditions where they have to use 
a particular strategy. The choice condition allows investigating children’s strategy 
repertoire and variety, but strategy efficiency may be biased by selection effects. For 
instance, when a strategy is selected by weaker children and/or on more difficult 
problems, this strategy may seem less efficient than it actually is. The no-choice 
conditions overcome this because all children have to solve all problems with a 
particular strategy, allowing assessing the strategy’s efficiency (accuracy and speed) 
in an unbiased way. These unbiased strategy efficiency data can be used to address 
adaptivity to individual mastery of the strategies, by investigating the extent to 
which children select the strategy (in the choice condition) that is most efficient for 
him/her (based on data from the no-choice conditions).

A first series of studies addressed (mid and upper) primary school children’s 
number-based strategy competencies. Studies addressing children’s number-based 
decomposition, sequential, and varying strategy use on multi-digit additions and 
subtractions generally confirm the results discussed above. Children who received 
instruction with primary focus on the mastery of one specific type of (decomposi-
tion or sequential) number-based strategy tend to consistently apply the instructed 
(decomposition or sequential) strategy on different types of multi-digit addition 
and subtraction problems (Csíkos, 2016; Heinze, Marschick, & Lipowsky, 2009). 
By contrast, reform-oriented instructional approaches stimulate children’s efficient 
and adaptive use of different types of number-based strategies, including – although 
applied with limited frequency – varying strategies as compensation and indirect 
addition. Somewhat in contrast with this general finding, studies focusing on chil-
dren’s use of the number-based indirect addition strategy for multi-digit subtrac-
tions indicated that 9–12-year-olds frequently, efficiently, and adaptively rely on 
this indirect addition strategy, despite the strong instructional focus on and the 
frequent practice of (only) direct subtraction strategies (Peltenburg et  al., 2012; 
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Peters, De Smedt, Torbeyns, Ghesquière, & Verschaffel, 2013; Peters, De Smedt, 
Torbeyns, Verschaffel, & Ghesquière, 2014; Torbeyns, Peters, De Smedt, Ghesquière, 
& Verschaffel, 2017). Although children were hardly confronted with indirect addi-
tion during mathematics instruction, they tended to frequently and highly efficiently 
apply this strategy, with accuracy and speed of strategy execution being at least as 
high as for direct subtraction (Torbeyns et al., 2018). Moreover, notwithstanding 
the absence of instruction in this strategy, they even adaptively took into account the 
numerical characteristics of the subtractions when selecting indirect addition versus 
direct subtraction strategies (Peltenburg et  al., 2012; Peters et  al., 2013, 2014; 
Torbeyns et al., 2018) as well as their individual mastery of the different types of 
strategies (Torbeyns et  al., 2018). Importantly, these findings were observed for 
children of all mathematical achievement levels, including the lower-achieving chil-
dren (Torbeyns et al., 2018) and children with mathematical difficulties (Peltenburg 
et al., 2012; Peters et al., 2014).

Other studies focused on (middle and upper) primary school children’s use of 
number-based versus digit-based addition and subtraction strategies in different 
countries: the Netherlands, Belgium, Spain, and Taiwan (Hickendorff, 2013; 
Karantzis, 2010; Linsen, Torbeyns, Verschaffel, Reynvoet, & De Smedt, 2016; 
Torbeyns, Hickendorff, & Verschaffel, 2017; Torbeyns & Verschaffel, 2013, 2016; 
Yang & Huang, 2014). Confirming the results of previous studies in the domain, 
once being taught digit-based algorithms, many children tended to prefer them over 
number-based strategies (even applying the mental version of the digit-based algo-
rithm when required to compute entirely in the head). But, contrasting previous 
findings, they applied the digit-based algorithms remarkably efficiently, with an 
accuracy and speed level that was at least as high as for the (previously taught and 
highly frequently practiced) number-based strategies. Finally, children demon-
strated adaptive strategy choices, using number-based versus digit-based strategies 
in relation to the numerical characteristics of the problems (Torbeyns et al., 2018) 
and their individual mastery of the different types of strategies (Torbeyns & 
Verschaffel, 2013, 2016) but not the format of the problem (word problem versus 
symbolic problem; Hickendorff, 2013).

 Obstacles in Development

Cumulative evidence indicates that the acquisition of multi-digit addition and 
subtraction strategies is a real challenge for many children, especially these of 
lower mathematical achievement levels. As discussed in Verschaffel et al. (2007), 
previous investigations point to children’s limited conceptual understanding of 
number as one of the major sources of their difficulties in the acquiring and appli-
cation of number-based and digit-based strategies. Linsen et al. (2016) recently 
provided further support for this claim, by analyzing the relation between 
9–10-year-olds’ magnitude understanding (i.e., insight into the magnitude or value 
of the numbers) and number-based and digit-based strategy efficiency in the domain 
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of multi-digit subtraction. Their results revealed strong associations between 
children’s magnitude understanding and their efficiency in both types of strategies. 
But the observed associations were stronger for number-based than for digit-based 
strategy use, suggesting a larger involvement of children’s conceptual understand-
ing of numbers in the execution of the former than in the execution of the latter 
type of strategies. Moreover, children’s arithmetic fact knowledge for single-digit 
addition and subtraction was strongly related to their multi-digit strategy effi-
ciency, which points to a second possible obstacle for children’s multi-digit strat-
egy acquisition in the domain of addition and subtraction, namely, their mastery 
of single-digit facts.

In addition to children’s conceptual understanding of multi-digit numbers and 
their fluency with single-digit arithmetic facts, Selter, Prediger, Nührenbörger, and 
Hußmann (2012) discuss another possible obstacle for the development of fluency 
in multi-digit addition and subtraction, namely, their understanding of the arithme-
tic operations and their corresponding symbols (see also Robinson, 2017). For 
instance, using indirect addition on multi-digit subtractions relies on a broadened 
interpretation of the minus sign as indicating not only “taking away” (resulting in 
direct subtraction: taking away the smaller from the larger number) but also “bridg-
ing the difference” (enabling indirect addition). Likewise, when applying indirect 
addition, children have to understand the complementary relation between the addi-
tion and subtraction operation (i.e., understand that a  – b  =  ? can be solved via 
b + ? = a). For an extensive overview of the research on the role of understanding of 
the operations of addition and subtraction and their various arithmetical principles, 
see Baroody, Torbeyns, and Verschaffel (2009) and Robinson (2017).

The limited number of studies addressing the strategy competencies of children 
of the lower mathematical achievement levels and of children with mathematical 
difficulties did not yet provide unequivocal results about specific difficulties and 
the related foundational obstacles in their strategy development in the domain of 
multi- digit addition and subtraction (Peltenburg et al., 2012; Peters et al., 2014; 
Torbeyns, Hickendorff, et al., 2017; Torbeyns, Peters, De Smedt, Ghesquière, & 
Verschaffel, 2017). Studies with children without diagnosed mathematical diffi-
culties reported that children with higher general mathematical achievement 
level had higher levels of strategy variety, efficiency, and adaptivity (Torbeyns, 
Hickendorff, et al., 2017; Torbeyns, Peters, et al, 2017). However, the studies of 
Peltenburg et  al. (2012) and Peters et  al. (2013, 2014) indicated that children 
with mathematical difficulties are also able to frequently and adaptively apply 
various number-based strategies. Future studies in children of the lowest mathe-
matical achievement levels, including children with mathematical difficulties, 
are needed to get a better view on the contribution of children’s conceptual 
understanding of numbers, symbols, and operations (cf. Linsen et  al., 2016; 
Selter et  al., 2012; Torbeyns, Peters, De Smedt, Ghesquière, & Verschaffel, 
2016), their arithmetic fact knowledge (cf. Linsen et al., 2016), and other child- 
and context-related characteristics to their strategy development in the domain of 
multi-digit addition and subtraction.
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 Multi-digit Multiplication and Division Strategies

 Strategies Framework

There is much less consensus on the different types of strategies for multiplication and 
division than there is for addition and subtraction. Based on the existing frameworks 
(e.g., Buijs, 2008; Hickendorff, 2013; van Putten, van den Brom-Snijders, & Beishuizen, 
2005; Zhang, Ding, Lee, & Chen, 2017), in the current chapter, we propose a compre-
hensive classification system with dimensions comparable to those for multi-digit addi-
tion and subtraction: one dimension characterizing which operation underlies the 
solution process (multiplication or division) and the other dimension how the numbers 
are dealt with; see Table 32.2. Regarding the first dimension, in multi-digit multiplica-
tion there is only direct multiplication in which the underlying process is multiplica-
tion. In multi-digit division one can start with dividend in direct division. An alternative 
way to solve division problems is by indirect multiplication, also called multiplying-on 
(van den Heuvel-Panhuizen, Robitzsch, Treffers, & Köller, 2009) or reversed multipli-
cation (Ambrose, Baek, & Carpenter, 2003), where one starts with the divisor and 
determines how many times it has to be multiplied to reach the dividend.

With respect to the second dimension, within the number-based strategies, it is 
again possible to distinguish between sequential, decomposition, and varying strate-
gies. Sequential strategies involve movements forward or backward on the (mental) 
number line. In multiplication and division strategies, the sequential strategies are 
repeated addition or subtraction strategies, based on additive reasoning (e.g., see 
Larsson, 2016). In repeated addition, the multiplication problem 23 × 19 is solved, 
for instance, by adding the number 23 for 19 times. Of course, it is also possible not 
to repeatedly add single 23 s but multiples of 23 (see Table 32.2). Repeated addition 
can also be used to solve division problems within the indirect multiplication 
approach. In repeated subtraction, a division problem is solved by subtracting the 
divisor repeatedly from the dividend until there is nothing left. Again, it is possible 
to do this with single divisors or multiples of the divisor. By contrast, in decomposi-
tion strategies the numbers are decimally split (one or both operands in multiplica-
tion and only the dividend in division – splitting the divisor leads to an incorrect 
procedure). These strategies are, according to Larsson (2016), based on two- 
dimensional multiplicative reasoning. Varying strategies involve the adaptation of 
number and/or operations, like in the compensation strategy examples in Table 32.2. 
As a final number-based strategy, we again distinguish the column-based strategy, 
inspired by Dutch (RME) mathematics educators. The column-based strategy is a 
vertically notated schematized version of the decomposition strategy in multiplica-
tion and of the repeated subtraction strategy in division (e.g., Buijs, 2008; Treffers, 
1987; Van Den Heuvel-Panhuizen, 2008).

The digit-based strategies involve operating on the digits ignoring their place 
value. It is important to note that the digit-based multiplication algorithm proceeds 
from right to left, like the digit-based algorithms for addition and subtraction. 
By contrast, the digit-based division algorithm proceeds from left to right and does 
not work with only one digit at a time.

32 Multi-digit Addition, Subtraction, Multiplication, and Division Strategies
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 Children’s Strategy Use: Empirical Findings

Compared to multi-digit addition and subtraction, there is little research into chil-
dren’s solution strategies use in multi-digit multiplication and division. Verschaffel 
et al. (2007)’s summary of the (at that time) available studies showed that, as for 
addition and subtraction, children rely on different types of number-based strategies 
to solve multi-digit multiplication and division, before the digit-based algorithms 
were introduced at school. In multiplication, the use of number-based strategies 
seems to progress from sequential (i.e., additive) strategies to decomposition (i.e., 
multiplicative) strategies. In multi-digit division, children tend to progress from the 
sequential strategies repeated addition/subtraction with single divisors to more effi-
cient approaches using multiples (also called chunks) of the divisor. There is some 
evidence that once the digit-based algorithm is instructed, children rely heavily on 
that, abandoning the number-based strategies they had been using before.

Since the review of Verschaffel et al. (2007), few studies addressed children’s 
number-based strategy competencies in the domain of multi-digit multiplication 
and division. Buijs (2008) followed Dutch 9–10-year-olds’ strategy development in 
multi-digit multiplication. At each measurement point, children used the decompo-
sition strategies most often, and the use increased over time. The frequency of 
repeated addition strategies was rather low, contrasting with Larsson’s (2016) 
findings that Swedish 10–13-year-olds multi-digit multiplication strategy use 
remained to be heavily based on the repeated addition strategy.

Recent studies addressing (upper primary school) children’s multi-digit number- 
based and digit-based strategy competencies in multiplication and division have 
primarily been conducted in the Netherlands. One exception is the study of Zhang 
et al. (2017), investigating the strategy use across single-digit and multi-digit multi-
plication problems in 8–11-year-old children from the USA.  They found three 
distinct strategy use patterns, resembling different developmental levels: children 
who primarily used direct retrieval or the digit-based algorithm with high accuracy, 
children who primarily used number-based strategies (unitary counting, doubling, 
repeated addition, sequential, and decomposition strategies) with medium accuracy, 
and children who primarily used an incorrect operation or skipped the problems.

Before discussing the findings of the studies with Dutch children, it is important 
to note that due to the large influence of RME, the vast majority of the Dutch math-
ematics textbooks abandoned the digit-based algorithm for division for a long 
period of time (roughly mid-1990s–2010), because it was deemed very time- 
consuming to attain procedural mastery and at the same time rather meaningless 
and error-prone for children (Treffers, 1987; van den Heuvel-Panhuizen, 2008). 
Instead, the column-based strategy served as the standard written procedure. More 
recently, the digit-based division algorithm has returned in the latest version of the 
most common textbooks in the Netherlands (Royal Dutch Society of Arts and 
Sciences, 2009). A series of studies addressing Dutch 11–12-year-olds’ strategy use 
in multi-digit multiplication and division showed, first, that strategy use was much 
less dominated by the digit-based algorithm than in addition and subtraction; 
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 second, that in division children tended to use the column-based strategy as the 
preferred written procedure instead of the digit-based algorithm, in line with the 
instructional approach; and third, that the digit-based algorithms were as least as 
successful as the column-based strategies (Fagginger Auer, Hickendorff, Van Putten, 
Béguin, & Heiser, 2016; Hickendorff, 2013; Hickendorff, Heiser, Van Putten, & 
Verhelst, 2009). When analyzing the types of number-based strategies the children 
used, in multiplication, the decomposition strategies in which one or both of the 
operands were decimally split were the most often used number-based strategy in 
multiplication, whereas repeated addition was hardly used (Hickendorff, 2013), 
resembling the findings of Buijs’ (2008) in 9–10-year-olds. In division, the column- 
based strategy was the most frequently used number-based strategy; repeated sub-
traction without the structured vertical notation, repeated addition, and decomposition 
were used rather infrequently (Hickendorff, 2013). Very recently, Hickendorff, 
Torbeyns, and Verschaffel (2017) investigated cross-national differences between 
9–12-year-old children from the Netherlands and Flanders (Belgium) in solving 
multi-digit division problems. Children’s strategy profiles were generally in line 
with differences in instruction between the two countries, as, for instance, reflected 
by the absence of the column-based strategy in Flemish children’s strategy reper-
toire, although large intra- and interindividual strategy variety remained.

The few results regarding the adaptivity of strategy selection showed that, with 
respect using varying strategies in response to task characteristics, sixth graders’ 
use of the compensation strategy on problems suitable for compensation (e.g., 2475: 
25 via 2500: 25) was modest at most (Fagginger Auer, Hickendorff, & van Putten, 
2016; Hickendorff, van Putten, Verhelst, & Heiser, 2010) but somewhat higher in 
Dutch children instructed according to RME principles than in Flemish children 
being taught in a more traditional way (Hickendorff et al., 2017).

 Obstacles in Development

As in multi-digit addition and subtraction, the number-based strategies require 
sufficient conceptual knowledge of the place value system, and understanding of the 
arithmetic operations and symbols is also essential (e.g., Larsson, 2016; Robinson, 
2017). Furthermore, children need to have sufficient knowledge and skills in ele-
mentary arithmetic to solve multi-digit multiplication and division problems. The 
example strategies in Table 32.2 illustrate that in multi-digit multiplication mastery 
of the single-digit addition and multiplication facts are essential in a multi-digit 
division strategies (multi-digit), subtraction is also involved.

As in addition and subtraction, there are some common systematic errors (“buggy 
procedures”), for instance, in the digit-based algorithms N  ×  0  =  N, errors with 
 carries and errors in forgetting to write down zeros (Kilpatrick et  al., 2001; 
Verschaffel et  al., 2007). Larsson (2016) and Buijs (2008) identified a common 
error in number- based multiplication strategies: the incomplete factorization into 
partial products (e.g., 23 × 19 = 20 × 10 + 3 × 9). Larsson (2016) interpreted that 
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“buggy” strategy as an overgeneralization of addition strategies forming a structural 
hindrance for the conceptualization of the two-dimensionality of multiplication.

The discussed research findings signal some specific obstacles children may 
encounter. Larsson (2016) found that children’s understanding of multiplication 
was robustly rooted in repeated addition (and the associated understanding of mul-
tiplication in terms of equally sized groups). While this was found to be beneficial 
for their understandings of calculations and underlying arithmetical principles such 
as distributivity, it hindered them in making further steps in their multiplicative 
reasoning, for instance, in the fluent use of commutativity and in the proper concep-
tualization of decimal multiplication. In multi-digit division Dutch 11–12-year-olds 
seem to have difficulties making a choice between when and when not to write 
down their procedure and/or calculation steps: Substantial numbers of 11–12-year- 
olds solved the multiplication and/or division problems without writing anything 
down, and these nonwritten strategies were less accurate than written ones 
(Fagginger Auer, Hickendorff, & van Putten, 2016; Hickendorff et al., 2009). Two 
follow-up studies in division showed that demanding children who used nonwritten 
strategies to write down their working increased their performance: in all children 
(Hickendorff et al., 2010) or only in the children with lower mathematical achieve-
ment levels (Fagginger Auer, Hickendorff, & van Putten, 2016). Importantly, chil-
dren with lower mathematical achievement levels were found to use nonwritten 
strategies just as often, or even more often, than their higher-achieving peers. This 
suggests that lower mathematical achievers have difficulties selecting their strate-
gies, and multi-digit division problem-solving may be improved by promoting the 
use of written strategies. This is supported by the ideas that writing things down 
may both free up cognitive capacities and sequence the actions by schematizing 
(e.g., Buijs, 2008; Ruthven, 1998).

To the best of our knowledge, there is hardly any research addressing multi-digit 
multiplication and division strategies in children with mathematical difficulties. 
Only Zhang, Xin, Harris, and Ding (2014) investigated the effectiveness of strategy 
training interventions for children struggling with multiplication in a small-scale 
study with three 8–9-year-old children. Their results imply that children may expe-
rience difficulties in multiplication because their strategy development lags behind 
and that targeting (strategy) instruction to the individual child’s current level of 
strategy knowledge may be beneficial.

 Discussion

The current chapter focused on number-based and digit-based solution strategies for 
multi-digit addition, subtraction, multiplication, and division problems. Based on 
the strategy classifications used in the literature, we presented two similar, compre-
hensive frameworks for addition/subtraction and multiplication/division strategies. 
These frameworks are based on two complementary dimensions: first, the way 
the numbers are manipulated to compute the outcome, as whole numbers in 
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number- based strategies or as single digits ignoring their place value in digit-based 
strategies, and second, the kind of operation that is underlying the strategy. Within 
the number-based strategies, we distinguished sequential strategies, in which the 
operation involves movements along a (mental) number line, from decomposition 
strategies, in which the numbers are primarily seen as objects with a decimal structure 
and split and processed accordingly. Varying strategies involve the flexible adaptation 
of numbers and/or operations. Finally, the column-based strategy is an intermediate 
strategy between number-based and digit-based strategies due to its hybrid nature and 
its position in the RME-based instructional pathway.

Starting from these two frameworks, we discussed the empirical findings on the 
(development of) children’s solution strategies in multi-digit arithmetic. Compared 
to single-digit arithmetic, the research body is rather small, and in particular, studies 
addressing multi-digit multiplication and division remain remarkably scarce (see 
also Larsson, 2016). Further research addressing multiplication and division simul-
taneously is necessary, since these two operations and the relations between them 
are more difficult for children to understand and may require explicit instruction 
(Robinson, 2017). Relatedly it is interesting to note that the four multi-digit arith-
metic operations are very rarely addressed simultaneously, see Hickendorff (2013) 
for an exception, whereas mathematically, psychologically, and educationally, the 
operations are clearly interrelated. For instance, the work of Larsson (2016) signals 
the overgeneralization of aspects of additive reasoning to multiplication. In order to 
increase our understanding of (the development of) multi-digit solution strategies, 
further research into children’s multi-digit strategy competencies in the four opera-
tions and their interrelations is called for. Finally, an important remark is that the 
majority of the studies discussed were carried out in the USA or Europe, whereas 
cultural differences in preferred strategies have been reported which may be related 
to the curriculum (e.g., abacus instruction enhancing visualization strategies) as 
well as extracurricular culture-specific factors (e.g., language for numbers) (e.g., 
Campbell, Xue, & Campbell, 2001; Cantlon & Brannon, 2006). Future cross- 
cultural research would allow a broader perspective on children’s strategy develop-
ment in multi-digit arithmetic in different curricula and cultures.

The empirical findings show that children use a variety of number-based strate-
gies efficiently and adaptively, before the introduction of the digit-based algorithms. 
The introduction of the digit-based algorithms seems a critical instructional event: 
children show a large tendency to use the digit-based algorithms once they are 
instructed, and recent findings indicate that they do so rather efficiently. Furthermore, 
in the Dutch RME approach, the column-based strategies are introduced as a smooth 
transitory path between number-based strategies and the digit-based algorithm, or 
even – more radically – as a more insightful, more conceptually based alternative 
for these digit-based algorithms. Studies show that Dutch children perform equally 
well with column-based strategies as with the digit-based algorithm in division. 
Moreover, Flemish and Dutch children with rather different instructional settings 
perform equally well in the domain of subtraction and division. These results may 
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indicate that the column-based strategy may act as a fruitful stepping stone, or even 
alternative, to the digit-based algorithms. However, further research into the value of 
the column-based strategies, in particular for children with mathematical difficulties, 
is necessary.

All these results combined are relevant for the debate between proponents of 
different mathematics educational theories on the position and value of digit-based 
algorithms (e.g., Kamii & Dominick, 1997; Treffers, 1987). As noted before 
(e.g., Verschaffel et al., 2007), strategy efficiency may be at odds with other compo-
nents of mathematical competence, such as insightful and adaptive computations. 
The focus of mathematics education on these latter aspects is not only because these 
are expected to increase computational efficiency but also because mathematics 
education targets other goals as well, such as conceptual understanding of mathe-
matical operations and the disposition to choose flexibly from a repertoire of strate-
gies. These elements in particular may form a challenge for children with 
mathematical difficulties.

The acquisition of multi-digit arithmetic strategies is a real challenge for many 
children, especially those with mathematical difficulties. The major obstacles these 
children may encounter in multi-digit arithmetic seem to be their conceptual under-
standing, procedural fluency, and adaptive/flexible strategy selection. Children’s 
limited understanding of multi-digit numbers is likely one of the major obstacles in 
multi-digit arithmetic, since it is essential in the execution of both number-based 
and digit-based strategies. Moreover, children may have difficulties understanding 
the arithmetic operations and their corresponding symbols. Regarding procedural 
fluency, not having mastered single-digit arithmetic facts is an obstacle for children 
with mathematical difficulties in acquiring multi-digit strategies competence. 
Lastly, the research findings suggest that the adaptive selection of strategies from a 
repertoire of candidate strategies, and choosing when to write down the solution 
procedure instead of calculating in the head, may be challenging for children with 
lower levels of mathematical achievement.

Finally, this brings us to the issue of the effective strategy instruction for children 
with mathematical difficulties. Although the available studies show that at the group 
level there are differences in children’s strategy use that can be related to differences 
in the instruction they received, at the level of an individual child there are a lot of 
variety and manifestations of strategy preference and use that do not coincide with 
the nature of the instruction received. Given this complex relation between strategy 
instruction and strategy development, we plead for instruction that (a) acknowl-
edges that children develop their own strategies and stimulates children to use them, 
(b) diagnoses strategic development by ongoing assessment and progress  monitoring, 
(c) assigns tasks based on children’s current strategy level, (d) stimulates children to 
(self-)explain their strategies, and (e) provides explicit strategy instruction for 
struggling children (Zhang et al., 2014). Evidently, more research has to be done to 
optimize strategy instruction in the domain of multi-digit  arithmetic for children 
with mathematical difficulties.
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Chapter 33
Development of a Sustainable Place Value 
Understanding

Moritz Herzog, Antje Ehlert, and Annemarie Fritz

 Introduction

“0” is the Hindu–Arabic sign for the magnitude of nothing. “0” was the last numeral 
added to the Hindu–Arabic numbers. While other numbers have been represented 
for thousands of years, zero is relatively young: only about 1500 years old (Ifrah, 
1998). What is the point of a symbol of something that does not exist? Why not just 
omit the nonexistent? The ancient Babylonians, considered to be the first culture 
that used a place value system, did not see any reason to invent a number sign for 
zero. They just left a little gap between digits. Although this practice is rather error 
prone, the Babylonian place value system worked well enough that the way we 
partition the hour (60 min) or a circle (360°) can be referenced back to the ancient 
Babylonians (Ifrah, 1998).
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Even though the Babylonians did not have a zero, they required some kind of 
placeholder to distinguish numbers such as 2017 from 217 or 2107, as we know 
them today. Therefore, it might be no coincidence that the adoption of the place 
value system in Europe, the Middle East, and Asia – which resulted in the world-
wide use of the Hindu-Arabic number system – did not start until the ancient Indians 
invented a symbol for zero over 2000 years after the Babylonians invented a place 
value system. The fact that it took such a long time before zero joined the place 
value system illustrates how difficult its invention was (Ifrah, 1998). Accordingly, 
the place value system is difficult to understand for learners. Though research on 
learners’ trajectories toward place value understanding is of great theoretical and 
practical significance, it is still rarely addressed.

 Properties of Place Value Systems

The central concept of place value systems is to use symbols that carry information 
not only about the magnitude they represent but also about how many of a certain 
magnitude they hold. In additive number systems (e.g., the Roman system) a num-
ber like 2017 is written as MMXVII. Each symbol represents a certain quantity (M 
= 1000, X = 10, etc.) and the whole number is represented by adding up the values 
of all symbols: M + M + X + VII (= 1000 + 1000 + 10 + 5 + 1 + 1). How many of 
each bundle a number holds is represented by the quantity of the same symbols.

In contrast, in a place value system each digit provides information about the size 
and the quantity of the bundle it represents. While the quantity of the represented 
bundles is indicated by the face value of the digit, the bundles’ size has to be derived 
from the position within the number. The parts of a number are added as in additive 
number systems, yet the partition is strictly decimally structured, i.e., digits from 0 
to 9 in the decimal or base-ten place value system, e.g., 2017 = 2000 + 10 + 7 = 
2·1000 + 0·100 + 1·10 + 7·1.

The unique elegance and efficiency of the place value system allows the writing 
of infinitely big and (according to absolute value) small numbers with a finite set of 
symbols. This is facilitated by the following four properties (Ross, 1989):

• The positional property is the aforementioned additional information regarding 
the size of the bundles each digit holds by means of its position in the number.

• The base-ten property means that the bundles are powers of ten.
• The multiplicative property refers to the multiplication of the digits’ face value and 

the bundles they represent to construct the decimal decomposition of a number.
• The additive property expresses the additive composition of the decimal decom-

position of a number.
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 Place Value Understanding

The place value system is of cultural origin. Its invention is a historical achievement 
that strongly affected the development of culture. It took about 30,000  years to 
evolve from the first tally marks to a fully developed place value system (Ifrah, 
1998). Against this background it is no wonder that children do not understand the 
decimal structure of our number system automatically (Cobb & Wheatley, 1988; 
Fuson et al., 1997; Ross, 1989). Thus, place value understanding has to be attained via 
learning processes and begs the question: What are the necessary skills to understand 
the place value system?

Van de Walle, Karp, and Bay-Williams (2004) differentiate between conceptual 
and procedural aspects of place value understanding (see Fig.  33.1). Procedural 
place value understanding consists mainly of semiotic and linguistic insights into 
the structure of number words and reading skills regarding numerals, i.e., counting 
in decimal units (tens, hundreds, etc.) and multidigit arithmetic. The central element 
of the conceptual place value understanding is the relation between the decimal 
units, i.e., bundling and unbundling actions and different representations of decimal 

Fig. 33.1 Procedural and conceptual place value understanding (see also van de Walle et al., 2004)
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structures. The ability to integrate number words, numerals, and decimally struc-
tured representations of magnitude result in procedural and conceptual place value 
understanding (Fuson et al., 1997; van de Walle et al., 2004).

 Procedural Place Value Understanding

Even though, as research suggests, numbers are initially perceived as nonstructured 
entities, Hindu–Arabic numerals are decimally structured, i.e., they consist of differ-
ent digits that represent quantities of powers of ten, which increase from right to left. 
This decimal structure that is induced by the digits is the starting point for under-
standing of Hindu-Arabic numerals (Cobb & Wheatley, 1988; Fuson et  al., 1997; 
Ross, 1989). As the digits are differentiated, their positions are named. For example, 
in the number 2017 the 2 is in the thousands place and the 1 is in the tens place.

Corresponding to the structure of the numerals, most European languages, 
most Asian languages, and several African languages structure number words in 
the same way (Miura, Kim, Chang, & Okamoto, 1988; Pixner et  al., 2011; 
Zaslavsky, 1999). Each digit is expressed separately with power of ten and face 
values – except in some Asian languages and the numbers between 10 and 20. 
Number words are sorted in this way from the biggest to the smallest decimal 
unit, keeping the order of powers of ten in the verbal form.

There is some variance in transparency between the languages; however, the decimal 
structure in phrases for each place value seems to be relatively universal. The decimal 
structure of number words supports counting not only in steps of 1 but also in steps of 
bigger powers of 10. According to Fuson et al. (1997) a child’s competence in counting 
in units, tens, etc., reflects its representation of the decimal units and thus its develop-
ment of place value understanding. Flexible counting tasks are used to assess early 
place value understanding (Aunio & Räsänen, 2016; Chan, Au, & Tang, 2014).

 Conceptual Place Value Understanding

While procedural aspects of place value understanding are in the first place neces-
sary social conventions that children have to learn – i.e., how to write, read, and 
count numbers – place value conceptual aspects focus on children’s representations 
explaining why these conventions hold. Thus, conceptual place value understanding 
underlies and supports procedural knowledge.

Central to the place value system is the relation between the decimal units: 10 
units make up 1 ten, 10 tens make up 1 hundred, and so on. The significance of 
continued bundling for the understanding of place value is broadly recognized (e.g., 
Cobb & Wheatley, 1988; Ladel & Kortenkamp, 2016; van de Walle et al., 2004). 
The relation between the decimal bundling units allows more than one representa-
tion of a certain number (see Fig. 33.2). For example, 42 can be represented as 4 tens 
and 2 units (canonical), as well as 3 tens and 12 units or 2 tens and 22 units 

M. Herzog et al.



565

(noncanonical). The ability to structure numbers canonically and noncanonically 
has to be considered a main place value concept (Ladel & Kortenkamp, 2016; van 
de Walle et al. 2004).

The relation between tens and units can be visualized by bundling and unbun-
dling as well as trading acts. The most prominent visualizations are base-ten blocks, 
abaci, play money, or bundling sticks, which all support the bundling of ten units 
into one ten or at least trading in a similar way (Nührenbörger & Steinbring, 2008). 
By creating the bigger bundling unit from smaller units (e.g., combining ten little 
cubes into a tens stick), their equivalence becomes observable. Thus, decimally 
structured manipulatives are used in instructive settings and schooling (Fuson et al., 
1997; Nührenbörger & Steinbring, 2008).

The aforementioned manipulatives all share a cardinal representation of place 
value. That means that numbers can be decomposed into subsets of tens and units. 
Cardinal representations of numbers are considered a crucial number concept that is 
not acquired independently of instruction (Dehaene, 2011; Fritz, Ehlert, & Balzer,. 
2013). Besides the cardinal, also ordinal number representations are discussed in 
research—in particular, the mental number line on which numbers are aligned in 
increasing order (Dehaene, 2011). Symbolic magnitude comparison tasks suggest 
that digits might be processed separately, indicating an underlying base-ten structure 
of the mental number line (Nuerk, Moeller, & Willmes, 2015).

 Difficulties in Place Value Understanding

The way learners attain place value understanding is a topic that is not often 
researched. The literature mostly addresses learners’ difficulties in place value 
understanding and the role these difficulties play regarding mathematical learning 
difficulties. In particular, difficulties in procedural aspects have been given attention 
(e.g., Chan & Ho, 2010; Desoete, 2015; Nuerk et al., 2015). In contrast, difficulties 
in conceptual place value understanding have received relatively little focus.

Research has revealed that many children do not acquire a profound understand-
ing of place value (Fritz & Ricken, 2008; Fuson et al., 1997; Kamii, 1986; Ross, 
1989). Difficulties in place value tasks have been reported for nearly all grades, 
different countries all over the world, and learners from the whole performance 

Fig. 33.2 Canonical and noncanonical place value bundling
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range (Fritz & Ricken, 2008; Fuson et al., 1997; Gervasoni & Sullivan, 2007; Hart, 
2009; MacDonald, 2008). Place value understanding is a basis for mathematics in 
middle school and beyond (Moeller, Pixner, Zuber, Kaufmann, & Nuerk, 2011; 
Van de Walle et al., 2004). Studies have revealed a positive relation between place 
value understanding and basic arithmetic problems and operations – in particular, 
regarding standard algorithms (Fuson & Briars, 1990; Gebhardt, Zehner, & Hessels, 
2012; Nuerk et al., 2015).

Several authors describe how low skills and performance in place value can be 
seen as a predictor and a source of math difficulties (Cawley, Parmar, Lucas-Fusco, 
Kilian, & Foley, 2007; Chan & Ho, 2010; Desoete, 2015; Fuson et  al., 1997). 
Intervention studies involving grouping and trading actions between the place 
values as well as counting in “tens” showed that training of second graders’ place 
value understanding with help of base-ten blocks improved addition and subtraction 
performances (Fuson & Briars, 1990; Ho & Cheng, 1997). In particular, written 
standard algorithms are affected by place value training (Cawley et al., 2007).

Regarding the notation of Hindu-Arabic numerals, difficulties in mapping 
numerals and magnitude representations have been reported (Byrge, Smith, & Mix, 
2014; Zuber, Pixner, Moeller, & Nuerk, 2009). Young children tend to write num-
bers according to their verbal form: “seven hundred fifty three” might appear as 
“700,503” or “70053” or “7100503.” These children probably do not combine the 
decimal addends correctly and/or do not perceive the decimal addends as multiples 
of decimal units.

The transparency of number words affects the difficulties children have in learn-
ing them and mapping them onto numerals. For example, in German and Dutch, 
“27” is read as “seven and twenty.” This is a less transparent way of speaking – 
known as tens-units inversion – and is more prone to errors, leading to lower perfor-
mance in transcoding and number line estimation tasks (Dowker & Roberts, 2015; 
Pixner et al., 2011).

The contrast in the transparency of number words between European and Asian 
languages motivated several cross-cultural studies to research the effects of number 
word systems on place value understanding and early numeracy (for an overview 
see Okamoto (2015), Miller, Smith, Zhu, and Zhang (1995)) revealed that the devel-
opment of number word chain repetition in Asian languages and English proceeds 
similarly except for the numbers 10 to 20. In this number range, Asian- speaking 
children outperform English-speaking children. Recent studies replicated this result 
and added the limitation that this initial advantage does not persist over the years 
(Mark & Dowker, 2015).

 Development of Place Value Understanding

As described, place value understanding involves knowledge of various more or less 
complex concepts and procedures. However, knowing the components of place value 
only provides hints about how a sustainable place value understanding is developed – 
and how it can be taught. Competency models of place value understanding can struc-
ture the building blocks that a subject analysis provides and inform about possible 
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difficulties and barriers a child encounters while learning. Naturally, such models 
need a sound theoretical foundation as well as empirical validation.

Over the last 30 years, quite a few competency models have originated. Below, 
the models of Cobb and Wheatley (1988), Fuson et al. (1997), and Ross (1989), 
which have had a great influence on research related to place value, are described 
and their similarities are emphasized. Figure 33.3 aims to provide an overview of 
the communalities of these models.

 Nonstructured Numbers

All authors state that children initially do not perceive the decimal structure in num-
bers. According to Cobb and Wheatley (ten as a numerical composite), a ten “is 
structurally no different from the meaning given to other number words” (1988, 
p. 4). On this initial level, ten represents ten counting steps. Thus, children on this 
level focus on the individual steps rather than on the whole of the steps; “ten” has 
no property referring to the magnitude of ten. Fuson et al. (1997) (unitary multi-
digit) suppose that this results from a similar view of single-digit numbers that is 

Fig. 33.3 Synopsis of theories on place value development (C&W=Cobb & Wheatley, 1988; 
F=Fuson et al., 1997; R=Ross, 1989)
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maintained and transferred to two-digit numbers. Ross states that on the first level 
(whole numeral), children see numbers as unitary and not decimally structured, and 
thus the digits hold no information; rather, it is the whole numeral that represents a 
certain number.

 Identifying Decimal Units

It is not until the second level that children pay attention to digits. According to 
Ross (1989) (positional property) and Fuson et al. (1997) (decades and ones), the 
first knowledge they gain is the names of the place values and their position within 
the numeral. Consequently, children on this level can name and show place value 
positions as well as partitions of a number decimally. For example, children know 
that “35” has a tens part (3) and a units part (5). Sometimes learners tend to write 
“305,” keeping the 30 as they are not yet integrating both parts. This error is found 
also for three-digit numbers with simultaneously correct tens-and-units notation 
(e.g., “70053” instead of 753), indicating that hundreds as a bundling unit are not 
yet integrated into the existing concepts of a place value for two-digit numbers 
(Byrge et al., 2014).

Following Cobb and Wheatley (1988), children subsequently construct a type of 
unit called “ten”. On this level (ten as an abstract composite unit), children can 
count in steps of ten from the middle of a decade on but are reliant on some kind of 
visual aid that is presented to the children. Some children are then able to detach 
from the presentation of material and coordinate the ten-structured counting as they 
keep track of the counting act with the help of their fingers.

 Ordinal Aspect of Place Value Understanding

Cobb and Wheatley (1988) and Fuson et  al. (1997) differentiate how the relation 
between tens and units is interpreted into a cardinal and an ordinal aspect on their 
third and fourth levels, which the authors derive from predominant counting strate-
gies. Both state that these levels are acquired independently and in no specific order. 
Some children tend toward an ordinal understanding of place value, i.e., following 
Cobb and Wheatley (1988) (ten as an iterable unit) and Fuson et al. (1997) (sequence 
tens and ones) they tend to count in steps of tens, independent of the starting number. 
For example, 71 − _ = 39 is solved by counting 71, 61, 51, 41–40, 39, and keeping 
track of the counting steps taken. The aspect of ten as a bundling unit is less empha-
sized according to this understanding. Tens are rather understood as unitary counting 
intervals on the number line.

Ross (1989) suggests that the ordinal aspect precedes the cardinal aspect. According 
to her, children do not see the tens part as multiples of ten on this level (face value). 
Learners on this level know that, for example, in the number 53 the 5 represents 50; 
however, they do not interpret the 50 as 5 bundles of ten. Thus, children on this level 
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focus rather on the numbers that the digits represent individually instead of relating 
them to bundling units.

 Cardinal Aspect of Place Value Understanding

Regarding those that tend toward the cardinal place value aspect, Cobb and Wheatley 
(1988) and Fuson et al. (1997) report that these children focus on tens as bundling 
units. Children on this level are supposed to use a counting strategy that counts com-
plete decades (one ten, two tens…) first before facing the units. They solve 37 + 24 by 
counting 37, 40, 50, 60, and 61. Cobb and Wheatley (1988) (ten as an abstract collect-
ible unit) and Fuson et  al. (1997) (separate tens and ones) interpret the separated 
counting of tens and units as cardinal understanding of the bundling units.

Ross (1989) describes that children on this level (construction zone) understand 
digits as representations of bundles of units, tens, etc. Although they know that tens 
are bundles of ten units, they do not know about the relation between tens and units 
at this time. Their knowledge allows them to solve tasks that involve canonical but 
not noncanonical partition. This stage “is characterized by unreliable task perfor-
mances” (Ross, 1989, p. 49).

 Integration of Cardinal and Ordinal Aspects

The integration of cardinal and ordinal aspects is seen as an important step in the 
development of place value understanding by Cobb and Wheatley (1988) and Fuson 
et al. (1997) (integrated sequence-separate tens and ones). The integrated place value 
understanding allows for flexible perspectives on tens and units, which facilitate 
using counting strategies fluently and reliably for two-digit arithmetic. According to 
Ross (1989) (understanding), children on this level know that the digits of a number 
represent a canonical partition into groups of units and tens. As they get insight into 
the relation between tens and units, children can also handle noncanonical partitions 
including bundling and unbundling flexibly by deriving the whole quantity from its 
parts as well as deconstructing the whole into partial quantities. How exactly level 
learners attain a conceptual place value understanding is not explained in this model.

 Nonsustainable Concepts

Children do not always develop useful representations of place value. Cobb and 
Wheatley (1988) (ten as an abstract singleton) and Fuson et al. (1997) (concate-
nated single digit) describe such developments as concepts that separate tens and 
units. Tens and units are not viewed in relation to each other; they exist beside each 
other, i.e., “tens” do not have a “ten-ness” about them. Thus, children on this 
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misleading level count tens while saying single-digit number words without know-
ing that they represent bundles of ten. Following the authors, this understanding 
inhibits the development of a sustainable place value understanding.

Both of the central counting strategies Fuson et al. (1997) assigned to their levels 
could be found in an empirical study. When presented with paper strips with various 
numbers of tens and units similar to base-ten blocks, Chinese children used both 
counting strategies (Chan et al. 2014). However, this is the only empirical validation 
of the models presented.

 Our Own Model

Although for some time place value understanding has been referred to by many 
researchers, there is still a lack of empirical research to validate the competency or 
progression models. To be considered a valid model, the model should be based on 
a profound and broad theoretical framework, as well as on empirical validation.

The models described above mostly focus on counting strategies that are used as 
assessments of place value development and characterization of levels. Counting is 
surely an important learning step during the development of arithmetic competen-
cies (Desoete, Ceulemans, Roeyers, & Huylebroeck, 2009; Fritz et  al., 2013). 
Persistent counting as the main or only computation strategy, however, is related to 
poor performances in math and thus is considered a characteristic and indicator of 
math difficulties (Aunio & Räsänen, 2016; Fritz et al., 2013). For this reason, the 
conceptual development of place value deserves more attention.

In order to fill these gaps, through empirical validation and a focus on theoretical 
concepts, Herzog, Fritz, and Ehlert (2017) aimed to assess learners’ conceptual and 
procedural place value understanding. A broad theoretical basis was reviewed, items 
to assess procedural and conceptual knowledge were constructed, and several pilot 
studies were conducted (in 2010–2016) with about 10,000 children from Grades 2 
to 5  in total. Finally, a hierarchical sequence of levels describing the conceptual 
place value competencies was developed and proved.

The model contains 5 levels that are hierarchically designed—each level builds up 
on the previous levels. Since the model focuses on place value concepts, the described 
concepts are cumulative, too. However, the place value concepts of the model do not 
replace previous concepts. They overlap them and become predominant in most 
situations. Previous concepts remain available to children and might be linked to certain 
tasks where they are still mainly used (Rittle-Johnson, Siegler, & Alibali, 2001).

 Predecadic Level

In accordance with earlier models, children start their place value development with 
no knowledge about place values at all (Cobb & Wheatley, 1988; Fuson et al., 1997; 
Ross, 1989; van de Walle et al., 2004). Multidigit numbers appear to them as unitary 
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entities that do not have a special partition into tens and units. Thus, children on this 
level might be able to decompose a number (e.g., 14 into 8 and 6) but would not 
detect decimal partitions as more relevant and related to number words or Hindu-
Arabic numerals.

 Level I: Place Values

The first step toward a sustainable place value understanding for children is when 
they start to distinguish between the bundling units, as previous research has revealed 
(Cobb & Wheatley, 1988; Fuson et al., 1997; Ross, 1989; van de Walle et al., 2004). 
Children on this level know the bundling units and can assign them to the positions 
of digits in Hindu-Arabic numerals (see Fig. 33.4).

The number range for this skill depends largely on instruction, i.e., children need 
to be taught the place values and their positions. However, the number range itself 
does not affect the difficulty of these tasks significantly, i.e., children only need to 
learn new names for digits in their respective position to enhance the number range. 
However, an understanding of the relation between the bundling units is not 
necessary.

Their knowledge at this stage enables them to construct and decompose numbers 
into their canonical partitions. Canonical partitions are not limited to a certain num-
ber, yet learners have to know the involved positions. However, they do not know 
how these partitions feature in the place value system. They derive them from the 
numerals and the number words. At this stage, the bundling units stay unrelated and 
cannot be transferred to each other. For this reason, addition tasks are feasible up to 
1000, but only without carries.

 Level II: Tens-Units Relation with Visual Support

On this level, children understand the relation between tens and units if they have 
some kind of visual support. According to Cobb and Wheatley (1988), children 
need visual aids to relate tens and units at the early stages. The concept of ten is not 
yet elaborated enough that it forms a kind of bundling unit, and there is no abstract 

Fig. 33.4 Example item on Level I
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property of “being ten units” in a ten. If children on this level have access to a 
decimally structured visual aid, they can handle noncanonical representations 
(see Fig. 33.5).

However, the relation between tens and units has to be verified by counting the 
units in a ten or comparing ten units and one ten. For example, when using base-ten 
blocks of different size, some children will pay more attention to the blocks’ exten-
sion than to their amount. The concept of ten is closely linked to a symbol (base-ten 
blocks) or counting acts. Without such a supportive visual aid, children cannot han-
dle noncanonical partitions. Children seem to understand the relation between tens 
and units in a functional way on this level. Bigger decimal bundling units are not 
interrelated on this level.

Arithmetic routines are internalized well enough for the child to be able to solve 
addition tasks without carries in an unlimited number range and subtraction tasks 
without carries up to 100. Those tasks can be solved by digit-separating strategies 
(e.g., tens + tens and units + units); thus, automatized concepts from Level I are 
 sufficient. Addition tasks that require carries are feasible to them only for two-digit 
numbers; maybe counting routines and mental representations of structured manip-
ulatives, as described by Cobb and Wheatley (1988), facilitate this.

 Level III: Tens–Units Relation Without Visual Support

While children detach from visual aids and internalize the relation between tens and 
units, they acquire the concepts of Level III. At this stage, they do not have to verify the 
equivalence of ten units to one ten. To them, ten is no longer simply a symbol but a 
bundle of ten single units that are combined into an abstract unit. This concept enables 
them to handle noncanonical representations without a visual aid (see Fig. 33.6).

In contrast to Cobb and Wheatley (1988), we state that conceptual and sustain-
able knowledge of the tens-units relation is not facilitated by counting acts. Ten has 
a cardinal meaning that is sufficiently abstract to be independent from concrete 
representations and counting routines. Counting acts, of course, remain a necessary 

Fig. 33.5 Example item 
on Level II
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skill in certain situations, e.g., when asked to determine which number is represented 
with base-ten blocks. However, children are no longer reliant on this strategy to 
interrelate tens and units. At this stage, the abstract knowledge of the tens-units 
relation remains limited to two-digit numbers and higher bundling units like hundreds 
and thousands therefore cannot be handled in an abstract way.

While the relation between tens and units is automatized and abstracted on this 
level for two-digit numbers, three-digit numbers are already slowly integrated into 
this concept. This means that for the bundling of tens and hundreds, learners will 
still rely on visual aids. Just as was the case for units and tens on the previous level, 
learners will construct and verify the relation between tens and hundreds via count-
ing. Thus, concepts regarding tens and units are not automatically transferred and 
applied to bigger bundling units.

As Ross (1989) stated, children are often able to solve complex arithmetic tasks 
without having a sound conceptual basis. Although children on Level III only under-
stand the relation between tens and units up to 100, they can solve additions and 
noncarry subtraction tasks in any number range; subtraction tasks with carries 
remain limited to the number range up to 1000.

 Level IV: General Decimal-Bundling-Unit Relations

Although bundling and unbundling principles do not vary across the number range, 
children show difficulties in transferring the concepts of tens and units to three- and 
more-digit numbers (Herzog, Fritz, et al., 2017). The findings by Byrge et al. (2014) 
support these results, as similar errors can be found for two- and three-digit num-
bers (see above). On the fourth and final level, children expand the concepts of 
bundling and unbundling between the decimal units into higher number ranges and 
thereby further bundling units. They can handle abstract noncanonical partitions for 
multidigit numbers in general (see Fig. 33.7).

Once they understand the relation between decimal bundling and unbundling, 
children can apply this concept to higher numbers without limitation of the number 
range; only if they do not know certain place values (e.g., very high place values 
like billions) can their place value concepts not be linked to these bundling units. 
Also, subtraction tasks are feasible to them in any number range on Level IV. As 
bundling concepts and arithmetic performances are acquired to a maximal extent, 
the model is considered to be completed with this level.

Fig. 33.6 Example item on Level III
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 Empirical Research

As stated, the model was developed on the basis of several pilot studies that used a 
Rasch analysis. In a Rasch analysis, item difficulties and person abilities are repre-
sented on the same scale. This allows the comparison of items regarding their dif-
ficulty. Items that share the same conceptual requirements are expected to be of a 
similar difficulty. In other words, the hierarchy of levels described in the model is 
supposed to be reflected in the items’ difficulties, too. Items of lower levels should 
be easier than items of higher levels (Dunne, Long, Craig, & Venter, 2012).

In a study with about 1300 learners from Grades 2 to 5 the model was under-
pinned by means of a Rasch analysis (Herzog, Fritz, et al., 2017). The results of this 
study were recently able to be replicated in a further study with over 500 fifth grad-
ers (Herzog et al., in preparation).

A comparison of learners from different grades revealed that younger learners in 
general are on lower levels than older learners. A cross-sectional study revealed a 
significant improvement toward higher levels as the age of learners increased 
(Herzog et al., in preparation). This result suggests that learners rise through the 
described levels as they develop place value concepts.

The model hierarchy seems to be valid not only in German but also in English. 
In a study with about 200 South African learners from Grades 2 to 4, the level hier-
archy was replicated in an English test version (Herzog, Ehlert, & Fritz, 2017). This 
suggests that language and cultural backgrounds have little impact, if any, on the 
conceptual understanding of the place value structure.

 Conclusion

Competency models allow us to identify and specify barriers in mathematical 
learning. These barriers indicate which concepts really facilitate place value under-
standing and which learning steps are particularly difficult for learners. Knowledge 
of these learning barriers gives us the ability to design tools for learning in the 
classroom as well as individual fostering (Fritz et al. 2013).

Several studies reveal that many leaners have difficulties grasping place value, 
yet empirically evaluated information regarding the prevalence is rare (e.g., Chan & 
Ho, 2010; Desoete, 2015; Fritz & Ricken, 2008; Kamii, 1986; Nuerk et al., 2015; 
Ross, 1989).

Fig. 33.7 Example item on Level IV
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 Barriers in the Development of a Sustainable Place Value 
Understanding

A sustainable place value understanding consists of various skills that children 
have to learn. Not all of them appear to be really challenging and result in severe 
difficulties. Research is mostly focused on procedural place value understanding 
difficulties, i.e., the mapping of number words, numerals, and canonical magnitude 
representations have been discussed as the main learning barriers in place value 
understanding (Cobb & Wheatley, 1988; Fuson et al., 1997; Schulz, 2014; van de 
Walle et al., 2004). This refers, in particular, to transcoding between the elements 
of the triple-code model (Dehaene 1992; Dehaene & Cohen, 1995). Different lev-
els of conceptual place value understanding, like knowledge of number partitions 
and canonical and noncanonical representations in varying number ranges, have 
been mostly neglected.

In our empirical studies, however, procedural transcoding did not appear to be 
the crucial skill for most learners. In a study with 404 German fourth and fifth grad-
ers, which included students with all socioeconomic backgrounds represented 
equally and covered the whole performance range, about 6% of learners failed to 
even reach Level I.  These children had difficulties with procedural place value 
understanding and did not perceive the decimal structure of numbers. Only the very 
poorest- performing learners at the end of primary school had difficulties in trans-
coding tasks. Another 24% had attained the concept of decimally structured num-
bers and reached Level I. These learners showed serious difficulties in place value 
understanding as they could not relate the bundling units with or without visual aids 
(Fuson et al., 1997), although they could solve procedural place value tasks. In con-
clusion, procedural place value understanding is a learning barrier only to a small 
percentage of learners; the larger number of learners with poor place value profi-
ciency tend to get stuck on the important concepts regarding the relations between 
the bundling units.

Therefore, it is obvious that the efficiency and elegance of the place value system 
relies on a conceptual understanding. The use of efficient computing strategies is 
only facilitated if the relation of the bundling units is internalized and carrying, 
borrowing, and trading acts can be conducted instantly. If these concepts are not 
internalized, the advantages of the place value system that arise from its properties 
are hindered.

Place value concepts are not transferred and applied automatically to bigger 
numbers. Although it is obvious that the system of bundling and unbundling is the 
same for carries at any position, children seem to stick to tens and units initially. 
This corresponds to recent research results (Byrge et  al., 2014). In this respect, 
learners often apply “old” concepts to “new” tasks, notwithstanding that they are 
not appropriate. For example, children below Level III predominantly failed the last 
task in Fig. 33.8 (“3284”) because they do not know how to handle noncanonic 
representations without visual aids. Instead, on these tasks, they apply the routine of 
canonical representations (i.e., lining up all parts of the place value chart in the 

33 Development of a Sustainable Place Value Understanding



576

given order). In contrast, the most frequent wrong answer from children on Level III 
is “332.” These learners know how to relate tens and units in noncanonical represen-
tations and apply that concept (i.e., combining tens and units) to this task.

 Educational Implications

At the end of primary school, learners are expected to have achieved a sustainable 
place value understanding. Learners are supposed to know the decimal structure and 
digit names of multidigit numbers (Level I), understand how tens and units are 
related with visual aids (Level II), internalize the tens-and-units’ relations indepen-
dently from manipulatives (Level III), and handle bigger bundling units (Level IV). 
These concepts are important requisites for subsequent mathematical contents – for 
instance, decimal fractions or units of measure.

In our aforementioned study, 30% of the learners were far from a sufficient concep-
tual place value understanding (i.e., below Level II). This corresponds to earlier find-
ings that revealed missing place value understanding in learners from different grades, 
too (Fritz & Ricken, 2008; Gervasoni & Sullivan, 2007; Kamii, 1986; Ross, 1989).

A reason might be that in assessment and instruction, place value is often addressed 
rather superficially. To the best of our knowledge, there is no specific test or training 
for procedural and conceptual place value understanding. Place value is often tied to 
procedure-oriented applications of place value understanding, like addition and sub-
traction with carries or written standard algorithms (e.g., Dowker & Morris, 2015; 
Lonnemann & Hasselhorn, 2018). Those tests allow for differentiation of easy and 
difficult tasks. For instance, addition tasks without carries are easier than those with 
carries, while the number and position of the carries affect the task difficulty, too.

However, this only gives limited information regarding why certain tasks are 
easy and others are difficult. What makes subtraction tasks with carries more diffi-
cult, and why does it matter if the carry is at the units or the hundreds position? 
Against the background of our model, subtraction tasks without carries require 
knowledge of the digits (Level I). Subtraction with carries requires at least proce-
dural unbundling of tens in units (Level II) or, depending on the task, unbundling of 
bigger bundling units (Level III) is necessary. The variance in task difficulties is 
often trivialized rather than based on specific place value theories.

Fig. 33.8 Example item 
on different levels
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 Future Perspectives

Empirical research suggests that children pass through the reported level sequence 
as they develop a conceptual place value understanding. This hypothesis has to be 
confirmed in a longitudinal study in the future. Results from such a study could add 
to the existing data and underpin the level sequence in the sense of a progression 
model.

Recent research revealed that poor performance in place value-related tasks 
contributes to mathematical difficulties. It might serve as an empirically validated 
theoretical framework for the influence of conceptual place value understanding on 
arithmetic. This applies, in particular, to task performances and the use of strategies 
that rely on place value understanding.

The results of our study show that a substantial number of learners need specific 
place value training. Empirically validated theories provide information about the 
concepts that allow derivation of specific instruction. Thus, place value training 
should be designed on the basis of the level sequence. Such intervention would match 
learners’ trajectories and pay attention to important milestones in the development of 
sustainable place value understanding.
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Chapter 34
Understanding Rational Numbers – 
Obstacles for Learners With and Without 
Mathematical Learning Difficulties

Andreas Obersteiner, Kristina Reiss, Wim Van Dooren, and Jo Van Hoof

 Introduction

An understanding of rational numbers is important not only for the daily life/day-to-
day life but also for further mathematical development (Bailey, Hoard, Nugent, & 
Geary, 2012; Booth, Newton, & Twiss-Garrity, 2014; Siegler et al., 2012; Siegler, 
Fazio, Bailey, & Zhou, 2013; Torbeyns, Schneider, Xin, & Siegler, 2015). However, 
research over the past decades has provided broad evidence that learning of rational 
numbers, particularly of fractions, is a great challenge for many children (Behr, 
Wachsmuth, Post, & Lesh, 1984, 1985; Carraher, 1996; Cramer, Post, & delMas, 
2002; Hart, 1981; Siegler & Pyke, 2013; Stafylidou & Vosniadou, 2004; Vamvakoussi 
& Vosniadou, 2004). Most of these studies in mathematics education concentrated 
on typical misconceptions or on mistakes that learners make when working with 
rational numbers. More recently, cognitive psychology and neuroscience contrib-
uted to this research and investigated the cognitive and neural mechanisms that 
underlie the mental processing of rational numbers (DeWolf, Chiang, Bassok, 
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Holyoak, & Monti, 2016; DeWolf, Grounds, & Bassok, 2014; Gómez, Jiménez, 
Bobadilla, Reyes, & Dartnell, 2015; Ischebeck, Schocke, & Delazer, 2009; Matthews 
& Chesney, 2015; Siegler et al., 2013). It appears that learning rational number 
concepts requires the extension of properties that all numbers share (Siegler, 
Thompson, & Schneider, 2011) but also the reorganization of the previously 
acquired concept of number. Emphasizing learners’ challenges, learning of rational 
numbers has been considered an instance of conceptual change (Stafylidou & 
Vosniadou, 2004; Vamvakoussi & Vosniadou, 2004). In addition to conceptual 
change, there seem to be subtle cognitive mechanisms that make working with 
rational numbers difficult even if learners have understood the concept of rational 
number. As working with natural numbers is strongly automatized, intuitive 
response tendencies related to natural numbers can interfere with more demanding 
cognitive processes required by rational number problems. Researchers have used 
dual process theories to describe the cognitive mechanisms underlying the system-
atic bias caused by natural numbers when working with rational numbers 
(Vamvakoussi, Van Dooren, & Verschaffel, 2012).

In the following two sections, we elaborate on the conceptual change approach 
and on dual-process theories as theoretical frameworks for understanding learners’ 
difficulties with rational numbers.

 Learning of Rational Numbers: Learning a New Concept

Rational numbers can be defined as those real numbers that can be represented as 
the quotient a/b of two integers, a numerator a and a denominator b, with b unequal 
to zero. Rational numbers share many properties with natural numbers, which chil-
dren are typically familiar with long before they learn about rational numbers. For 
example, rational and natural numbers can both be ordered according to their sizes 
and represented on the same number line. However, rational numbers also differ in 
important ways from natural numbers, and these differences are potential obstacles 
for learners (see Prediger, 2008). Before we review empirical studies that docu-
mented learners’ difficulties, we elaborate on four important differences between 
natural and rational numbers.

A first difference concerns the way symbols for natural numbers and rational 
numbers represent numerical sizes or magnitudes. Understanding the magnitude of 
a given natural number requires some understanding of the magnitudes of its digits 
and of the base-ten system. Comparing the sizes of two natural numbers is straight-
forward because it can be done in a digit-by-digit manner. By contrast, understand-
ing the magnitudes of fractions requires an additional understanding of the 
multiplicative relationship between two natural numbers. For instance, understand-
ing the magnitude of 5/11 requires an understanding that 11 is a bit more than 2 
times 5. Comparing two fractions is straightforward only if they have the same 
denominator or the same numerator, because in these cases, comparing the fractions 
requires only comparing natural numbers: 4/7 is larger than 2/7 because 4 is larger 
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than 2; 4/7 is smaller than 4/5 because 7 is larger than 5. Comparing two fractions is, 
however, difficult if the fractions do not have common components. For example, to 
compare the fractions 2/3 and 4/7, reasoning about the natural number components 
alone is not sufficient. In fact, the fraction with the smaller components (2/3) repre-
sents the larger number. Comparing two decimal fractions is also more difficult than 
comparing two natural numbers because the number of digits does not necessarily 
align with overall number magnitudes as it does for natural numbers. For example, 
1.6 is larger than 1.452 although the latter has more digits.

Another conceptual difference between natural and rational numbers is density. 
Natural numbers have a unique predecessor (provided the number is larger than 1) 
as well as a unique successor, and between any two natural numbers, there is a 
limited number of other numbers. Rational numbers, however, are dense, which 
means that an infinite number of numbers lies between any two different rational 
numbers. This property implies that rational numbers do not have unique predeces-
sors or successors.

A third difference can be labelled as representation: While natural numbers have 
a unique symbolic representation (within the base-ten system), there are infinitely 
many different symbolic representations for any rational number. For instance, the 
symbols 1/2, 2/4, 3/6, and 0.5 all represent the same number.

Finally, rational numbers differ from natural numbers with respect to the effect 
that operations have on these numbers. While addition and multiplication (by a 
number other than 1) among natural numbers always increase the initial number, 
this is not generally true for rational numbers. Multiplying by 1/2 makes a number 
smaller. Similarly, subtraction and division (by a number other than 1) among natu-
ral numbers always decrease the original number. Again, this is not generally true 
for rational numbers. For instance, dividing by 1/2 makes the initial number larger. 
In addition to the differences in the effect that operations have on numbers, it is 
more difficult to explain the meaning of these operations with rational numbers than 
it is for natural numbers. For example, among natural numbers, multiplication can 
easily be explained as repeated addition (e.g., 3 × 2 = 2 + 2 + 2), and division can be 
explained as equal sharing or partitioning. However, these explanations are not as 
meaningful for rational numbers. For example, it is not so clear how to add 5/8 times 
the number 3/4, which would be the corresponding explanation for the multiplication 
5/8 × 3/4.

When children first learn about rational numbers, they have already worked 
intensively with natural numbers and consequently developed a concept of what 
numbers are and how operating with numbers works. As rational numbers differ in 
important ways from natural numbers, learners have to modify their concept of 
number. Conceptual change theories propose that acquiring a new concept does not 
only require integrating new information into existing knowledge structures but also 
requires reorganizing the initial concept (Stafylidou & Vosniadou, 2004; 
Vamvakoussi & Vosniadou, 2004).

There is empirical evidence that each of the four conceptual differences between 
natural and rational numbers described above are challenging when children learn 
about rational numbers. Concerning the aspect of size, there is empirical evidence 
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that when children compare the numerical values of fractions, they initially often 
choose the one with the larger components (Clarke & Roche, 2009; Rinne, Ye, & 
Jordan, 2017; Stafylidou & Vosniadou, 2004). When comparing two decimals, chil-
dren tend to think that more decimals represent the larger number (Desmet, Grégoire, 
& Mussolin, 2010). There is also evidence that learners struggle with understanding 
the density concept of rational numbers (Merenluoto & Lehtinen, 2002; Vamvakoussi, 
Christou, Mertens, & Van Dooren, 2011; Vamvakoussi & Vosniadou, 2004, 2010). 
Vamvakoussi and Vosniadou (2010) found that although learners’ responses became 
more sophisticated with increasing grade level, about a third of 11th-graders still 
responded that there was only a finite number of numbers between any two rational 
numbers. Studies also documented children’s (and even adults’) difficulties in 
the aspect of representation, which means that they struggle with accepting that 
fractions and decimals can represent the same number (DeWolf, Bassok, & 
Holyoak, 2015; Vamvakoussi & Vosniadou, 2010). Finally, there is evidence that 
people of varying age groups make fewer mistakes in judging the effect of opera-
tions when this effect is in line with the effect these operations have on natural 
numbers (e.g., judging that multiplication makes a given number larger), rather 
than when this is not the case (i.e., judging that multiplication can also make a 
number smaller) (Siegler & Lortie-Forgues, 2015; Vamvakoussi, Van Dooren, & 
Verschaffel, 2013).

The fact that not only young learners but also educated adults can struggle with 
rational numbers suggests that understanding the concept of rational number is not 
an all or nothing issue. Rather, learners develop a deeper understanding of the vari-
ous aspects of rational numbers over the course of their learning career, and a more 
or less advanced understanding of various facets of the concept can coexist, so that 
people might rely on more or less advanced concepts or strategies depending on a 
specific problem situation (see Siegler, 1996). In addition to these phenomena cap-
tured by the conceptual change approach, there is evidence that even learners who 
have acquired a sound concept of rational numbers can be biased in their problem- 
solving process.

 Dual Processes in Rational Number Problems: The Natural 
Number Bias

The dual-process account is a theoretical framework to describe reasoning pro-
cesses. It can be valuable in addition to the conceptual change approach because it 
can be applied to reasoning processes that occur after learners have acquired an 
initial – or advanced – understanding of a specific concept. Thus, while the concep-
tual change approach is useful to understand why learners struggle with fully under-
standing a certain concept, the dual-process approach is particularly helpful to 
understand why they make typical mistakes although they actually understand the 
concept, and more specifically to unravel the cognitive mechanisms that take 
place at the moment when they solve a specific task. The dual-process account has 
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been applied to mathematical reasoning (e.g., Gillard, Van Dooren, Schaeken, & 
Verschaffel, 2009; Leron & Hazzan, 2009), and several authors have also used it to 
describe the cognitive mechanisms underlying the processing of rational number 
tasks (Vamvakoussi, 2015; Vamvakoussi et al., 2012; Van Hoof, Lijnen, Verschaffel, 
& Van Dooren, 2013).

The dual-process account distinguishes between superficial, effortless type 1 
processing and analytic, effortful type 2 processing. The assumption is that people 
are by default inclined to type 1 processing, which allows a quick response that 
comes to mind with little effort and with a subjective feeling of certainty, while 
some tasks require more effortful type 2 processing. In the case of rational number 
problems, when people engage in type 1 processing, an answer based on their intui-
tive natural number knowledge comes to mind easily. This kind of processing will 
lead to a correct answer on problems that are congruent (i.e., relying on natural 
number knowledge leads to the same response as relying on rational number knowl-
edge). For instance, relying on the number of digits will yield the correct response 
when comparing the magnitudes of 1.65 and 1.4. However, it will lead to an incor-
rect answer on problems that are incongruent (i.e., relying on natural number 
knowledge leads to a different response than relying on rational number knowl-
edge), unless type 2 processing inhibits the intuitive response tendency. For 
instance, relying on the number of digits will yield an incorrect response when 
comparing the magnitudes of 1.6 and 1.45. Using paper-pencil tests, previous stud-
ies found that learners were in fact more accurate on congruent than incongruent 
items (Vamvakoussi et al., 2011; Van Hoof, Janssen, Verschaffel, & Van Dooren, 
2015). This performance pattern is an indicator of the “whole number bias” or “nat-
ural number bias” (Ni & Zhou, 2005).

Further studies included computer-based experiments that allowed recording 
response times in addition to accuracy (e.g., DeWolf & Vosniadou, 2011; Obersteiner, 
Van Dooren, Van Hoof, & Verschaffel, 2013; Vamvakoussi et al., 2012, 2013; Van 
Hoof et al., 2013). According to the dual-process account, type 2 processing is much 
slower and draws heavily on working memory. Therefore, if people show equally 
high accuracy on both congruent and incongruent items, they will still need more 
time for solving incongruent items than congruent items correctly.

There is recent evidence that learners show a natural number bias with respect to 
the four conceptual differences between natural and rational numbers described 
above. Addressing the aspect of size, Van Hoof et al. (2013) asked learners in sec-
ondary school to choose the larger of two fractions as fast and accurately as possi-
ble. The larger fraction was either composed of the larger component(s) (congruent 
problem) or of the smaller component(s) (incongruent problem). Although the par-
ticipants were highly accurate on all problems, they solved incongruent problems 
significantly slower than congruent ones, indicating that automatized activation of 
the fractions’ number magnitudes affected their performance. Obersteiner et  al. 
(2013) found the same effect even in expert mathematicians. These participants 
performed equally well and extremely high on both congruent and incongruent 
fraction comparison problems. However, they solved incongruent problems signifi-
cantly slower than congruent ones, suggesting that even these experts needed to inhibit 
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their initial (biased) response tendency. It is noteworthy that the bias was present 
only in problems that had either the same numerators or the same denominators 
but not in problems that had no common components. Presumably, the latter type 
of problems required different strategies that relied more strongly on the overall 
fraction magnitudes rather than on the fraction components alone (see Obersteiner 
& Tumpek, 2016) and were thus less prone to be affected by a natural number bias. 
When comparing decimals (e.g., 0.25 vs. 0.3), the (combined) natural numbers after 
the decimal point (25 and 3) seem to impact children’s and even adults’ response 
tendencies (DeWolf & Vosniadou, 2011, 2015; Stacey et al., 2001; Van Hoof et al., 
2013). That is, there is the tendency to erroneously consider 0.25 as being larger 
than 0.3, because 25 is larger than 3.

Concerning operations, studies demonstrated that learners in grades 8, 10, and 
12, but also university students, show a systematic bias in terms of accuracy (Siegler 
& Lortie-Forgues, 2015; Vamvakoussi et al., 2013; Van Hoof et al., 2015). Results 
from reaction time research are, however, mixed. In a study by Obersteiner, Van 
Hoof, Van Dooren, and Verschaffel (2016), learners at secondary school showed a 
clear bias on problems that required reasoning about the effect of multiplication and 
division, while expert mathematicians did not show such a bias in terms of accuracy 
or response times.

Together, the results from these studies suggest that learners, and even adults, 
can be biased by their natural number knowledge when reasoning about rational 
numbers. Although people with high mathematical skills are able to use reasoning 
processes that allow them to be unaffected by the bias, the natural number bias 
seems to play an important role in less experienced adults and learners who are just 
learning about rational numbers (see Alibali & Sidney, 2015).

 Obstacles for Learners with Mathematical Learning 
Difficulties

As described above, learning of rational numbers is challenging for many learners, 
not only for those with mathematical learning difficulties (further abbreviated with 
“MLD”). While it seems obvious that learners with MLD (further abbreviated with 
“LMLD”) also struggle with understanding the rational number domain, we know 
little about whether they experience specific challenges – different and additional 
to the challenges they experience with natural numbers – when they learn about 
rational numbers, and if so, what kind of challenges these would be (Hecht & Vagi, 
2010; Mazzocco & Devlin, 2008).

A more fine-grained understanding of LMLD’s rational number understanding is 
of great importance when offering adaptive (remedial) instruction in order to 
increase learners’ understanding specifically of the rational number domain (Hecht 
& Vagi, 2010). A study by Mazzocco and Devlin (2008) is a rare example of research 
that investigated LMLD’s rational number understanding. Based on comparison 
tasks with fractions, decimals, and a combination of both, they concluded that the 
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rational number understanding of learners with dyscalculia was lower, not only 
compared to typically developing learners but even compared to learners with low 
general mathematics achievement (but without dyscalculia). An open question 
remained, however, whether the learning trajectories of children with MLD are just 
delayed compared to typically developing children, or whether their learning trajec-
tories differ in a qualitative manner. Moreover, children with MLD are a group that 
largely has been ignored in research on the role of the natural number bias (see 3.) 
in learners’ rational number understanding. Given that LMLD are known to have 
low inhibition capabilities and are especially known to struggle with number 
inhibition tasks (Szucs, Devine, Soltesz, Nobes, & Gabriel, 2013; Wang, Tasi, & 
Yang, 2012), one could argue that they will suffer more from the natural number 
bias because they are less able to inhibit their natural number knowledge in rational 
number tasks.

Van Hoof, Verschaffel, Ghesquière, and Van Dooren (2017) conducted a study 
with the aim to examine whether LMLD’s rational number understanding is charac-
terized by a “delay” or a “deficit” compared to learners without dyscalculia. They 
also assessed whether LMLD show a stronger natural number bias. Three different 
groups of participants were included in this study: grade 6 students with an official 
clinical diagnosis of dyscalculia, grade 6 students who formed a chronological age 
match group, and grade 4 students who formed a group matched in terms of general 
mathematical ability. The intention of including both an ability match group and 
an age match group was to investigate whether there was a “deficit” or a “delay” in 
LMLD’s rational number understanding (Torbeyns, Verschaffel, & Ghesquière, 
2004). If LMLD’s rational number understanding was significantly lower than that 
of the chronological age match group, but not significantly different from the ability 
match group, this would indicate that LMLD’s rational number understanding is 
characterized by a delay rather than a deficit. However, if LMLD’s rational number 
understanding was not only significantly lower than that of the age match group but 
also lower than that of the group matched on mathematical ability, this would sug-
gest that LMLD’s rational number understanding is characterized by a deficit 
(Torbeyns et  al., 2004). Participants’ performance data surprisingly showed that 
while there was no significant age difference between the LMLD and the age match 
group, the math achievement level of the (fourth-grade) ability match group was 
much higher than of the LMLD group, so that the fourth-graders could actually not 
be considered to be truly matched to the LMLD in terms of mathematical ability. To 
account for this unexpected outcome, the authors included learners’ mathematical 
ability as a control variable in their analyses, allowing them to examine a difference 
between both groups’ rational number understanding that could be explained by 
having dyscalculia and not by a difference in mathematics achievement level. Next 
to a general IQ and reading achievement test, which were used as control variables, 
learners solved a rational number test (see Van Hoof et al., 2015) that included both 
congruent and incongruent items of the aspects of size, density, and operations. 
Examples are given in Table 34.1.

When comparing LMLD with the sixth-grade control group, the analyses indi-
cated that even after controlling for age, IQ, and reading achievement, the  sixth- grade 
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control group still significantly outperformed the LMLD group on congruent and 
incongruent rational number tasks. The accuracy difference was much higher in 
incongruent compared to congruent rational number items, which suggests that 
LMLD were affected considerably stronger by the natural number bias than sixth 
graders, while they differed to a lesser extent on other items addressing rational 
numbers. When comparing LMLD with the fourth-graders, there was no significant 
difference between both groups’ accuracy on congruent and incongruent rational 
number tasks.

Since LMLD’ s rational number understanding was significantly lower than that 
of learners of the same age without mathematical learning difficulties, but not sig-
nificantly different from younger learners, one can conclude that the development of 
LMLD’s rational number understanding is characterized by a delay rather than a 
deficit. This finding has an important implication for mathematics education, since 
it indicates that LMLD can develop a better understanding of the rational number 
domain at a later time. Therefore, more (remedial) instructional attention should 
aim to enhance LMLD’s rational number understanding. Additionally, the different 
accuracy levels between LMLD and their peers of the same age were larger on 
incongruent compared to congruent items, suggesting that LMLD were affected 
more severely by the natural number bias compared to their peers. While more 
attention should be payed on supporting learners in making the transition from natural 
to rational numbers in all classrooms, the inappropriate reliance on natural number 
knowledge might deserve special attention when teaching LMLD.

 How to Support Learners: Evidence from Intervention 
Studies

The research described above has identified a number of difficulties that children 
face when learning about rational numbers. These difficulties do not first occur in 
learning complex rational number arithmetic. Rather, they already occur when 
learning about very fundamental ideas of what number symbols, especially frac-
tions, mean. Studies suggest that one of the most crucial factors for further mathe-
matical development and yet a great stumbling block is an understanding of the 
numerical size or magnitude of rational number symbols (Rinne et al., 2017; Siegler 
et  al., 2011; Siegler et  al., 2012). Accordingly, intervention programs aimed to 

Table 34.1 Examples of items of the rational number test

Congruent Incongruent

Size Choose the largest number: 4.4 or 4.50 Choose the largest number:
3/2 or 9/8

Density Write a number between 1/4 and 3/4 Write a number between 3.49 and 3.50
Operations Is the outcome of 50 × 3/2 smaller or 

larger than 50?
Is the outcome of 40 × 0.99 smaller or 
larger than 40?
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support rational number learning have often focused on an understanding of frac-
tion magnitudes. To that end, studies used visual representations of fractions, 
because linking visual and symbolic representations can effectively support learn-
ing (e.g., Butler, Miller, Crehan, Babbitt, & Pierce, 2003; Cramer et al., 2002; Fazio, 
Kennedy, & Siegler, 2016; Fuchs et  al., 2013, 2016; Gabriel et  al., 2012; Mack, 
1993; Moss & Case, 1999; Rau, Aleven, & Rummel, 2013). While a great variety 
of intervention studies can be found in literature, few studies have evaluated the 
effectiveness of their intervention in a controlled experimental design. In the fol-
lowing, we describe selected studies that are among the few exceptions.

Gabriel et al. (2012) delivered an intervention that was focused on the develop-
ment of fraction magnitudes to children in grades 4 and 5. The intervention consisted 
of games that involved cards with different representations of fractions as well as 
wooden disks that children used to represent and manipulate fractions. The activities 
included comparison of fractions and matching symbolic fractions with nonsymbolic 
fraction representations. There were two 30-min intervention sessions per week, over 
a period of 10 weeks. Before and after the intervention, children took tests that mea-
sured their conceptual and procedural understanding of fractions. Children of the 
intervention group showed stronger improvements of their conceptual understanding 
of fractions compared to children of a control group who received regular classroom 
instruction. Children of the control group, by contrast, showed stronger improvement 
of fraction arithmetic procedures, suggesting that typical classroom teaching focusses 
on procedures more strongly than on concepts.

Fuchs et al. (2013) contrasted an instructional approach that was thought to be 
conventional with a more innovative one. While the conventional approach focused 
on the part-whole aspect of fractions and on fraction procedures, the innovative 
approach focused on the measurement aspect of fractions and emphasized fraction 
magnitudes. The intervention was designed for at-risk children and included com-
pensational training of general-cognitive abilities. The participants in the interven-
tion study were fourth graders who performed below the 35th percentile on an 
arithmetic test and were therefore considered to be at-risk of low mathematical 
achievement. Each session lasted 30 min, and the intervention was carried out for 
12 weeks, 3 times per week. The results showed that children of the intervention 
that focused on the measurement aspect outperformed children of the control group 
with conventional teaching on conceptual as well as procedural measures. The 
authors found that the higher gains of the intervention group could indeed be attrib-
uted to the particularly large gains in children’s understanding of the measurement 
aspect of fractions. In another study, Fuchs et al. (2016) could replicate the positive 
learning effects with a similar version of their intervention program in another 
sample of at-risk fourth-graders.

Fazio et al. (2016) also focused on enhancing children’s understanding of frac-
tion magnitudes. In their experiments, children of grades 4 and 5 played a comput-
erized game where they had to place fractions on the correct position of a number 
line. The authors found positive learning effects after a remarkably short interven-
tion period of just 15 min. They also found that the intervention was most effective 
when children received feedback after each problem they had worked on. Hamdan 
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and Gunderson (2017) also found that the use of number lines during a brief 
intervention enhanced second and third graders’ learning of fractions. Moreover, 
learners who used number lines were more able to transfer their knowledge to novel 
problems than learners who used area models during the training phase.

To summarize, there is empirical evidence that supporting learner’s understand-
ing of rational number magnitudes can enhance their conceptual and procedural 
rational number knowledge. Promising activities are those that emphasize the mea-
surement aspect of fractions or require reasoning about relative magnitudes (such as 
placing numbers on number lines). The use of visual representations seems to be 
particularly powerful.

 Conclusions and Perspectives

Understanding rational numbers is an important aim of the mathematics classroom, 
and it is important for further mathematical development. Yet, many learners have 
difficulties in understanding very basic concepts of rational numbers. Over the last 
decades, research from mathematics education and cognitive psychology has con-
tributed to our understanding of when and why learners struggle with rational num-
bers. The conceptual change approach emphasizes that learning of rational numbers 
requires to some degree the reorganization of learners’ existing knowledge about 
numbers, which is predominantly knowledge about natural numbers. Dual- process 
theories suggest that automatized knowledge of natural numbers can in some cases 
interfere with reasoning about rational numbers – even when learners have developed 
a basic concept of rational numbers.

Rational numbers are a challenge for many learners. Those with mathematical 
learning difficulties seem to experience some specific challenges but overall, their 
learning trajectories seem to be similar to those of typical learners. Learning time 
seems to be a key factor when learning about rational numbers, and learners with 
mathematical learning difficulties probably just need more of it. Classroom teach-
ing should take this into account and strive for learning settings that can be adapted 
to the individual learner. Intelligent computerized learning environments (e.g., Rau 
et al., 2013) could assist in reaching that goal.

Proficiency with natural numbers is certainly a prerequisite for learning about 
rational numbers. On the other hand, many learners’ difficulties seem to stem from 
overgeneralizing knowledge about natural numbers. More research is certainly 
needed to better understand the relation between previously acquired knowledge 
about natural numbers and learning of rational numbers. To that end, it is necessary 
to assess the same group of learners over a longer period of time in a longitudinal 
study design. Although initial studies have used such designs (e.g., Braithwaite & 
Siegler, 2017; Mou et al., 2016; Resnick et al., 2016; Rinne et al., 2017), these stud-
ies focused on very specific aspects of rational number development, such as under-
standing of number magnitudes. Further research with a broader perspective 
could assess how a variety of variables contribute to rational number development. 
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For example, studies could take into account cognitive and noncognitive variables 
but also school-related and socioeconomic factors.

To support learning of rational numbers, classroom instruction should focus 
more on core concepts of rational numbers (such as magnitudes) and less on proce-
dures than it is currently done. Activities with rational numbers should include 
appropriate visualizations and problems that require reasoning about numerical 
magnitudes such as placing numbers on number lines (e.g., the Common Core State 
Standards Initiative, 2010). To account for individual differences, further studies 
could use controlled intervention designs to find out which learning activities are 
most effective for learners with varying needs.
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Chapter 35
Using Schema-Based Instruction 
to Improve Students’ Mathematical 
Word Problem Solving Performance

Asha K. Jitendra

Problem solving is a central focus of educational reforms in mathematics around the 
world (EACEA/Eurydice, 2011; National Council of Teachers of Mathematics, 
2000). Word problem solving, a key component in learning mathematics, is a vital 
component of mathematical school tasks beginning in early grades. However, prob-
lem solving in context, algebra, and mathematical communication are considered 
problematic areas for many students as well as teachers (EACEA/Eurydice, 2011; 
OECD, 2010). Furthermore, many secondary school students have difficulties solv-
ing algebra word problems (e.g., Bush & Karp, 2013; Carpraro & Joffrion, 2006; 
Van Amerom, 2003). The purpose of this chapter is to describe an evidence-based 
instructional program, schema-based instruction (SBI), which provides support in 
word problem solving for students who have mathematical learning difficulties 
(MLD). First, I describe mathematical word problem solving and the critical com-
ponents linked to the ability to understand and solve word problems. Next, I describe 
the theoretical framework for SBI, including a discussion of its unique features and 
how SBI contributes to word problem solving performance. Then, I summarize pre-
vious research on SBI to understand the instructional conditions that need to be 
in place to support mathematical word problem solving for students with 
MLD. Last, I conclude with a discussion of challenges yet to be addressed.

 Mathematical Word Problem Solving

Mathematical word problem solving plays a prominent role in school mathematics 
curricula. Given that word problems are “typically composed of a mathematics 
structure embedded in a more or less realistic context” (Depaepe, De Corte, & 
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Verschaffel, 2010, p. 152), opportunities to solve word problems can help to develop 
students’ understanding of the meaning of operations and consequently proficiency 
with whole numbers. Consider the following two problems: (1) Keisha had 6 stick-
ers. She gave 4 stickers to Zora. How many stickers did Keisha have left? (2) Keisha 
had 6 stickers and Zora had 4 stickers. How many more stickers does Keisha have 
than Zora? Both situations can be represented with the same number sentence: 
6–4 =? However, the interpretations of these problems are different in that the first 
involves a “separate or take away” interpretation and the second denotes a “com-
parison” interpretation. Many children will solve these problems by modeling the 
actions and relations described in them such that they may find the answer to the 
first problem by starting with a set of 6, removing 4, and then counting the remain-
ing stickers. In contrast, they may solve the second problem by starting with a set of 
4 (referent or smaller amount), adding some more as they count on to 6 (the com-
pared or bigger amount), and then finding the answer by counting those added (the 
difference amount). How one thinks of the relations between the quantities in this 
problem can lead to either an addition or subtraction number sentence; one can add 
on to 4 to get to 6 or one can subtract 4 from 6. In sum, word problems help children 
connect the many different meanings, interpretations, and relationships to the math-
ematical operations (Van de Walle, Karp, & Bay-Williams, 2013).

Word problem solving is a complex, multifaceted process that is primarily com-
posed of two phases – problem representation and problem solution (Mayer, 1999). 
Critical components of the problem representation phase include (a) reading the 
word problem with the aim of understanding and defining the problem situation and 
(b) identifying the relevant numerical and linguistic elements and the relations 
between elements to construct a coherent representation of the problem situation. 
The problem solution phase of the word problem solving process involves: (c) plan-
ning how to solve the problem, (d) executing the plan, (e) interpreting the solution 
in relation to the original problem situation, and (f) checking the reasonableness of 
the mathematical outcome (Depaepe et al., 2010; Mayer & Hegarty, 1996).

Some children, particularly those with MLD who not only have difficulties with 
the abstract formal structures of mathematics but also have difficulties with reading 
comprehension or the language of mathematics, may find word problem solving to 
be considerably more challenging than solving no-context problems (Andersson, 
2008; Fuchs et al., 2010). Furthermore, research indicates that despite competence 
in computational skills for solving word problems, many children with MLD expe-
rience difficulties in problem comprehension or understanding the problem text, 
identifying the relevant quantities and the relations between them, and generating 
an adequate visual representation of the problem situation (Boonen, van der 
Schoot, van Wesel, de Vries, & Jolles, 2013; Hegarty & Kozhevnikov, 1999; 
Schumacher & Fuchs, 2012; van Garderen, 2006). As such, providing support in 
the comprehension phase is important in enhancing these students’ word problem 
solving performance. However, for children with both computational and word 
problem solving difficulties, there is no effect or less robust effect of word prob-
lem solving intervention (Jitendra et al., 2013; Schumacher & Fuchs, 2012). It is 
likely that for these children, word problem solving intervention alone is not 
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sufficient. Rather, word problem solving instruction integrated with knowledge of 
foundational  mathematics content (e.g., understanding the base-ten system to represent 
numbers, strategies for addition and subtraction categories) will be necessary for 
gains in word problem solving.

 Theoretical Framework for Understanding How Schema- 
Based Instruction Is Beneficial to Word Problem Solving 
Performance

Conventional instructional practices often focus on the problem solution phase and 
have had limited success in improving the word problem solving performance of 
students with MLD (see Fuchs et  al., 2008; Jitendra et  al., 1998; Jitendra et  al., 
2007; Xin et al., 2011). The theoretical framework that guides this chapter about 
teaching word problem solving derives from a model of word problem solving 
based upon schema theories of cognitive psychology (Briars & Larkin, 1984; 
Carpenter & Moser, 1984; Kintsch & Greeno, 1985; Riley, Greeno, & Heller, 1983). 
Consistent with schema theory, recognition of the semantic structure of the problem 
is critical for understanding the problem text (Kalyuga, 2006) and is an essential 
feature of SBI. Schemata are hierarchically organized, cognitive structures that are 
acquired and stored in long-term memory. When multiple elements of information 
are grouped into and conceptualized as a single schema, there is a reduction in 
working memory load that allows for more efficient and effective problem solving 
(Kalyuga, 2006).

In addition, the SBI model of word problem solving is guided by research on 
expert problem solvers and cognitive models of mathematical problem solving 
(Mayer, 1999). SBI integrates essential processes that expert problem solvers engage 
in when solving problems, such as distinguishing “relevant information (related to 
mathematical structure) from irrelevant information (contextual details), perceiving 
rapidly and accurately the mathematical structure of problems and in generalizing 
across a wider range of mathematically similar problems” (Van Dooren, de Bock, 
Vleugels, & Verschaffel, 2010, p. 22). Another aspect of the SBI model is its empha-
sis on knowledge about problem solving procedures (e.g., problem representation, 
planning) for a given class of problems (see Marshall, 1995; Mayer, 1999). What is 
most relevant to this chapter on word problem solving instruction is the need for 
teaching to ensure that instructional practices (e.g., guided questions to engage stu-
dents in conversations about their thinking and problem solving) support students in 
the problem solving process, such as recognizing common underlying problem 
structures, representing problems using appropriate diagrams, planning how to solve 
problems, and solving and checking the reasonableness of answers.

Consistent with the research on expert problem solvers, SBI supports the devel-
opment of students’ metacognition skills such as planning, checking, monitoring, 
and evaluating their performance (e.g., Rosenzweig, Krawec, & Montague, 2011). 
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Guided by their teachers, students “think about what they are doing and why they 
are doing it, evaluate the steps they are taking to solve the problem, and connect new 
concepts to what they already know” (Woodward et al., 2012, p. 17). Giving stu-
dents time to think through problem situations by asking questions (e.g., What type 
of a problem is it? Is it similar to or different from others that they solved before?) 
can facilitate word problem solving.

 What Are the Unique Features of SBI and How Does It 
Contribute to Word Problem Solving Performance?

The SBI program described here is based on work with elementary school students 
with and without MLD and is unique in several ways (see Jitendra, 2007). First, SBI 
incorporates four components identified as essential to improving students’ word 
problem solving performance. These components (described in the next section) are 
cited as main recommendations in What Works Clearinghouse’s research syntheses 
on improving students’ mathematical problem solving performance and assisting 
struggling students with mathematics (Gersten, Beckmann, et al., 2009; Woodward 
et al., 2012).

Problem Structure In the domain of arithmetic word problems, researchers have 
identified basic types of problems (i.e., Change, Combine, Compare, Equal Groups, 
Multiplicative Compare; see Carpenter, Fennema, Franke, Levi, & Empson, 2015; 
Greer, 1994). Problems such as Change, Combine, and Compare belong to the addi-
tive field in that the solution operation is either addition or subtraction, whereas 
Equal Groups and Multiplicative Compare problems belong to the multiplicative 
field, because the solution operation is either multiplication or division (Christou & 
Philippou, 2001). There is strong evidence of the benefits of word problem solving 
instruction that focuses on identifying problems involving the additive structure 
(e.g., Fuchs et al., 2008; Fuson & Willis, 1989; Jitendra et al., 1998; Jitendra et al., 
2007; Jitendra, Dupuis, & Zaslofsky, 2014) and emerging evidence for problems 
involving the multiplicative structure (e.g., Xin et al., 2011).

The primary focus of SBI is on providing students with problem categories and 
teaching them to recognize the underlying mathematical structure (Change, Group, 
and Compare). The assumption is that clarifying the problem structure should facili-
tate understanding of the problem situation, which consequently can result in 
improved problem solving performance especially when quantitative reasoning is 
used to associate relationships (e.g., part-part-whole) between quantities in the 
problem with the appropriate operation (e.g., addition or subtraction) rather than 
relying on relational keywords (e.g., “have left”) that are sometimes misleading and 
can result in incorrect solutions. For the two word problems described earlier, the 
underlying problem schemata are Change (Problem 1) and Compare (Problem 2). 
A Change problem is one that has a starting quantity, and a direct or implied action 
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causes either an increase or decrease in that quantity. The three features of a Change 
problem are the beginning, change, and ending quantities. The object identities 
(e.g., pounds of wool) for beginning, change, and ending are the same in the Change 
schema (see Fig. 35.1). In contrast, a Group problem involves the joining of two 
distinct small groups to form a large group, and the relationship between quantities 
in the problem is a part-part-whole relationship. This relationship is static (i.e., no 
action is evoked). A Compare problem involves the comparison of two disjoint sets 
(compared and referent), and the relationship between the two sets is static.

Visual Schematic Representations Visual schematic representations serve a variety 
of purposes: (a) organize and summarize problem information, (b) make abstract 
relationships concrete, and (c) reason about story situations (Diezmann & English, 
2001; Presmeg, 2006; Zahner & Corter, 2010). Training children in the process of 
using visual schematic representations to meaningfully represent word problems 
can result in improved word problem solving performance (Yancey, Thompson, & 
Yancey, 1989). Such representations can lead to deep understanding of the problem 
and transfer of learning to novel problems when used as instructional tools to make 
sense of word problems (Goldin, 2002; Zahner & Corter, 2010).

However, word problem solving instruction in many mathematics textbooks 
uses approaches that do not contribute to problem comprehension, such as having 
students directly translate the elements of the problem into corresponding mathe-
matical operations (arithmetical representations) or having them create their own 
representations, which are often pictorial representations or images depicting the 
“visual appearance of the given elements in the word problems” (Boonen et al., 
2013, 272). Instead, teachers need to provide instruction on how to represent prob-
lems using a few types of visual schematic representations (e.g., bar models, visual 
schematic diagrams) that effectively link the relationships between the relevant 
quantities in the problem (Woodward et al., 2012). Seeing those quantitative rela-
tionships and connecting them to operation meanings can result in the identifica-
tion of the computations to be performed. Research indicates that in contrast to 
pictorial representations, visual schematic representations positively influence the 
word problem solving process (Hegarty & Kozhevnikov, 1999; van Garderen & 
Montague, 2003).

Visual schematic diagrams are an integral component of the SBI approach 
(e.g., Jitendra et al., 2007; 1998). The SBI program ensures that teachers discuss the 
structure of the schematic diagrams and connect them to quantities in the problem 
and to operation meanings. Consider the following problem: A redwood tree can 
grow to be 85 m tall. A Douglas fir can grow to be 15 m taller. How tall can the 
Douglas fir grow? (Jitendra, 2007, p. 117). Using a visual schematic diagram, the 
key components of the Compare problem structure are made visible – the bigger 
(compared), smaller (referent), and difference sets. Further, SBI facilitates translat-
ing contextual information (nonmathematical) in the problem text to meaningfully 
represent the problem by showing how quantities in the problem are related. Firstly, 
students are cued to the linguistic expression “taller” [translated to mean “taller” 
than the redwood tree] in the relational sentence (A Douglas fir can grow to be 
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Fig. 35.1 Solving one-step and two-step problems involving Change, Group, and Compare 
schemata from Jitendra (2007, pp. 32–33, 78, 117, 158). (Copyright by Pro-Ed)
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15  m taller.) to understand that the problem involves a comparison of two sets. 
Secondly, instruction emphasizes that the relational sentence not only describes the 
difference (i.e., 15 m) between the two things compared (i.e., height of the Douglas 
fir and height of the redwood wood) but also helps identify the compared or bigger 
set (height of the Douglas fir) and the referent or smaller set (height of the redwood 
tree). Thirdly, students use the information in the remaining verbal text to identify 
the known or smaller quantity (85 m) and the unknown or bigger quantity (? m) to 
represent in the Compare diagram (see Fig. 35.1). In sum, the Compare diagram 
helps students represent the quantities and their relationships for the word problem 
given above: (a) the difference between the Douglas fir and the redwood tree is 15 
m, (b) the Douglas fir represents the bigger set (? m), and (c) the redwood tree rep-
resents the smaller set (85 m). The relationship between quantities in the diagram 
can be seen as a comparison of the bigger and smaller quantities so that the opera-
tion required is subtraction, or the relationship can be translated to mean that the 
bigger quantity is the result of joining the difference and smaller quantities, and the 
numerical expression is 15 + 85.

Problem Solving Procedures Although Pólya’s (1990/1945) four-step approach 
to problem solving (i.e., understand the problem, devise a plan, carry out the plan, 
look back and reflect) has been used in traditional mathematics instruction for 
decades, it has come under scrutiny primarily for not leading to improved problem 
solving outcomes (Lesh & Zawojewski, 2007; Schoenfeld, 1992). On the other 
hand, a prescriptive problem solving procedure such as the keyword approach (e.g., 
use subtraction whenever a word problem includes “have left”) has limited value 
(e.g., “have left” is in the problem but subtraction is not the needed operation). In 
contrast, teaching problem solving procedures that are connected to classroom- 
related conditions such as how they are taught or integrated into the mathematics 
curriculum is known to be effective (Gersten, Chard, et al., 2009). 

SBI integrates the problem solving process with the critical mathematics content 
(e.g., word problems involving addition and subtraction). The focus of problem 
solving in SBI is to get students to think systematically about solving problems and 
the emphasis is on four separate, but interrelated problem solving phases (problem 
schema identification, representation, planning, and solution, Marshall, 1995; 
Mayer, 1999). As such, problem solving is a process grounded on reasoning. The 
four phases of problem solving in the SBI program (i.e., find the problem type, 
organize information in the problem using a schema diagram, plan how to solve the 
problem, and solve the problem) correspond with Mayer and Hegarty’s (1996) 
problem representation and problem solution phases (see Fig. 35.1). Consider the 
following problem in Fig. 35.1: Farmer Jake has 88 animals on his farm. He only 
has horses and goats. There are 49 horses on the farm. How many goats are on the 
farm? To solve this problem, SBI emphasizes reasoning to (a) find the problem type 
by reading and paraphrasing the problem, as well as using the word problem context 
(e.g., two small groups, horses, goats; a large group, animals or horses and goats) to 
understand the problem situation (a Group problem), (b) organize and represent 
information in the problem using the Group diagram by identifying the known 
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(a total of 88 animals, 49 are horses) and unknown quantities (? goats) and identifying 
statements in the problem that express relationships (part-part-whole) between 
quantities, (c) plan how to solve the problem by translating relationships between 
quantities given in the problem to numerical representations (e.g., 49 +? = 88 or 
88–49 =?) that also illustrate the connections between and among operations, and 
(d) solve the problem (e.g., one way to solve 49 +? = 88 is as follows: 49 + 1 = 50; 
50 + 30 = 80; 80 + 8 = 88. So 1 + 30 + 8 = 39) and check the solution (e.g., the 
answer, “There are 39 goats on the farm,” seems reasonable. If 88 is the large group 
amount, then 39 representing one of the two small group amounts seems 
reasonable.).

Metacognitive Strategy Knowledge Instruction Another critical feature of effec-
tive problem solving instruction is metacognitive strategy knowledge (De Corte, 
Verschaffel, & Masui, 2004; Rosenzweig et  al., 2011). Metacognitive strategy 
knowledge is strongly correlated with successful problem solving (e.g., Desoete, 
2009; Fuchs et al., 2003; Hegarty, Mayer, & Monk, 1995; Schoenfeld, 1992).

SBI embeds metacognitive activities such as analyzing the problem, monitoring 
strategy use, and evaluating the outcome within the word problem solving context. 
Teachers use deep-level questions to encourage students to monitor and reflect on 
the four phases: (a) problem comprehension (e.g., How do you know it is a Change 
problem?), (b) problem representation (e.g., What schematic diagram best fits this 
problem type to represent information in the problem?), (c) planning (e.g., How can 
you solve this problem? What are the solution steps or operations needed?), and (d) 
problem solution (e.g., Are your calculations correct? Is the answer reasonable 
given the question asked?).

A second unique feature of the SBI program is that it includes effective instruc-
tional practices (e.g., systematic and explicit instruction, opportunities for student 
response and feedback) to support the learning of students with MLD (Clarke et al., 
2011; Gersten, Chard, et  al., 2009). For example, the SBI program incorporates 
scaffolding to support student learning in the following ways: (a) teacher-medi-
ated instruction (making instruction explicit and visible using teacher think-
alouds) is followed by paired partner learning and independent learning activities, 
(b) tasks begin with story situations with no unknown information followed by 
word problems, and (c) external visual schematic representations are replaced by 
student- constructed diagrams.

Throughout the SBI program, teacher-mediated instruction entails using think- 
alouds to make instruction explicit and visible as well as guided questions to engage 
students in conversations about their thinking and problem solving. Partner learning 
activities in the SBI program provide many opportunities for students to practice 
solving word problems. Students use a think-pair-share model to first think about 
the problem type independently and then work with their partner to model the prob-
lem situation using a visual schematic representation and solve it before sharing 
their solutions and explanations with the whole group. This practice of verbalizing 
the strategy steps during partner work and with the whole group is important as it 
not only allows the teacher to monitor student understanding and provide instructive 
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feedback to support students (Hattie & Timperley, 2007) but also enables students 
with MLD to express their own thinking and listen to the ideas of their peers.

It is well documented that many students, especially those with MLD, jump 
immediately into calculating the answers when solving word problems without 
understanding the problem situation or reasoning whether the answer is meaningful 
(see Verschaffel, Greer, & De Corte, 2000). As such, the SBI program introduces 
story situations with no unknown information to ensure that students focus on the 
relevant numerical and linguistic elements and the relations between elements to 
understand and reflect on the problem situation. Because problem comprehension is 
particularly difficult for many students with MLD, the SBI program provides exter-
nal visual schematic diagrams as they translate and integrate information in the 
problem into the representation before they are taught to construct representations 
(see Fig. 34.1 for student-constructed diagrams in solving two-step problems).

In addition, the SBI program incorporates consistent, systematic practice in 
solving word problems involving the different problem types. Furthermore, stu-
dent progress or response to instruction is monitored using research-validated 
measures of word problem solving performance to inform instruction (Jitendra 
et  al., 2014; Jitendra, Sczesniak, & Deatline-Buchman, 2005; Leh, Jitendra, 
Caskie, & Griffin, 2007).

 Teaching Word Problem Solving Using SBI: Empirical 
Evidence from Intervention Studies

Multiple studies have been conducted to evaluate the effectiveness of SBI for 
improving students’ problem solving performance. In the review below, I discuss 
four randomized controlled studies that targeted arithmetic word problems involv-
ing addition and subtraction for children with MLD and for typically developing 
children.

 Studies 1 and 2: Supporting Evidence for SBI Compared 
to Traditional Instruction

Two studies have demonstrated that SBI is more effective than a general strategy 
instruction (i.e., typical textbook instruction) for improving word problem solving 
performance of students with and without MLD. Jitendra et al. (1998) reported that 
elementary school students with MLD (identified by their teachers to possess ade-
quate addition and subtraction computational skills, but to be poor word problem 
solvers) and those with school- identified disabilities, who received about 45 min 
daily of small group (3 to 6 students), pull out tutoring in solving one-step addition 
and subtraction word problems for about 4 weeks from researchers outperformed 
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students in the GSI condition on outcome measures of word problem solving. 
Following treatment and 1–2 weeks later, results indicated moderate to large effects 
(d = 0.65 and 0.81) favoring the SBI group. Importantly, only students in the SBI 
group performed at the same level as average-achieving students on the word prob-
lem solving posttests. Further, the results revealed a large effect size favoring SBI 
on a transfer measure of novel problems derived from curricula not used in the treat-
ment (d = 0.74).

Additionally, the SBI intervention was successfully implemented by third-grade 
classroom teachers with students with and without MLD in Jitendra et al. (2007). 
Students in both SBI and GSI conditions participated in a 10-week program that 
consisted of focused lessons targeting both one- and two-step word problems using 
the assigned intervention. Students in the SBI group on average outperformed stu-
dents in the GSI group on word problem solving in the posttest (g = 0.52) and main-
tained the effects 6 weeks later (g = 0.69). The advantage for the SBI group was also 
evident on the Pennsylvania System of School Assessment mathematics test 
(g = 0.65). This study also provided evidence of the effectiveness of SBI for students 
with MLD and English language learners in these inclusive classrooms.

 Studies 3 and 4: Supporting Evidence for SBI Compared 
to Standards-Based Instruction

Two studies explored whether SBI enhances word problem solving compared to 
standards-based instruction. Standards-based curricula and SBI are similar in their 
theoretical underpinnings (i.e., emphasize meaningful learning to develop concep-
tual understanding); however, they differ in terms of their instructional practices. 
Standards-based instruction is characterized by an inquiry-based student-directed 
approach, whereas SBI incorporates a teacher-mediated approach that relies on 
think-aloud procedures to make the content explicit and guided questions to engage 
students in thinking through the problem situations.

In Jitendra, Rodriguez, et al. (2013), tutors (e.g., parents, instructional assistants, 
undergraduate students) implemented the fully developed SBI program (Jitendra, 
2007). Tutors, who were randomly assigned to SBI and control (standards-based 
textbook instruction) conditions, provided all instruction (daily 30  min of small 
group tutoring sessions for 12 weeks) to third-grade students with MLD (scored 
<40th percentile in mathematics and > the beginning of second grade level in read-
ing on their district accountability assessment). SBI students received tutoring in 
solving one-step and two-step word problems; the control group received instruc-
tion in whole number concepts and procedures, including word problem solving 
using the school-provided standards-based practices. For word problem solving 
outcomes, there were significant interaction effects indicating that SBI students 
with higher pretest scores outperformed students in the control group with higher 
pretest scores, whereas students with lower pretest scores in the control group 

A. K. Jitendra



605

 outperformed SBI students with lower pretest scores. Jitendra et al. (2014) reported 
that many students who entered the study without mastering the basic computa-
tional skills did not benefit from SBI word problem solving tutoring only.

Jitendra, Dupuis, et al. (2014) extended the focus of SBI content to also include 
foundational concepts (e.g., understanding the base-ten system to represent num-
bers). The methods and procedures were the same as in Jitendra et  al. (2013). 
Students in the SBI condition on average outperformed students in the control con-
dition on a word problem solving posttest (g = 0.46). The effect of SBI proved to be 
equivalent for students in both high at-risk (scored at or below the 25th percentile) 
and low at-risk subgroups (scored between the 26th and 40th percentile on a stan-
dardized mathematics achievement test). On a district-administered mathematics 
achievement test, SBI students scored significantly higher than control students 
(g = 0.34); however, there were no significant effects on an 8-week retention test.

 Remaining Challenges

The studies reviewed provide evidence that applying SBI to solve word problems 
results on average in greater learning compared to alternative approaches. Despite 
the positive evidence for SBI, two formidable challenges remain. The first concerns 
the fact that although there were significant positive effects relative to comparison 
conditions, many students do not respond adequately and remain impaired follow-
ing word problem solving intervention (see Jitendra et  al., 2013). Ensuring that 
classroom instruction includes explicit word problem solving instruction that is 
integrated in meaningful opportunities to connect with the mathematical operations 
while also emphasizing foundational mathematics content is critical. Schools must 
find ways to ensure that all students who have persistent MLD, even those in middle 
school, receive interventions of sufficient quality and intensity to accelerate their 
progress so they can access grade level materials. Teachers are likely to need not 
only professional development but also instructional materials that are feasible to 
implement and result in observable progress in their students and consequently 
reduce the incidence of MLD.

The second challenge involves the ability to solve more complex or nonroutine 
word problems, which are common in contemporary mathematics classrooms 
(Boonen et al., 2013). Although visual representations that make visible the prob-
lem structure and the relations between quantities in the problem alleviate the dif-
ficulties of problem comprehension, ensuring that teachers understand what is 
involved in using representations and when they are appropriate to use is critical. 
Professional development is needed to ensure that teachers are aware of multiple 
representations and link different representations to each other when solving multi-
step problems and understand that “visual-schematic representations should be used 
to support the first phase of the word problem solving process (i.e., problem 
comprehension) and that arithmetical representations are only appropriate in the 
problem solution phase” (Boonen et al., 2013, p. 60).
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In closing, evidence indicates that improving word problem solving is no small 
task, but requires systematic and explicit instruction beyond reading and compre-
hending the words and doing the needed calculations. Explicit attention to problem 
solving as a process grounded in reasoning and understanding the meanings of 
operations is needed to prepare students, including students with MLD, for learning 
advanced mathematics content (e.g., algebra). To bridge the gap between arithmetic 
and algebra, word problem solving instruction should emphasize not only under-
standing and “applying the arithmetical operations in numerical and algebraic 
expressions” (Jupri & Drijvers, 2016, p. 2482) but also understanding the different 
meanings of the equal sign (calculation vs. sign of equivalence) and the notion of a 
variable. Further, creating questions and tasks that encourage “languaging” (e.g., 
speaking, writing, using representations to explain) in a mathematics classroom can 
promote problem solving and generalizations.
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Chapter 36
Geometrical Conceptualization

Harry Silfverberg

 Characterizing School Geometry

It could be said that arithmetic and algebra provide a pupil with mathematical tools 
for understanding and utilizing number relations. Similarly, geometry provides 
mathematical tools for comprehending and managing spatial relations. One could 
consider this a sort of working definition for school geometry. According to this 
theory, geometric knowledge manifests itself in a variety of ways. Understanding 
spatiality, i.e. the development of comprehensive spatial thinking, is central to this. 
Sometimes it remains unclear how much of this process of understanding is attained 
through learning and how much is dependent on the perception of visual reality 
culturally characteristic for humans. Even very young children can differentiate 
between a closed line and an open one, a straight line and a jagged one, a circle and 
a polygon, etc. This kind of direct visualization can be considered to have a similar 
function as the subitizing phenomenon, in which simple calculations involving 
small numbers are completed as a process of direct visualization, without involving 
any actual calculation processes (Markovits & Hershkovicz, 1997). Part of the visu-
alization process, however, is clearly the result of supervised activity and develop-
ment. Communal interaction and especially the teaching of geometry offered by 
school will contribute to a child eventually adapting methods of preferring certain 
visual properties over others, as befitting of their operational culture. This type of 
controlled change in perspective constitutes one of the bases of geometrical 
conceptualization.

In school, pupils learn to construct spatial relations through a surprisingly small 
set of well-established concepts. The concepts and relations that geometry uses to 
operate, such as points, lines, planes, plane and space figures, parallelism, perpen-
dicularity, etc., have been carefully selected over time, proving their usefulness as 
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compared to the true abundance of the shapes and spatial relations that the reality 
surrounding to us displays. True mastery of spatial relations also requires observa-
tion and processing of physical quantities, such as length, angles, surface area, 
volume, etc. using computational methods. External representations developed to 
express various spatial relations, such as geometrical patterns, models, maps, dia-
grams, verbal depictions, etc., support spatial thinking. The level of spatial and 
geometrical thinking an individual possesses is e.g. apparent in their competence 
to interpret, produce and utilize such representations.

Visual, computational, conceptual and algebraic viewpoints/perspectives on 
geometry have been evident at different times, with different emphases (Dieudonné, 
1981), and during the last few years particularly the methods of the teaching of the 
geometry have changed radically. This chapter focuses largely on the issues of geo-
metrical conceptualization, mostly from the perspective of Euclidean plane geom-
etry. This choice is not meant to imply that teaching geometry with computational 
methods is somehow less important, even regarding conceptualization. Due to the 
limitations, this article will not, for instance, compare the learning outcomes of 
geometry with the other areas of mathematics, or compare the changes in the level 
of learning geometry to the past. Internationally comparative surveys such as PISA 
and TIMSS, as well as national learning performance inquiries, offer more informa-
tion on these topics.

It is obvious that geometry is not taught in school simply for its own significance 
but also for transfer of learning – geometrical education offers plenty of knowledge 
that can be transferred to other types of mathematical education and understanding. 
Geometry provides exceptionally a versatile learning environment when it comes to 
practicing generalizations, deductive reasoning and concept development. The 
validity of hypotheses and the consequences of various definitions can be tested in 
a variety of ways. There are various tools that can be utilized, including tangible 
models, experimental inductive reasoning, information gathered through calcula-
tions as well as deduction. Dynamic geometry has contributed to the field by adding 
a new aspect, that of movement, and the transformability of figures. These facts 
provide the grounds for geometry’s exceptional potential to achieve learning with 
understanding, grasping the relations between things, and the forming of knowledge 
structures. In the early stages, understanding is founded on the observations of the 
real world, and the formed concepts are imprecise. As understanding develops, it is 
increasingly based on the structure of the geometrical system and concepts that gain 
more precise meaning through defining.

 Three Approaches to School Geometry

At different stages of education, the starting point for examining geometrical rela-
tions as well as the justifications for observations and conclusions differ. Naturally, 
these differences in perspectives are also apparent in learning objectives and practi-
cal applications. In accordance with Houdement and Kuzniak’s (2003) thoughts, 
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I will differentiate between three expressions of school geometry, G1–G3, which 
will largely correspond with the basic approaches that are adapted for teaching 
geometry in our educational system at different levels.

 G1. The Geometry of Concrete Objects

This approach is based on the assumption that nature is to a large extend geometrically 
ordered, and geometric relations and concepts can, in a sense, be found in reality. 
Geometrical truths are explained with direct observations and measurements. The prin-
cipal aims of teaching are the understanding, memorization and identification of geo-
metrical figures, estimating and measuring proportions and calculation.

 G2. The Geometry of Graphically Justified Ideal Plane Figures 
and Solids

Geometrical concepts are defined and technically gain meaning through this 
approach, though the interpretational foundation of concepts is still strongly rooted 
in observations of reality. Geometrical “facts” or theorems are presented as part of 
the mathematical system but explained or made plausible with concrete observa-
tions, experiments and measurements. The principal aims of teaching are examining 
geometrical concepts as mathematical objects rooted in perception, presenting 
quantitative correlations as formulas and applying these to geometrical and practi-
cal contexts.

 G3. Quasi-axiomatic Geometry

Basic concepts and relations are expected and found to match our intuition. Other 
emerging concepts are defined with the help of basic concepts or other, already 
defined concepts. Geometrical “facts”, e.g. theorems, are proven deductively using 
information that has been proven previously. The principal foundations for building 
up understanding are comprehending the role of definition in mathematics, deduc-
tive reasoning and proving (proofs) as well as applying knowledge to geometrical 
calculations.

These perspectives are constructed to overlap so that the previous view will 
always provide basis for interpretation in the following one (Houdement & Kuzniak, 
2003; Parzysz, 2003; Silfverberg, 1999). The overlapping quality of perspectives 
G1 and G2 is cemented in geometrical figures. On the one hand, they can be 
 interpreted as drawings or images (perspective G1); on the other hand, they can be 
seen as representations, models of ideal figures and solids (perspective G2).
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 The van Hiele Theory about the Stages of Development 
in Geometrical Thinking

The old but still frequently quoted and in general outline acknowledged van Hiele 
theory was developed by a married Dutch couple, Pierre van Hiele and Dina van 
Hiele-Geldof, during the 1950s, using their accumulated observations gained 
through years of educational work as its basis (van Hiele, 1957; van Hiele-Geldof, 
1957). The van Hiele theory describes the developmental stages of geometrical 
thinking. Since then, various other researchers have expanded on the theory, adapt-
ing it to new fields of study and modernizing it to match the new goals of school 
geometry (e.g. Atebe, 2008; Blair, 2004; Clements et  al., 1999; Guven & Baki, 
2010; Patsiomitou & Emvalotis, 2010; Silfverberg, 1999). Though the current prev-
alent theories differ in their interpretation of school geometry, the key hypotheses of 
the van Hiele theory are still widely accepted. The descriptive part of the van Hiele 
theory is the most well-known. This includes the hypothesis of the existence of 
levels of development characteristic to the growth of geometrical thinking. These 
five levels, which have come to be known as the van Hiele levels, describe the quali-
tative shifts apparent in geometrical thinking that are largely analogous and occur in 
the same sequence between different individuals, though not always at the same 
pace. The key characteristics of geometrical thinking typical of the different van 
Hiele levels, as described by Silfverberg (1999, 27–28), are as follows:

 Level 1 (Visualizing)

At this basic level, figures are viewed holistically as a part of the visual field of 
perception. Identifying, naming, categorizing, comparing, describing, etc. figures is 
achieved through the holistic appearance of the figure rather than its properties. 
Typical examples of basic geometrical figures can be recognized and classified. 
These prototypes can be visualized and drawn. At this level, classifications, such as 
a rectangle, gain meaning through an example, e.g. “a rectangle is like a window or 
the classroom whiteboard”.

 Level 2 (Analyzing Properties)

At the second van Hiele level, figures are interpreted as the “bearers” of their prop-
erties. At this level, figures are examined in the light of their characteristics. 
Properties are considered individually in the sense that their logical relationships are 
ignored. Figures can be analyzed and compared based on their properties and not 
just on their visual similarity or difference. At the level of analyzing properties, all 
common characteristics of a figure belonging to a particular category are discovered 
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and utilized. At this level, shapes such as a rectangle are still specified by the visual 
image of a conventional example, but the figure can also be described through its 
properties, e.g. “A rectangle has two long sides and two short sides, and all of its 
angles are equal”. When a pupil tries to define a concept it is typical that he attempts 
to place in the definition all she or he knows about the concept and not just what 
actually is sufficient from the point of view of the definition.

 Level 3 (Ordering Properties)

At this level, the properties of figures have an innate hierarchy created by logical 
relationships. Deductions can be followed and applied to brief instances of deduc-
tive reasoning. Definitions can be formed, and the sufficient and fundamental defin-
ing properties of figures can be identified. Defining properties can be utilized when 
determining whether a figure class is part of another class or not. At this level, a 
square is recognized as a rectangle, and the reasons for this can be explained.

 Level 4 (Formal Deduction)

At the level of formal deduction, the mindset required for systematic, deductive 
geometry is developed. At this level, consequences can be inferred based on the 
information given and geometric proofs can be formed independently. Information 
regarding a problem and the information that needs to be proven can be identified. 
The difference between definitions, axioms and theorems as well as the distinction 
between a theorem and its converse theorem, along with essential and sufficient 
conditions, is grasped. At this level, a pupil understands why the sentence “A rect-
angle’s diagonals are equal” requires proofs from Euclidean geometry, and why the 
reasons cannot simply be inferred from the figure. Their geometrical knowledge 
will be structured enough to allow for independent construction of formal proofs.

 Level 5 (Understanding Axiomatic Systems)

At the highest van Hiele level, different geometries can be compared by observing 
their differences and similarities as axiomatic systems. At this level, an individual 
can, among other things, research equivalents to Euclidean geometry’s concept of a 
rectangle in other geometrical spaces, such as the  taxi cab geometry or the 
spherical geometry.

The van Hiele theory contains the following basic premises with regard to the 
progression of geometrical thinking, notable for their importance in developing the 
curricula and didactics for geometry (Silfverberg, 1999, 31–32):
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 1. The development of geometrical thinking is discontinuous, which is apparent in 
the consecutive nature of the van Hiele levels. The order of the levels is fixed, 
and none of them can be skipped completely. Advancing to the next level always 
requires understanding of the previous levels.

 2. Progression moves from the implicit to the explicit. Each level’s functions are 
the object of the next level’s analysis; i.e. what was implicit in the thought pro-
cesses of the previous level becomes explicit on the next one.

 3. Each level has its own symbolical structure, and there is a gap of understanding 
between individuals on different levels. Each level has its own specific linguistic 
symbols and the network of relationships between them. If the pupil’s thinking 
is on a different van Hiele level from what the teaching is aiming at, the desired 
development will be hindered. This is especially the case when the teaching is on 
a higher level than the van Hiele level of the pupil, making him/her unable to 
properly understand what they are being taught. The level reduction, in other 
words teaching the content with methods intended for a lower than the actual van 
Hiele level (e.g. by memory), is possible, but will not lead to true understanding 
or raise the van Hiele level of the pupil’s geometrical thinking.

 4. The van Hiele levels primarily evolve out of the learning process. The progres-
sion of a pupil’s geometrical thinking is more reliant on the content covered and 
the quality of teaching than the pupil’s age or biological maturity.

 5. Geometrical thinking can be supported and furthered with a method of teaching 
that takes the levels of development into account.

The structural nature of the van Hiele theory is apparent in the way geometrical 
understanding is seen as a process where the central elements are sequential and 
located at different levels of abstraction yet still parallel paths of learning. At each 
stage, the paths of learning consist of getting to know the objects under examination 
first graphically and comprehensively, and then by analyzing their properties and 
the relationships between them. As noted before, each level’s functions are the tar-
get of the next level’s analysis; i.e. what was implicit in the thinking of the previous 
level becomes explicit on the next one (see Fig. 36.1).

Fig. 36.1 The demonstration presented by Gawlick (2005, 70) on the sequential progression of 
geometrical thinking according to the van Hiele levels
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 About the Characteristics of Geometric Concept Formation

According to Fischbein (1993), the tension between the visual and the conceptual 
components marks geometrical concepts in an especially clear and unique manner. 
Fischbein emphasizes that the objects studied in school geometry are figural con-
cepts by nature, meaning that they cannot be considered as purely conceptual con-
structions, since they are always accompanied by both a mental image born from 
figures and a conceptual interpretation born from verbal descriptions and defini-
tions (see Fischbein & Nachlieli, 1998). Naturally, it is possible to consider geo-
metrical concepts as a combination of required properties fixed by verbal 
definitions, but this type of method will not encompass all the implicit meanings of 
concepts. In the elementary geometry, the concepts that are studied involve, in 
addition to the meaning content given through definition, an empirical and visual 
idea of a concept’s interpretative background (“image”), inseparably and perhaps 
even primarily attached to its concept (consider, e.g. the shape of a figure or the 
straightness of a line).

Figural concepts are often also characterized by the dimension of typicality, related 
to examples. All the cases belonging to the domain of a concept are not equally pertain-
ing to the meaning of the concept; rather, some of the cases within a concept’s domain 
are more representative than others. The dimension of typicality and the irregularity of 
class distinctions caused by it have been tentatively accounted for with the fact that a 
concept is, in fact, not defined by the combined properties of all of the objects con-
tained in its domain, but rather by family resemblance. Objects belonging to the same 
class do not necessarily require collective properties at all. However, the more proper-
ties an object has in common with others, the more typical it is considered (Rosch & 
Mervis, 1975). Several studies (see, e.g. Okazaki & Fujita, 2007; Silfverberg, 1999) 
have proven that both primary and secondary school students tend to understand the 
basic concepts of geometry as prototypical, vaguely defined constructions. As an 
example, pupils around the age required for comprehensive school will often accept a 
figure with curved lines in the shape of an iron as a triangle and parallelograms with 
almost straight angles as rectangles. Besides the excessive allowance described above, 
attachment to prototypical  definition can also be seen as a limitation of interpretations 
in exclusive classification. Squares are not considered rectangles and rectangles are not 
parallelograms. Similarly, the only real polygons are the ones that have at least five 
angles, etc. (Silfverberg & Matsuo, 2008b).

Learning a geometrical concept involves three central components, namely the 
concept itself, its examples and the properties or attributes that describe it. 
Conceptualization as such requires synthesis through association, abstraction and 
differentiation between properties before analysis. In the theory of hypothesis test-
ing, learners are seen to abstract examples of a concept by analyzing its defining 
properties and constructing a concept as their synthesis. The process of conceptual-
ization can then be illustrated with a diagram (Fig. 36.2).

According to this interpretation, concept learning requires a learner to be able to 
make inductive generalizations based on the cases studied, as well as the ability to 
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make logical deductions in order to combine collective, defining properties into a 
description of a concept.

In the prototype theory, the concept, or “pre-concept”, is considered to be the 
result of a synthesis of examples united by context before the properties character-
istic of the concept have even reached the conscious mind. This type of learning 
process can be illustrated with a diagram (Fig. 36.3).

Since the concepts studied in school geometry generally have a very concrete 
background, it is natural to assume that concept learning will often result in the 
creation of prototypical concepts, particularly in the beginning. At some point in 
learning geometry, the teacher will attempt to clarify the intuitive prototypical (pre-)
concept into a defined concept. Since in most cases both processes for concept 
learning guide conceptualization, the geometrical concept adopted by the pupil will 
often contain both traits of a well-defined concept and the traits of a vaguely defined 
concept.

An analysis by Trzcieniecka-Schneider (1993), however, demonstrates how both 
inductive and deductive processes of concept learning can lead to perceiving a con-
cept prototypically through the properties of its isolated, typical examples, leaving 
the properties relevant to forming an actual definition beyond the grasp of the 
learner. It is possible to learn the core content of a concept without learning the kind 
of variation the core of the concept allows in examples.

 Basic Skills in Geometry

 Classifying and Designating Figures

One of the manifesting characteristic for the way geometrical concepts gain mean-
ing through typical examples is the avoidance of hierarchical classification in con-
ceptualization  – i.e. the exclusive classification. This phenomenon, familiar to 
experienced teachers from practice, has also systematically received verification in 
research (e.g. Silfverberg & Matsuo, 2008a, b). Squares are not considered 

Examples 
Analysis Shared 

properties
Synthesis Concept and its 

definition

Fig. 36.2 Conceptualization according to the theory of hypothesis testing
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Fig. 36.3 Prototypical conceptualization
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rectangles, because they do not look like typical rectangles. Likewise, rectangles are 
not considered parallelograms, and quadrilaterals are not considered polygons, 
because they lack the necessary number of angles. Similarly, a figure that bears 
close enough resemblance to a triangle can be considered a triangle, even if its 
“sides” are not straight, while an actual triangle will not always be accepted as such 
if its shape is elongated enough, etc. (Fig. 36.4).

The exclusive classification derived from prototypical conceptualization appears 
to be connected to the context that serves as the basis for classification (Silfverberg 
& Matsuo, 2008a, b). In the study by Silfverberg and Matsuo, there was a surprising 
distinction between the classifications of the Finnish and the Japanese pupils. In 
unrestricted classification, in which an individual is allowed to group example fig-
ures the way they feel is most fitting, exclusive classification appeared to be more 
common among the Japanese students than it was in the forced classification, in 
which the pupils are asked to group the examples in accordance with the previously 
agreed classifications. Generally, it can be said that learning and teaching hierarchi-
cal conceptualization is a demanding task (see, e.g. Okazaki & Fujita, 2007), since 
it requires intentional detachment from how things appear to be according to their 
visual appearance and acting against the individual’s immediate visual perception. 
Naturally, hierarchical structures can be learned as simple, memorized facts, but 
explaining them mathematically requires understanding the idea of definition; in 
other words, understanding that something is this way in mathematics, because it has 
been (intentionally) defined as such, and not because it (or rather, its representation) 
visually appears like something.

 The Skills of Definition and the Clarification of Concepts

After discovering how surprising primary school students’ understandings of what 
is meant with the size of an angle can be, Silfverberg and Joutsenlahti (2007) built 
on the above mentioned research by testing how uniform the interpretations of 
students studying the subject itself and those studying to teach in primary school 
were regarding the well-known concept of angles, utilizing, among others, the 
following test:

Fig. 36.4 Triangles or 
not?

36 Geometrical Conceptualization



620

Which of the points A, B, C, D, E, F, G, H and I are part of the angle α?

 

Surprisingly, the results clearly indicated that even prospective teachers  can 
interpret the concept of angles in many  different ways. There was diversity in 
whether to think an angle as a line  construct consisting of two line segments or 
rays or think it as the area defined by two line segments or rays. On the other hand, 
there were different interpretations on whether the angle continues in the direction 
indicated by the drawing, beyond the limits of the section that were drawn. The 
angle was also interpreted as a rotation which made the actual question seem poorly 
worded. The results also proved that, in comprehensive and upper secondary school 
education, and in several cases also in university education, students could retain 
surprisingly diverse understandings (beliefs) about basic mathematical concepts, 
such as angles, for a very long time, without even suffering from any larger conflicts 
in communication. The explanation for this may lie in the teaching practices of 
school mathematics. Task assignments typical of school mathematics, such as “cal-
culate...”, “draw…”, “classify…”, “determine the area…”, etc., appear to be of a 
type that allows for communication over the objects of study and achieving the 
desired result even while basic concepts, such as the angle, are understood in funda-
mentally different ways. In the spirit of socio-constructivist learning, highlighting 
differences in interpretations by using tailored assignments that reveal differences 
and discussing and negotiating the possibilities for interpretation, it is possible to 
aim for more uniform and accurate concepts.

Several of our studies indicate that the process of defining concepts and, most 
importantly, understanding the idea of definition are extremely challenging for stu-
dents of both comprehensive and upper secondary schooling and even those at the 
university (Matsuo & Silfverberg, 2011; Silfverberg, 1999; Silfverberg & 
Joutsenlahti, 2007; Silfverberg & Matsuo, 2008a, b). This is partially because of the 
readily offered definitions in most study materials and the lack of interest in or the 
time for a deeper analysis. Regardless, understanding the significance of definition 
in mathematical conceptualization is more important than remembering the actual 
definitions themselves.
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Relative to research, understanding the idea of definition is a complex task. 
Analysis can be directed at, for example, (1) how well the definition provided by the 
student defines the concept, as compared to the standard interpretation, (2) how well 
the form of the provided definition corresponds with the criteria set for mathematical 
definitions (de Villiers, 1995; Hershkowitz, 1990; Leikin & Winicki- Landman, 2000a, 
2000b), (3) how well the definition provided by the student corresponds with the 
concept image that they appear to hold, based on its application (Tall & Vinner, 1981; 
Vinner, 1991; Vinner & Dreyfus, 1989) or (4) what type of linguistic form the defini-
tion text provided by the respondent holds (Barnbrook, 2002).

With regard to practical teaching, the problem is easy to solve, at least in prin-
ciple: Definitions are learned by devising definitions, exploring different options 
and pondering the type of a definition the creator of the definition is aiming for, and 
why. Most of all, study materials are in need of assignments that provide the oppor-
tunity to practice definition. Below, you will find an example of a similar task,1 
which is intended to spark conversation about the possibility of differing definitions 
and the hierarchical superiority of definitions formed in distinct ways.

Example 1 Based on the pictures of ten examples and ten non-examples of the 
concept “Duo” you can deduce the properties of the concept Duo. Form a definition 
for a concept “Duo”. Compare the definitions provided by the class. Which of the 
suggested definitions do you think is the best, and why?

Valid pairs Invalid pairs

 

1 Source: Textbook Silfverberg, Viilo & Pippola. Matematiikan Taito 3. Geometria, Weilin+Göös, 
s. 48
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Each new concept introduced in the classroom offers an opportunity for conver-
sation about how to limit the concepts, describe them verbally and define them, and 
why this is the way it is done. Below, you will find one more example2 of an assign-
ment in which the definition is provided, and the task is to explore the consequences 
of its stipulations.

Example 2 A kite can be defined as a quadrilateral with two pairs of equally long, 
adjacent sides.

 (a) Draw three kites that differ from each other.
 (b) Which of the following properties apply to all the kites?

 (i) The diagonals are perpendicular.
 (ii) Two vertices are at equal distances from the diagonal defined by two other 

vertices.
 (iii) No two sides are parallel.

 (c) Complete the sentence so that it is true by filling in the blank with one of the 
options is always, can be and is never.

A square  __________ a kite.
A rectangle  __________ a kite.
A rhombus  __________ a kite.
A parallelogram __________ a kite.
A trapezoid  __________ a kite.

 The Skills of Proving

Euclid already utilized the axiomatic method when compiling geometrical knowl-
edge of his time. The starting point were certain basic concepts, i.e. basic objects 
such as the point and the line, which are not defined, and the statements or axioms 
regarding them, which are accepted as true. Based on the basic geometrical objects, 
new concepts can be defined, which are then used in defining yet more new con-
cepts. With the help of axioms and definitions, new propositions i.e. theorems can 
be proved, which will then help to prove yet more theorems. Theorems present the 
properties of concepts being studied, as well as the relationships between proper-
ties, which are then validated by a proof.

In geometry, we have got used to geometrical theorems being proved through a 
chain of reasoning, in which what is already known takes us step by step from a 
given to a statement. From experience, we know that learning the method of proof is 
a difficult task for every student and one that takes significant time to learn. 
Understanding a ready-made proof and more so constructing a valid proof requires 

2 Source: Textbook Silfverberg, Viilo & Pippola. Matematiikan Taito 3. Geometria, Weilin+Göös, 
s. 47
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structured understanding of the composition of all the geometrical knowledge cov-
ered up to the point, as well as correct understanding of how a proof works. This goal 
will be easier to reach if the students have, over time, been familiarized with present-
ing reasoning for their claims in school mathematics and taught the skills of argu-
mentation in a less demanding context than creating a valid proof. Harel and Sowder 
(1998) accentuate that being convinced of the truth of something and proving it are 
done in different contexts, with different grounds and criteria. Overall, Harel and 
Sowder differentiate between the 12 different grades of methods for being convinced, 
ranging from belief in authority to proof by deduction in an axiomatic system.

In a similar manner, Mason et al. (1982) presented a three-phase method for test-
ing the plausibility of an argument, in the form of didactic instructions for practicing 
reasoning: Convince yourself – convince a friend – convince an enemy. I have per-
sonally found that these  steps are especially useful for situations requiring co- 
operative teamwork and experimental work with dynamic geometry in the form

Be convinced yourself (testing observations)

Does your friend believe you? (presenting to a small group)

Does everyone believe you? (presenting to the class and the teacher)

In comprehensive education, rather than actual proof, arguments are generally 
tested by making plausible, inductive generalizations from several explored cases 
or comparing, for example, the results achieved by measurement. Another conven-
tional option is to present a demonstration in which, for instance, by altering a figure 
or figures, the existence of an assumed property, such as invariance, can be estab-
lished. Of course, the property being studied does not have to be geometrical. 
Geometrical models are often used to explain algebraic relationships. For example, 
the Pythagorean theorem has hundreds of such established “visual proofs” based on 
the geometrical properties of figures. Some also claim that understanding a demon-
strative model can often be harder than understanding the issue itself. The skill of 
understanding demonstrations can be practiced, however. Below, there are some 
examples of assignments that link algebraic and geometrical perspectives and allow 
the reader to ponder the extent to which geometrical demonstration helps to under-
stand algebraic content, and to what extent  it presents auxiliary challenges  for 
understanding. This kind of a dialogue between the visual and algebraic thinking is 
a central method when mathematical fact is tried to be justified without formally 
proving the statement. “The proofs without words” both in a static and in a dynamic 
format help the learner see why a particular mathematical statement is true and 
perhaps also how one might begin to formally prove it true (Bell, 2011; Nelsen, 
1993, 2000, 2015; Sigler, Segal & Stupel, 2016).

Task 1 (a) Explain how the following Figure a demonstrates the formula
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 (b) Explain on which principle the rectangles in Figure b have been drawn. Form an 
equation (formula), which the Figure b demonstrates.

a

 

b

Task 2 Explain how the following figure demonstrates the Pythagorean theorem 
a2 + b2 = c2.
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 Towards a Dialogue of the Traditional and the Dynamic 
Geometry

Information technology and especially the dynamic geometry software, such as 
GeoGebra, have provided practical instruction of geometry with countless new 
opportunities, and it is our belief that this development is merely the beginning. 
Tablet computers and the new calculator technology allow the use of dynamic geom-
etry in a regular class space even without computers. Dynamic geometry software 
constructs figures on a screen based on their defining properties. The method of con-
struction itself is often similar to drawing with a compass and a ruler; knowledge of 
compass-ruler constructions is an obvious benefit when learning the functions of 
dynamic geometry. The dynamicity of a drawing means that once created, the con-
structed image can be altered with the grab and drag method, by grabbing onto a free 
point in the figure, such as the vertex in a polygon, and moving the point around by 
dragging it. The shape of the figure will adjust within the limits that the definitions 
provided for the figure will allow. This enables studying the figure’s invariances and 
variable properties experimentally, in other words, discovering and testing geometri-
cal statements experimentally. The user does not have to settle for just ocular study-
ing of the properties, since the more developed geometry software also includes a 
variety of tools for measuring and calculations, even if studies in nature will  be 
approximations either way. The worldwide GeoGebra institutes network maintains a 
collection of softwares https://www.geogebra.org/institutes, which the reader can 
freely use to learn more about both dynamic geometry software GeoGebra as well as 
the finished applications developed with it.

When working with traditional methods, e.g. the pen and the paper, the starting 
point is that the student is aware of how each figure and configuration can be altered 
based on the known properties of the concepts. By the term visual variation we refer 
to the individual’s ability to intentionally create visualizations of different examples 
related to the scope of the concept in a way that allows for controlling the variation 
of the form or other geometrical properties of a figure via visualization (Silfverberg, 
1999, 92). The reader can test out the role of visual variation in their own thinking 
by, for instance, considering how an isosceles triangle can be rectangular, or how a 
triangle can be considered a trapezoid. Dynamic geometry is expected to provide 
the learner with support in developing their skill in visual variation, which will then 
complement concept learning generally, as a mental function. Many other learning 
processes typical of geometry, such as testing out prototypical concepts, developing 
skills in definition and training deductive skills, are emphasized in this kind of 
learning environment. At its best, activity in dynamic learning environments 
improves skills in testing out generalizations and developing hypotheses by mental 
images even without computer environment.

From the viewpoint of the development of geometrical thinking and conceptual 
geometrical knowledge, working with dynamic geometry software offers an excel-
lent learning environment for learning the meaning behind geometrical concepts 
and studying the relationships between concepts. Working in an environment of 
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dynamic geometry can naturally be linked with student-centred and investigative 
approaches to learning geometry (Erbas, & Yenmez, 2011; Hannafin & Scott, 2001). 
Studies have proven that dynamic geometry, when skillfully used, is also an effec-
tive way of learning geometry. As an example, Chan and Leung’s (2014) meta- 
analysis revealed that the overall effect size of DGS-based instruction on achievement 
scores was distinctive compared to traditional instruction. Subgroup analysis found 
some groups to have better effectiveness, for example, short-term instruction with 
dynamic geometry software significantly improved the mathematical achievement 
of elementary school students. Traditional geometry with its example figures drawn 
on paper and dynamic geometry are not contradictory or exclusive; instead, they 
should be considered mutually complementary tools for developing geometrical 
understanding (see, e.g. Patsiomitou & Emvalotis, 2010).

 Geometry and Learning Difficulties

Learning difficulties related to geometry have been studied considerably less than 
those apparent in the numerical and algebraic domains of mathematics. Regardless, 
many factors that contribute to learning difficulties are shared between both domains 
of mathematics.

One characteristic property of school geometry is the abundance of concepts in a 
hierarchical structure. There is plenty to learn and remember, especially if the 
learner cannot understand the logical relationships between the concepts. Working 
memory is under pressure as well, especially when the task requires the individual 
to simultaneously keep in mind many kinds of information (Bobis, Sweller, & 
Cooper, 1993). One part of the required information can be in text format, one part 
symbolical and one part marked on the illustration provided with the assignment. 
For example, a study by Silfverberg (1999) demonstrated that the van Hiele levels 
used to categorize a student’s level of geometrical understanding had a clear corre-
lation with the student’s working memory capacity.

Another characteristic of school geometry is its pronounced visuality. In geom-
etry, visual information is utilized both directly as a tool for perception and indi-
rectly, when the required information is not provided outright, but must be deduced 
based on the other information available in the picture. A picture itself can be either 
static or a dynamically configurable image on a computer screen. The learning 
process can be hindered by similar visual processing disorders as the ones that 
hinder numerical tasks (see, e.g. Gal & Linchevski, 2010), for example, when visu-
alizing fractions with different graphical representations or when learning to under-
stand the part-whole relation with the help of visual models. Visual processing 
disorders can manifest as a difficulty of recognizing spatial relations, a reduced abil-
ity to sort out visual information, or a difficulty of recognizing known objects in 
images or to perceive pictures’ parts and wholes (NCLD, 1999).

When a pupil has difficulties in learning geometry, it is good to remember that 
these challenges can be caused by many factors. On the one hand, learning 
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 difficulties can be caused by a pupil’s general, non-verbal learning difficulties, such 
as the limitations of their visuospatial working memory (Mammarella, Giofrè, 
Ferrara & Cornoldi, 2013), other visual processing disorders (Gal & Linchevski, 
2010) or disorders of verbal development. On the other hand, geometry itself can 
occasionally prove challenging in terms of content, especially when moving on to 
deductive geometry. Traditional Euclidean geometry with its definitions, theorems 
and proof requires thinking at van Hiele level 3 or higher, as well as necessary skills 
in logical reasoning. It is best not to forget that teaching geometry can be challeng-
ing both intellectually and didactically for the teacher, as well. Kuzniak and 
Rauscher (2011) demonstrate illustratively with examples how different didactic 
approaches to issues studied in geometry are differently vulnerable to the develop-
ment of learning difficulties.

 Summary

It happens all too often that school geometry is regarded solely as a means of adding 
new content to a geometrical reservoir of information. According to Houdement and 
Kuzniak (2003) as well as the van Hiele theory (1957), geometry appears as a very 
diverse field to learners at different ages. The gradual but comprehensive change in 
geometrical thinking and the accumulation of geometrical knowledge last from early 
childhood to adulthood, guiding learners step by step from one geometrical approach 
to another, as the abovementioned interpretations G1–G3 to geometry demonstrate.

It is obvious that teachers teaching geometry must know the main characteristics 
of the development of geometrical thinking at all school levels and adjust their 
teaching to match the current stage in development. Even so, the task remains peda-
gogically challenging. The geometrical thinking of a pupil should be guided with 
tasks and activities that are both understandable at the level their geometrical think-
ing is at, but still provide the opportunity and challenge of a higher-level analysis. 
With the previous examples, I strove to illustrate how the basic elements of geo-
metrical thinking, such as how concepts grow comprehensible either through their 
visual images or definitions and how different kinds of arguments can make claims 
presented as facts appear plausible, are fundamentally different in the various geo-
metrical interpretations.

Even though the kind of geometry that is taught in school is based on centuries- old 
knowledge, it is important to note that didactics of geometry is currently facing a 
major turning point. These days, geometry is increasingly studied in the learning envi-
ronments of dynamic geometry, which are characterized by the students’ explorative 
and experimental work. For now, not much is known about whether this modern style 
of geometrical education based on socio-constructivist-oriented co- operation and 
explorative approach will provide learners with better skills in spatial and geometrical 
thinking than the traditional methods of teaching geometry. The tools for determining 
this should also be improved, both on the theoretical and the practical levels. Like 
Mammarella, Giofrè and Caviola (2017) rightfully noted, the theories describing the 
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progress of geometrical thinking are over 30 years old. In reality, this is when the 
theories reached the level of common knowledge; however, for example, the most 
well-known, the van Hiele theory, is dated back to the 1950s, a time during which the 
status of geometrical education within the curricula as well as the method of teaching 
geometry were completely different from what they are today.
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Chapter 37
Assessing Mathematical Competence 
and Performance: Quality Characteristics, 
Approaches, and Research Trends

Jan Lonnemann and Marcus Hasselhorn

 Introduction

Educational and psychological assessment involves the identification of individual 
preconditions and developmental constraints of children’s learning. Thus gathered, 
the assessment information is, for example, used to distinguish between children 
with and without mathematics learning difficulties. Based on the identification of 
individual difficulties and resources, training programs to enhance learning can be 
adaptively developed and applied. The evaluation of the effectiveness of these pro-
grams by identifying relevant changes at the individual level also constitutes an 
important function of educational psychological assessment. In order to assess 
children’s individual level of age-appropriate mathematical competencies, as well 
as their developmental trajectories, different diagnostic approaches have been 
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developed. In the following sections, the quality characteristics of such approaches 
are described and different categories are presented for the classification of such 
approaches. In this context, different principles of task selection and their conse-
quences for the interpretation of test results are discussed, and some promising 
research trends are finally outlined.

 Quality Characteristics

To ensure the quality of diagnostic test results and related diagnostic decisions, 
specific criteria of evaluation must be adhered to. Within the scope of the classical 
test theory, based on which most of the currently used diagnostic tools were devel-
oped, reliability is the central criterion of evaluation. Reliability refers to the consis-
tency or stability of a measure. The more consistency and stability is achieved for a 
specific diagnostic tool, the lesser the extent of measurement errors of the test is and 
the more reliable the test is. A standard procedure to estimate test reliability is the 
replication of a test with the same participants within a short period of time. Given 
that both test applications lead to comparable results (so-called test–retest reliability), 
the test under scrutiny is classified as being reliable.

Objectivity and validity are additional criteria of evaluation which are considered 
to be indispensable. A measurement is objective if the test result is not influenced by 
the person who is conducting the test. Objectivity should be ensured with regard to 
collection, analysis, and interpretation of data. To meet this requirement, detailed 
instructions for test administration, scoring, and interpretation are typically pro-
vided in a test manual. Validity refers to the accuracy of a measure. A measure is 
valid if it actually measures what it purports to measure. For example, testing a 
specific group of participants with two different tests should yield similar results if 
both tests are designed to measure the same competence. In the context of measur-
ing and analyzing performance, scaling (provision of norms) can be regarded as 
another important criterion of evaluation. Testing norms should be representative 
and up to date.

 Categories of Classification

Existing diagnostic approaches to assessing mathematical competence and perfor-
mance can be classified into different categories. The categories norm-referenced 
versus not-norm-referenced tests, individual testing versus group testing, paper- 
and- pencil tests versus interviews versus computer-based tests, chronological 
versus educational age–oriented tests, speed tests versus power tests, and the 
principles of task selection are addressed in the following sections.

J. Lonnemann and M. Hasselhorn

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)



635

 Norm-Referenced Versus Not-Norm-Referenced Tests

Norm-referenced tests allow for an evaluation of individual performance based on 
the performance of an appropriate reference population. In this way, it is possible to 
determine whether the test performance of a child is within the range of perfor-
mance levels that most children of this age or grade level achieve, or whether the 
child’s performance is above or below the average performance level of the refer-
ence population. Objective, reliable, and valid assessment of a child’s below- average 
performance level is necessary for diagnosing developmental dyscalculia. Tests that 
are not norm referenced typically involve qualitative assessments, which can help 
gain insights into children’s individual ways of thinking and their strategies. In this 
regard, it should be noted that two children can show identical performances (e.g., 
correctly solving the task 12 − 4 = ? in the same period of time) but may differ with 
regard to the strategies they use to solve the problem. While one child may solve the 
problem by counting backward, the other may use a decomposition strategy (e.g., 
12 − 2 = 10 and 10 − 2 = 8). These two ways of solving the problem point to the 
understanding of different concepts and may perhaps represent different levels of 
mathematical competence. Based on more qualitative interpretations of children’s 
math problem–solving behavior, hypotheses about individual competencies and 
deficits can thus be derived and individualized training programs can be developed. 
Individual reference parameters are suitable to evaluate the effectiveness of such 
programs, and they allow the inspection of individual performances over time and 
thereby the detection of changes at the individual level.

 Individual Versus Group Testing

Mathematical competence and performance can be assessed either individually or in 
a group setting. A number of tests can be conducted either individually or in a group 
setting. The norm-reference data for such tests are typically assessed in a group 
setting and used to evaluate both the results of individual tests and the results of 
group tests. This, however, requires that similar test results can be expected under the 
conditions of group testing and under the conditions of individual testing.

 Paper-and-Pencil Tests Versus Interviews Versus Computer- 
Based Tests

Most contemporary approaches to assessing mathematical competence and perfor-
mance rely on paper-and-pencil tests. Interviews are especially used for children at 
preschool age and rather seldom in school contexts. In addition, a number of 
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computer- based math tests are available today. Computer-based tests can have the 
advantage of objective and economical data analysis. Besides, they can offer the 
possibility to individually adapt task difficulty without great effort and to provide a 
playful atmosphere in the testing situation, which can have a motivating effect.

 Chronological Versus Educational Age–Oriented Tests

While some approaches to assessing mathematical competence and performance 
are designated for specific chronological age ranges, other approaches consider the 
educational age, i.e., the individual level attained in the educational system. 
Approaches considering the educational age are, for example, designated for chil-
dren in their last year of kindergarten or for children attending specific grade 
levels.

 Speed Versus Power Tests

A further category for the classification of approaches to assessing mathematical 
competence and performance refers to the question of whether the assigned tasks 
have to be solved under time pressure or not. So-called speed tests involve problem 
solving under time pressure and are typically based on the assumption that a higher 
level of competence is expressed by more efficient solution strategies. Indeed, 
automatized and thus relatively fast procedures for solving simple arithmetic prob-
lems are considered to be fundamental to the development of arithmetic skills in 
elementary school (e.g., Geary, 2000). The interpretation of speed test measure-
ments is, however, ambiguous because children’s performance in speed tests might 
reflect not only their mathematical competence but also their level of motivation 
and/or their general processing speed. If a child can solve only a few problems 
under time pressure, this does not necessarily mean that the child has not under-
stood the underlying mathematical concepts. To gain more detailed information 
about children’s understanding of mathematical concepts, so-called power tests 
involving problem solving without obvious time pressure are thus more suitable. 
However, some approaches to assessing mathematical competence and performance 
consider both perspectives: speed and power.

 Principles of Task Selection

Aside from the aforementioned categories of classification, the approaches to 
assessing mathematical competence and performance differ with regard to the prin-
ciples of task selection. Curriculum-based measures including tasks that represent a 
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specific curriculum do exist, as do measures for which task selection is based on 
neuropsychological or developmental psychology theories. In the following 
sections, these different principles of task selection and their consequences for the 
interpretation of test results are discussed by reference to selected approaches to 
assessing mathematical competence and performance.

 Outline of Different Approaches

 Curriculum-Based Measures

Curriculum-based measures include tasks representing a specific curriculum (see 
e.g., the German Mathematics Test for First Grade (DEMAT 1+)) (Krajewski, 
Küspert, Schneider, & Visé, 2002; Krajewski & Schneider, 2009). Provided that 
norm-reference data are available and that the school a child is attending adheres to 
the curriculum, the evaluation of the child’s performance can serve to assess whether 
a child has achieved the curriculum goals in the same way as most of the peers, or 
whether the child’s performance is above or below the average performance level. 
The concept of curriculum-based measurement (CBM) (see e.g., Deno, 1985) com-
prises repeated measures of students’ academic performance in order to monitor 
individual progress regarding the respective curriculum outcomes, and to evaluate 
and improve instruction. Most of the CBM research in mathematics has initially 
focused on computational fluency in elementary school children. The Monitoring 
Basic Skills Progress (MBSP) math computation measures (Fuchs, Hamlett, & 
Fuchs, 1998), for example, have been widely utilized and validated through a series 
of studies (see e.g., Foegen, Jiban, & Deno, 2007 for an overview). Typically, CBM 
consists of a group-administered paper-and-pencil test containing samples of prob-
lems that represent the respective year’s curriculum scope and sequence. The prob-
lems that are used to target a specific grade level comprise problems that children 
should be able to solve at the end of the respective school year. In order to monitor 
individual progress, the children have already been confronted with these problems 
at the beginning of the respective school year. Repeated observations of individuals’ 
performance should be structured so that children respond to samples of problems 
that are always different yet of comparable difficulty. In CBM research, the targeted 
equivalence of difficulty across different samples of problems is a major concern 
(see e.g., Montague, Penfield, Enders, & Huang, 2010). If the different samples of 
problems are of comparable difficulty, it is possible to determine whether a child’s 
performance level has improved, deteriorated, or remained as is. Computer-adaptive 
testing (CAT) has recently emerged as a method for progress monitoring. CAT 
involves the presentation of tasks via computer with subsequent items adjusted 
based on the accuracy of the child’s response and the difficulty of the respective task 
(see e.g., STAR-Math (Renaissance Learning, 2012)). Owing to the adaptive admin-
istration, different children can receive different sets of test items. Item response 
theory (IRT) is a psychometric model that allows equitable scores to be computed 
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across different sets of items. CAT has the capability of increasing diagnostic 
efficiency by reducing test administration and evaluation time without affecting test 
precision. Indeed, adaptive tests can provide uniformly precise scores for most chil-
dren, while nonadaptive tests usually provide the best precision for children in a 
specific ability group (e.g., children with developmental dyscalculia). The develop-
ment of computer-adaptive tests can, however, be far more expensive than develop-
ment of paper-and-pencil fixed-form tests.

To summarize, it can be noted that curriculum-based measures for assessing 
mathematical competence and performance exist that are designated for repeatedly 
evaluating a specific mathematical skill to get information about the competence 
gains of a child, and others that are designated for single usage. The test results of 
curriculum-based measures allow evaluation of individual skills in terms of given 
curriculum goals.

 Approaches Based on Neuropsychological Theories

The triple-code model of number processing (e.g., Dehaene, 1992; Dehaene & 
Cohen, 1995) provides a basis for different approaches to assessing mathematical 
competence and performance. The model proposes that numbers can be mentally 
represented in three different codes, which are linked to different brain regions: a 
visual Arabic number form, an auditory–verbal word frame, and an analogue mag-
nitude representation. The visual Arabic code encodes numbers as strings of Arabic 
numerals. The auditory–verbal word frame represents numerals lexically, phono-
logically, and syntactically. It is assumed to mediate retrieval processes for simple 
addition and multiplication facts. These visual and verbal codes are thought to be 
nonsemantic and more related to the surface format of numerical input and output 
processes. The analogue magnitude code, conversely, provides a semantic represen-
tation of the size and distance relations between numbers.

Based on the triple-code model of number processing, von Aster and Shalev 
(2007) conceptualized a four-step developmental model of number acquisition. The 
four proposed steps are assumed to be associated with the development of different 
brain regions. Accordingly, children possess an innate or very early acquired core 
system for representing numerical magnitude information (step 1). This is assumed 
to be a necessary precondition for children to learn to associate a perceived number 
of objects or events with spoken (step 2) and written Arabic symbols (step 3). 
Nonsymbolic numerical magnitude representations (step 1), verbal representations 
(step 2), and symbolic, visual Arabic representations (step 3) are assumed to be 
merged into a mental number line representation (step 4), which provides the basis 
for the development of arithmetic skills.

Based on the four-step developmental model of number acquisition, the 
Neuropsychological Test Battery for Number Processing and Calculation in 
Children (ZAREKI-R) (von Aster, Weinhold Zulauf, & Horn, 2006) was developed 
(see Table 37.1 for an overview of selected diagnostic approaches). This test battery 
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is designated for identifying elementary school children with developmental dyscal-
culia, and it has been used with children from different countries—for instance, 
from Switzerland, Germany, France, Greece, and Brazil (Dellatolas, von Aster, 
Willardino-Braga, Meier, & Deloche, 2000; Koumoula et al., 2004; von Aster & 
Dellatolas, 2006).

A kindergarten version of the test battery (ZAREKI-K) (von Aster, Bzufka, & 
Horn, 2009) is also available. To illustrate the principle of such tests derived from 
neuropsychological theories, ZAREKI-K is now described in more detail. The 
declared aim of this test battery is to provide a risk estimation for the development 
of mathematical learning difficulties. ZAREKI-K is a paper-and-pencil test. It is 
conducted in an individual setting without time pressure and consists of 18 subtests 
(counting forward, counting backward, counting in steps of two, identifying preced-
ing and succeeding numbers, counting dots, word problems, repeating numbers, 
addition/subtraction based on quantities, mental addition/subtraction, number line 
activities, subitizing, perceiving and comparing differently arranged quantities, 
reading numbers, writing numbers, linking quantities and numbers, contextual esti-
mation, oral numerical magnitude comparison, and written numerical magnitude 
comparison). These subtests are assigned to three index scales: (1) counting and 
number knowledge; (2) semantic numerical knowledge and arithmetic; and (3) 
working memory. The norm-reference data are based on 429 children from 
Switzerland who were examined in their last year of kindergarten before entering 
elementary school. Norms are available for overall performance, for performance 
on each of the three index scales, and for performance in each of the 18 subtests. 
The identification of children at risk for the development of mathematical learning 
difficulties is either based on overall performance or based on performance on one 
of the two index scales 1 and 2. The third index scale is not used for risk estimation. 
At the end of second grade, 378 children from the norming sample of ZAREKI-K 
were re-examined using ZAREKI-R. Thereby, the prognostic validity of ZAREKI-K 
should be evaluated. Adhering to the test manual, 26 out of the 378 children were 
identified as having developmental dyscalculia based on their performance in 
ZAREKI-R. Among these 26 children, 16 were correctly identified as children at 
risk for the development of mathematical learning difficulties. Another 16 children 
were identified as having a risk for the development of mathematical learning dif-
ficulties but based on their performance in ZAREKI-R, they were not identified as 
children with developmental dyscalculia. According to the authors, analyses of indi-
vidual test results allow not only the identification of children at risk for the devel-
opment of mathematical learning difficulties but also the selection of appropriate 
training materials. The existing norms for performance in each of the 18 subtests 
should thus serve to identify individual profiles of strengths and weaknesses. With 
regard to reliability, due to the small number of tasks in the different subtests (a 
maximum of 11 tasks), it is advisable to perform data interpretation at the level of 
the index scales, not at the level of the subtests. It should also be noted that the 
norming sample is relatively small and that the norms apply to the complete year of 
kindergarten before school entry, which does not appear to be optimal, because of 
the assumable learning progress during this period.
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Approaches based on neuropsychological theories, like ZAREKI, allow for the 
inspection of different mathematical skills, which are associated with the function-
ality of different brain regions and might be impaired separately. Another example 
of this category is the Diagnostic Test for Basic Competencies in Mathematics 
(Tedi-Math) (van Nieuwenhoven, Grégoire, & Noël, 2001). Tedi-Math is also des-
ignated for identifying children with developmental dyscalculia. The original 
French version has been adapted for use with Dutch- and German-speaking children 
(see Grégoire, Noël, & van Nieuwenhoven, 2004; Kaufmann et  al., 2008). Like 
ZAREKI-K, Tedi-Math is a paper-and-pencil test, and it is conducted in an indi-
vidual setting without time pressure. In some of the subtests of Tedi-Math, however, 
qualitative assessments as well as assessments of children’s processing speed are 
scheduled. The German version of Tedi-Math consists of 28 subtests (e.g., counting, 
logical operations on numbers, and arithmetical operations) addressing the different 
forms of numerical representations proposed in the triple-code model of number 
processing. Tedi-Math can be used with children from 4 to 8 years of age (kinder-
garten to third grade) and norms are provided for 6-month intervals. Depending on 
the individual level attained in the educational system, a selection of subtests is 
specified. Norms are provided for overall performance but also for performance in 
each of the different subtests, serving to identify individual profiles of strengths and 
weaknesses. Moreover, according to the authors, Tedi-Math has acceptable psycho-
metric properties for progress monitoring purposes. The estimation of test reliabil-
ity based on norm-reference data for the German version (N  =  873), however, 
revealed a comparatively low retest reliability in kindergarten (r = 0.23).

 Approaches Based on Developmental Psychology Theories

Different approaches to assessing mathematical competence and performance have 
been conceptualized on the basis of developmental theories of number understanding 
postulated by Resnick (1983) and Fuson (1988). For example, Fritz and Ricken (2008) 
(see also Fritz, Ehlert, & Balzer, 2013) proposed a model for the development of 
numerical concepts from ages 4 to 8; a similar model was presented by Krajewski 
(2008) (see also Krajewski & Schneider, 2009). In accordance with this model, a the-
ory-based grouping of items was performed, which is used in the Mathematics and 
Arithmetic Test for Assessing Concepts at Preschool Age (MARKO-D) (Ricken, Fritz, 
& Balzer, 2013). An adapted version for first graders is also available (MARKO-D1+) 
(Fritz, Ehlert, Ricken, & Balzer, 2017). Both tests intend to provide a quantitative and 
qualitative description of children’s individual stages of development. The different 
developmental levels are defined by the following concepts and tasks:

• Level I—count numbers: The ability to distinguish small sets and to count and 
enumerate them. Children know the number word sequence and can count out small 
collections of objects by allocating one object to one number word. This level is 
assessed by tasks such as “Give me 5 disks.”
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• Level II—mental number line: Children construct a mental number line represen-
tation, i.e., an ordinal representation of the number word sequence, on which 
numbers are aligned as gradually increasing quantities. This enables them to 
identify preceding and succeeding numbers, as well as understanding that adding 
means getting more and counting forward (moving to numbers that appear later 
on the mental number line). At this level, children can solve verbally presented 
number word problems such as “Peter puts 3 books in the cupboard. Alice puts 
another three books in the cupboard. How many books are in the cupboard?” by 
counting out first the partial quantities and then the total quantity individually, 
using their fingers.

• Level III—cardinality and decomposability: Children understand that number 
words are linked to quantities and that a number word represents a quantity with 
a specific number of elements. Once children conceive that a number is a com-
posite unit that consists of individual elements, they also begin to understand that 
numbers can be decomposed again. At this level, children can solve tasks that 
require them to count from a partial to a total quantity, e.g., “I want 10 disks; I 
already have 4. How many are missing?”

• Level IV—class inclusion and embeddedness: Children understand that quanti-
ties can be decomposed and composed in different ways. They conceive that 
addition and subtraction problems can be considered as being composed of sub-
set–subset–whole set. This level is assessed by tasks such as “Bring me 5 flow-
ers; three of them should be red.”

• Level V—relationality: Children understand that the number word sequence is a 
sequence of cardinal units, and they conceive that intervals between successive 
number words are of the same size (+ 1). This enables them to compare quanti-
ties and to determine differences between quantities precisely. This level is 
assessed by tasks involving the recognition of differences between sets. Beyond 
that, children realize that numbers represent not only concrete quantities but also 
counting acts, which themselves can be counted. Therefore, tasks like the follow-
ing become solvable: “What number is 3 smaller than 7?”

• Level VI—units in numbers: Based on the concept of relationality, children real-
ize that the distances between the numbers on the number word line are always 
the same. Therefore, segments of the same size, or bundles, can be formed on the 
number line (e.g., 2 × 4; 4 × 4). Conversely, a number can also be decomposed 
into partial quantities of the same size. With this knowledge, children are able to 
find different decompositions of the same magnitude (bundles) for a number. 
The level is assessed by tasks such as “How can you decompose the number 12 
into different bundles of the same size?”

The construction of MARKO-D1 follows the construction of MARKO-D and 
expands the range of mathematical competencies to be tested. MARKO-D consists 
of 55 items, assessing levels I–V; MARKO-D1+ has 48 items, assessing levels I/
II–VI. For each level, anchor items are defined, which are included in both tests. It 
was checked whether the items selected for both tests were assigned to the same 
theoretically postulated levels.

J. Lonnemann and M. Hasselhorn
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A probabilistic IRT model was used, which allowed the representation of both 
item difficulties and personal abilities of the children on the same scale. By means 
of the obtained point values, the current competence level of a child can be qualita-
tively determined. Quantitative data analyses can be performed on the basis of 
norm-reference data from 1095 German children aged 48 to 87 months (MARKO-D) 
and 1672 German children aged 71 to 109 months (MARKO-D1+). Norms are pro-
vided for 6-month intervals, whereby the database sample in MARKO-D is rela-
tively small for the oldest group (e.g., 6 years 6 months and older, N = 26). Both 
tests are paper-and-pencil tests, to be conducted in an individual setting without 
time pressure. Recently, MARKO-D was translated into four South African lan-
guages: English, Afrikaans, isiZulu, and Sesotho (see Henning et al. (in press)).

The tests MARKO-D and MARKO-D1+ complement the quantitative evaluation 
of individual performance based on the scaling data from an appropriate reference 
population sample by a qualitative description of individually available and used 
mathematical concepts. For children whose developmental stage is not age appro-
priate, the training program MARKO-T can be used (Gerlach, Fritz, & Leutner, 
2013), which draws on children’s individual developmental stage identified by 
MARKO-D.

Approaches based on developmental psychology theories like MARKO-D and 
MARKO-D1+ thus allow us to assess children’s individual stages of development 
and to identify children whose developmental stage is not age appropriate. Another 
example of this category is the Early Numeracy Test (ENT) (van Luit, van de Rijt, 
& Pennings, 1994). In addition, screening measures like the Number Sense 
Screener (NSS) (Jordan & Glutting, 2012) have been developed, targeting risk 
estimation for the development of mathematical learning difficulties (see Gersten 
et al. (2012) for an overview). The NSS assesses children’s skills related to count-
ing, number recognition, numerical magnitude comparisons, nonverbal calcula-
tions, arithmetic story problems, and arithmetic number combinations. Similar 
skills are also assessed as part of broader test batteries covering children’s aca-
demic development; see for example the Woodcock–Johnson IV Tests of Early 
Cognitive and Academic Development (WJ IV ECAD) (Schrank, McGrew, & 
Mather, 2015) and the Wechsler Individual Achievement Test (3rd Edition) 
(WIAT-III) (Wechsler, 2009).

 Research Trends

In the course of internationally comparative assessments of student achievement 
like Trends in International Mathematics and Science Study (TIMSS) or the 
Programme for International Student Assessment (PISA), the concept of compe-
tence became more important in educational psychology. The identification of indi-
vidual performance levels and their evaluation based on the performance of an 
appropriate reference population remains an important function of educational 

37 Assessing Mathematical Competence and Performance: Quality Characteristics…



648

psychological assessment. Beyond the mere identification of individual performance 
levels, attempts to assess children’s understanding of mathematical concepts have 
increasingly been pursued, as well as attempts to identify individually available 
mathematical concepts and to assign them to a specific developmental stage. 
Developmental theories of mathematical understanding are thus required. Regarding 
the development of numerical concepts, such theories are at hand (see e.g., Fritz & 
Ricken, 2008; Krajewski, 2008). On the basis of these theories, competence levels 
can be defined that correspond to circumscribable developmental milestones and 
can be used as criteria for the evaluation of individual developmental trajectories. 
While there has been an emphasis on the development of numerical concepts in the 
past, the relevance of other mathematical domains, like geometry, is increasingly 
being highlighted (see e.g., Spelke, Lee, & Izard, 2010).

Developmental theories have guided the conception of diagnostic approaches 
that are based on probabilistic test theory (e.g., MARKO-D) (Ricken et al., 2013) 
rather than on classical test theory, which was formerly widely used and thus is 
the basis of most tests hitherto applied. Given a probabilistic theory model, it is 
intended to represent individual aptitudes of children and item difficulties on the 
same scale, in order to be able to determine individual competence levels. The 
probabilistic test theory also provides the basis for approaches to monitoring indi-
vidual progress. Recently, internet-based realizations of such approaches have 
been developed (see e.g., Goo, Watt, Park, & Hosp, 2012 for an overview), which 
can have the advantage of providing comprehensive and up-to-date norms, as well 
as allowing the user to be independent of specific programs and their maintenance 
(e.g., updates etc.).

Monitoring individual progress is an essential component of the response to inter-
vention (RTI) approach (see e.g., Jimerson, Burns, & VanDerHeyden, 2016), which 
has attracted attention in discussions surrounding the handling of children with spe-
cific educational needs. The RTI approach can be regarded as a method to identify 
(and remediate) students with learning disabilities. It is an alternative to the ability–
achievement discrepancy model, based on which diagnosing a learning disability 
requires a significant discrepancy between the intellectual abilities and the academic 
achievement of a child. By repeated assessments, children who do not make adequate 
progress despite high-quality instruction are identified and then provided with increas-
ingly intensive, multitiered interventions. If these interventions are ineffective, special 
education placement may eventually be called for. Accordingly, the RTI approach 
makes use of progress monitoring or frequent assessment of children’s achievement 
level in order to allow for appropriate instructional decisions. Empirical findings sug-
gest that monitoring of individual progress may have beneficial effects on children’s 
competence development (see e.g., Foegen et al. (2007) for an overview regarding 
progress monitoring measures in mathematics). Especially in the case of marked het-
erogeneity of individual learning processes in classrooms, which will presumably 
increase with the recent political endeavors to change schools into inclusive education 
institutions in several countries, measures of individual progress may become more 
and more prominent.
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Chapter 38
Diagnostics of Dyscalculia

Johannes E. H. van Luit

Roughly a quarter of the population worldwide experience difficulties with 
 mathematics (Dowker, 2017). This can have major consequences for their further 
educational career and for their ability to live independently in society. Math prob-
lems that are very serious and persistent in nature may indicate developmental 
dyscalculia. Although there is inconsistent use of terminology in the literature, 
researchers agree that dyscalculia refers to the existence of a severe disability in 
learning mathematics. Ruijssenaars, Van Luit, and Van Lieshout (2016, p.  28) 
defined dyscalculia as a disorder characterized by persistent problems with learning 
and fluency and/or accurate recall and/or application of mathematical knowledge 
(facts and understanding). The prevalence of dyscalculia is estimated to be between 
2% and 3% in students in the Netherlands (Ruijssenaars et al., 2016). Percentages 
are higher in international research (3–8%), depending on how researchers define a 
mathematical disorder or dyscalculia (Desoete, Roeyers, & De Clercq, 2004; 
Dowker, 2005; Shalev, Manor, & Gross-Tsur, 2005). The disability can be highly 
selective, affecting learners with normal intelligence (e.g., Landerl, Bevan, & 
Butterworth, 2004), although it also co-occurs with other developmental disorders, 
including reading disorders (Ackerman & Dykman, 1995; Gross-Tsur, Manor, & 
Shalev, 1996) and attention-deficit hyperactivity disorder (ADHD; Monuteaux, 
Faraone, Herzig, Navsaria, & Biederman, 2005).

The World Health Organization (WHO) initiated the “International Classification 
of Diseases” (ICD). ICD is the foundation for the identification of health trends and 
statistics globally and the international standard for reporting diseases and health 
conditions. It is the diagnostic classification standard for all clinical and research 
purposes. In the ICD-10 (version 2016), dyscalculia is mentioned as “specific disor-
der of arithmetical skills” (code: F 81.2). This classification involves a specific 
impairment in arithmetical skills that is not solely explicable on the basis of general 
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mental retardation or of inadequate schooling. The deficit concerns mastery of basic 
computational skills of addition, subtraction, multiplication, and division rather 
than of the more abstract mathematical skills involved in algebra, trigonometry, 
geometry, or calculus.

Another very common used classification system worldwide is the Diagnostic 
and Statistical Manual of Mental Disorders (DSM-IV-TR; American Psychiatric 
Association, 2000). The now-obsolete diagnostic criteria for mathematics disorder 
(code: 315.1) were:

 A. Mathematical ability, as measured by individually administered standardized 
tests, is substantially below than expected given the person’s chronological age, 
measured intelligence, and age-appropriate education.

 B. The disturbance in Criterion A significantly interferes with academic achieve-
ment or activities of daily living that require mathematical ability.

 C. If a sensory deficit is present, the difficulties in mathematical ability are in 
excess of those usually associated with it.

The fifth edition of the Diagnostic and Statistical Manual of Mental Disorders 
(DSM-5; American Psychiatric Association, 2013) takes a different approach to 
learning disorders than previous editions by broadening the category, in order to 
increase diagnostic accuracy and effectively target care. Specific learning disorder 
is now a single, overall diagnosis, incorporating deficits that impact academic 
achievement. The criteria describe shortcomings in general academic skills and 
provide detailed specifiers for the areas of reading, mathematics, and written 
expression. Diagnosis requires persistent difficulties in reading, writing, arithmetic, 
or mathematical reasoning skills during the formal years of schooling. Symptoms 
may include inaccurate or slow and effortful reading, poor written expression that 
lacks clarity, difficulties remembering number facts, or inaccurate mathematical 
reasoning. Current academic skills must be well below the average range of scores 
in culturally and linguistically appropriate tests of reading, writing, or mathematics. 
The individual’s difficulties must not be better explained by developmental, 
neurological, sensory (vision or hearing), or motor disorders and must significantly 
interfere with academic achievement, occupational performance, or activities of 
daily living.

Despite the changes from DSM-IV-TR to DSM-5, it remains necessary to per-
form extensive diagnostic testing to establish whether dyscalculia is present. Since 
recent research has increasingly recognized the heterogeneity of dyscalculia by dif-
ferentiating between underlying cognitive deficits (Kaufmann et al. 2013; Rubinsten 
& Henik, 2009; Skagerlund & Träff, 2016), identification of dyscalculia does not on 
its own provide enough information about the educational needs of an individual 
student with math problems. The Dutch protocol “Dyscalculia: Diagnostics for 
Behavioural Professionals” (DDBP protocol; Van Luit, Bloemert, Ganzinga, & 
Mönch, 2014) describes how behavioral experts can examine whether a student has 
dyscalculia or a severe difficulty in math.

The DDBP protocol deals with three criteria that must be met in order to diag-
nose dyscalculia (Van Luit, 2012; Van Luit et al., 2014):
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Criterion 1: To determine the presence and severity of the math problem
Criterion 2: To determine the math problem related to the personal abilities
Criterion 3: To determine obstinacy of the mathematical problem

In the protocol is also mentioned that in many research a fourth criterion is 
included: the difficulties already exist before the age of 7 years. For most children 
this is true, but (high) gifted children are mostly recognized for dyscalculia at a 
later age.

 Differential Diagnosis of Dyscalculia

Kucian and Von Aster (2015) mention that dyscalculia is assumed to be a very het-
erogeneous disorder putting special challenges to define homogeneous diagnostic 
criteria. Dyscalculia is a disorder that can be characterized through perseverant 
problems in the process of learning and easy and/or accurate applying of math 
knowledge (facts/agreements). The DDBP protocol (Van Luit et al., 2014) contains 
guidelines and suggestions about the variables that can be investigated, and the 
methods used, during a diagnostic examination of dyscalculia. Due to its structured 
and comprehensive nature, the DDBP protocol has now been systematically imple-
mented in most social care settings in education in the Netherlands and Flanders 
(Belgium). The DDBP protocol deals with three criteria that must be met in order to 
diagnose dyscalculia (Van Luit et al., 2014).

 Criterion 1: To Determine the Presence and Severity of the Math 
Problem

The criterion of severity is determined by deficiencies in both automated and sub-
stantive math skills of the diverse domains.

Criterion of severity:

 1a. There is a significant delay in automated math skills as compared to peers and/
or fellow children.

 2a. There is a significant delay in mastering the substantive math skills of the 
domains.

To meet criteria 1a and 1b, there has to be at the end of primary school (sixth 
grade) a delay of at least 2 years on a standard (national) math test. For such a test, 
this would mean that a student at the end of sixth grade should perform not higher 
than moderate at a test that is adequate for children at the end of fourth grade. 
Dyscalculia is rarely diagnosed before the end of third grade. The delay has to be at 
least 1 year at that moment to meet this criterion. For the diagnosis it is important 
that math education was given at an adequate level.
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Dyscalculia can also be diagnosed in children in secondary school, when there is 
a delay of at least 2 years in their level of math skills compared to children at the end 
of primary school. In secondary school, students with dyscalculia also perform 
weak in, for example, economics, geography, and physics.

To determine criterion 1a, an automation/memorization test is necessary. To 
determine criterion 1b and clarify the extent of the math delay, the therapist has to 
conduct a process research on the math level of the student. Process research pro-
duces more detailed information than standard tests. The therapist can see what 
the child can and cannot do, furthermore determining the extent of the delay. The 
therapist can determine the quality, stability, flexibility, and agility of the knowl-
edge and skills.

Process research can be conducted with problems adopted from a regular math 
test that is adequate for the skill level of the student. To conduct process research, it 
is important to start at an appropriate level, not too difficult nor too easy. To deter-
mine on which specific level can be started, the therapist needs information from the 
teacher about the exact math level of the student.

Process research has a twofold goal: examining the way in which a student cre-
ates an answer and determining in detail the achievement level on the different 
subdomains. In process research, often prototypical tasks are used to test hypothe-
ses regarding the nature of the problem of the student. In process research the focus 
is determining the math delay (or deviance of the norm) in terms of math goals/end 
terms and the underlying shortcomings in procedures and strategies (including 
declarative knowledge).  The four steps the therapist follows to adjudicate the 
severity of the math problem are (see for a concrete example of step d the Appendix):

 (a) Observing open actions (use of blocks), hidden actions (secretly counting on 
fingers or with the use of looking to a big corral necklace in the classroom), and 
task approach during math exams (orientating or immediately starting)

 (b) Questioning the strategy chosen by the student to resolve the math task (think-
ing out loud regarding the problem solution, questioning the strategy chosen)

 (c) Variation in different math tasks which are in terms of questioning and level 
near the most difficult correctly and the easiest wrongly dissolved tasks

 (d) Providing help examining the degree in which the student needs which type of 
help, by means of continuing “the five phases of math help” (see for an example 
the Appendix). The help is provided at the most difficult tasks (step 3) that stu-
dents just couldn’t solve themselves in each domain. The five phases of help 
are:

 1. Offering more structure
 2. Decrease of complexity
 3. Giving verbal help
 4. Giving material help
 5. Modelling of step d (demonstrate, associate, mimic)

During process research different levels of tasks will be varied, and no tests will 
be fully completed. As a consequence, it is not always possible to make precise 
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pronunciations on the exact extent of the student’s math delay. This means that the 
degree of severity is an estimation. For example, a student who cannot count with 
steps of 25 (matching the math skill level of third or fourth grade), but can count 
with steps of 5 (matching the math skill level of second grade), therefore a pronun-
ciation of the level of the student regarding this math aspect is possible. The incon-
sistency in what the student can and cannot do produces important information 
regarding the ultimate support and treatment needed. It is advisable that the focus of 
help provided after the diagnostic research is on the specific subjects the student 
does not master sufficiently. The information provided by school produces support-
ing information regarding the student’s level. Examining the way the student failed 
or succeeded to solve tasks is possible using the provided test sheets, including 
scratch paper.

 Criterion 2: To Determine the Math Problem Related 
to the Personal Abilities

This means: There is a significant delay with respect to what can be expected from 
a child, based on his/her individual development. The cognitive level is mostly 
determined by an intelligence test. Children with dyscalculia can have an under- or 
above-average intelligence level. It is not possible to determine dyscalculia when 
the student has an intelligence score of 70 or below, because in that case, the math-
ematical skills are expected related to the personal abilities. In case the total IQ 
score is between 71 and 85, diagnosing dyscalculia has to be done with caution. 
Mathematics requires a complex skillset, which relies on higher cognitive functions. 
Therefore it is not realistic to expect from children with an IQ score between 71 and 
85 to develop and achieve the same math level as their peers with an average IQ 
score. This means that, to determine dyscalculia in these children, the math prob-
lems should not only be explicable by a lower intelligence score. There should, for 
example, also be a lag of speed in problem-solving and a deficiency in insight. Note 
that there is no scientific evidence for ascripting a declaration of dyscalculia to a 
person with an IQ score between 71 and 85. In that case the lag in mathematical 
skills needs to be larger (at the end of grade six at least 3 years) than the lag of 
mathematical skills of a person with an average intelligence score (at the end of 
grade six at least 2 years).

From an analysis of the student’s file, there should appear a specific failure in 
mathematics. In case the performance in other learning areas is also low, this indi-
cates a general learning problem or a broad learning disorder. Low performances on 
tests in reading and spelling can also indicate dyslexia as a comorbid disorder. In the 
latter case, a protocol of diagnostics of dyslexia must be followed to determine 
whether the student (also) has dyslexia. Dyscalculia can also be diagnosed in chil-
dren with dyslexia when their mathematical performances are not significantly 
lower than their (limited) performances on tests for reading and spelling. In that 
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case dyscalculia is diagnosed when there is a discrepancy between the mathematical 
performances and the intelligence, and it is clear that the mathematical problems are 
not a consequence of reading problems. Whether the mathematical problems are a 
consequence of reading problems can be investigated during process research.

Mathematical problems of gifted children often get noticed later than usual. In 
the beginning of their school career, these children often profit from their good 
memory which enables them to conceal their lags of mathematical skills by apply-
ing fast solving strategies. In the course of primary school, this strategy is not 
enough anymore and their lag in mathematical skills reveals itself. It is important 
not to withhold these children a declaration of dyscalculia, because of their suffi-
cient performances in the first math tests at the start of secondary school.

In case a student has a comorbid disorder (e.g., ADHD), his or her math perfor-
mances have to be considerably lower than usually expected of children with the 
disorder (see Kuhn, 2015). For other comorbid disorders like dyslexia, autism, and 
DCD, such lower scores are not necessary.

 Criterion 3: To Determine Obstinacy of the Mathematical 
Problem

This means: There is an obstinate mathematical problem, which is resistant to spe-
cialized help. To determine the obstinacy, the third and latter criteria for determining 
dyscalculia, the structural and specialized help a student received in mathematics is 
investigated. Leading are the reports of offered help. According to the model of 
“response-to-instruction,” didactic resistance can only be determined with great cer-
tainty, when the conditions on all three levels have been complied (Fuchs & Vaughn, 
2012). Dyscalculia cannot be diagnosed if criterion 3 has not been complied. This 
also applies for children in secondary school. To determine if the criterion of didac-
tic resistance has been met, the available school records (student file) need to be 
evaluated. In addition a process research is necessary to determine whether a stu-
dent is able to learn new strategies and reproduce them independently.

As mentioned earlier, adequate instruction and practice can be described on three 
different levels, according to the model of “response-to-instruction.” In the descrip-
tion is disclosed whether the instruction and practice given by the teacher were 
adequate. In the description is also disclosed what was concluded based on the 
evaluation of the individual education program, and in which way during 6 months, 
at least 1 h per week (individual or in a little group), help of good quality with math-
ematics has been given by a qualified therapist. The help with mathematics needs to 
be based on a start measurement, specific and measurable goals have to be set for 
the mathematical behavior, and the content needs to match the most basic failure. 
The effectiveness of specialized extra help with mathematics is evaluated, examin-
ing the progress during the period of help. The help has been effective when the 
student’s performance after 6  months on the same test as the start measurement 
reveals a progress comparable to 4 months of education (see Fig. 38.1). The help in 
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mathematics has not been effective when the progress after 6 months is less than 
4 months. This is about determining whether a student barely benefited from help of 
good quality. In that case didactic resistance (third criterion) is determined. The 
above raised questions like “How do we determine the start measurement? What 
content do we choose, and especially how broad should the offer of content be? Will 
the student receive mathematics instruction together with his class? After half a 
year, do we administer the same test (which test)?” Logically it is not possible to 
determine one direction for every individual case. Per student an individual strategy 
has to be determined.

For example, a student at the start of third grade starts with half a year special-
ized help in mathematics. The regular content is too complex for the student. The 
therapist establishes a baseline at the level of halfway second grade. This means that 
the student does not get the same content as the rest of the class, but preferably takes 
math lessons in second grade. The student also could practice mathematics with 
materials given by the therapist, in its own classroom. What test does the therapist 
choose to evaluate the effect of the help? Of course the same test suitable for  halfway 

sufficient progress* 

unsatisfactory progress**

Test  E3*** M4 E4 M5

June grade 3 January grade 4 June grade 4 January grade 5

15
Normal learning curve in 1½ years
(end of grade 3 until middle grade 5)

5

Fig. 38.1 Performance graph for progress in math (example) (Van Luit et al., 2014). * A score in 
this area or above: the progress is sufficient; ** A score in this area: the progress is not sufficient; 
***E = end, M = middle
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second grade could be administered. This is helpful when determining possible 
development. If the result is better than expected, then it is also possible to admin-
ister a test suitable for children at the end of second grade. However, it is often 
impossible to tackle every component of mathematics in half a year. In that case the 
effectiveness of the help can also be determined administering a selective, qualita-
tive test with the components that have been practiced during the period of help.

In case the student has an IQ score between 71 and 85, the didactic resistance is 
determined when the progress after help of good quality after 6 months is no more 
than 3 months (which is more or less half of the progress that is expected in children 
without mathematical problems). Note that to determine didactic resistance, the 
learning efficiency with regular mathematics instruction is less than 67% (Fig. 38.1). 
This is also the criterion with adequate math help.

Literature is missing clinically oriented research involving an adequate number 
of students diagnosed with persistent mathematical learning disabilities (i.e., dyscal-
culia). The limited amount of research into dyscalculia is largely due to issues of 
feasibility and generalisability. The difference between mathematics disorder and 
dyscalculia seems to be the gravity. About the lowest 25% of the children with a 
mathematics disorder (this is the case for 1 out of 10 children) does have dyscalcu-
lia. The other 75% has also severe difficulties, but doesn’t meet all three criteria for 
dyscalculia fully. What is called as dyscalculia in one study may be conceptualized 
as a form of mathematical disorder in another study (Kaufmann et al., 2013).

 Process Research

In process research help is enhanced gradually to determine whether a student is 
learnable concerning mathematics. In case of systematic errors (classification), 
using a number of selected tasks in process research is investigated what the rea-
sons for those errors are and what the starting points are to offer help (indication 
analysis).

In process research the “five steps of help in mathematics” have been mentioned 
earlier. Some children find it difficult to deduce the relevant information from the 
task context. For those children offering more structure can be helpful. In case chil-
dren have difficulty when it comes to big numbers, the complexity can be reduced 
to see if that enables a student to solve the task. There are also children who benefit 
from verbal support while solving the task. This can be helpful to more or less 
 guiding the student from one step to another. Other children benefit from material 
support, using, for example, cubes or beads (corral necklace), but this is also called 
visualizing the task. In particular when a student has a weak working memory, in 
this manner he always has the necessary information at his disposal. When a student 
has no idea how to solve a task, modelling the strategy could be helpful. In that way 
a student can learn the most efficient strategy for a specific type of task (Van Luit 
et al., 2014). In the Appendix several tasks are elaborated (per (sub)component) and 
the different levels of help are demonstrated. This way insight is given in how the 
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diagnosticians can variate in levels of offering help. The target is, on one hand, to 
determine how much the student benefits from the offered help and, on the other 
hand, to determine explanations for the difficulties the student has with mathematics 
and what his or her strengths are. It is important to get an insight in what level of 
help is adequate for the student. By variating the levels of help, it is possible to 
investigate what is and what is not helpful for the student (Van Luit et al., 2014).

 Learnability

The process research is ideal to investigate the learnability of a student. Preferably 
a process research takes place two times in a diagnostic investigation with 1 or 
2 weeks in between. To clarify the learnability, it’s advisable to look for the zone of 
proximal development. This concept concerns investigating the level of mathemat-
ics at which an individual student can solve tasks independently and how much and 
of what intensity a student needs help when the complexity of tasks is slightly 
enhanced. By offering help (using the five phases of help) a few proceedings can be 
practiced with the student. At the second research moment could be checked in 
which quantity the student has remembered the taught proceeding and is able to 
reproduce it. The ease with which the student can reproduce the strategies after 1 or 
2 weeks with similar tasks is an indication for learnability. We realize that it is hard 
to enforce during practice, but we strongly advice to proceed. For some children the 
taught strategies appear to be unfamiliar, even when the strategies have been prac-
ticed intensively. In that case their learnability appears to be small. Other children 
are capable of reproducing the taught and practiced strategies with similar tasks, 
which indicates at least some learnability.

 Math Problems in Early Education

Children learn many mathematical skills already before formal mathematics instruc-
tion starts at primary school. These early numeracy skills, especially counting skills, 
have been found good predictors for later mathematics performance at first, second, 
and third grades but are even predictors for math knowledge in secondary school 
(Siegler, 2009). Therefore in this chapter, there will be also attention for this part of 
(difficulties in) math education. In addition, in younger children, the tendency to 
spontaneously focus on numerosities was found a good predictor for counting skills 
in preschool age. The main goal to highlight early math here is because prevention 
is more promising than remediation.

As a result far out, most 6-year-old children (at this age most children in Western 
Europe are going from kindergarten into grade 1 in primary school) have quite well 
developed early numeracy (primary understanding of amounts and acoustic, asyn-
chronic, synchronic, resultative, and shortened counting; see Aunio, Heiskari, Van 
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Luit, & Vuorio, 2015), including the ability to make relational statements about 
numerical and nonnumerical quantity situations and to operate with number word 
sequence for whole numbers. In the first grade of primary school, children are 
expected to learn the basic skills of addition and subtraction. The first graders usu-
ally operate with numbers between 0 and 100, although the emphasis in addition 
and subtraction is with numbers 0–20.

In talks with parents and teachers from children who have mathematical difficul-
ties or even dyscalculia diagnosed on a later age (from 9 years on), they indicate that 
the child with a math difficulty had already problems, especially with resultative and 
shortened counting during kindergarten (Dowker, 2017). Mostly when children are 9 
or 10 years old, they still have difficulties with these stages of counting and they often 
still count on their fingers. For example, when they have to solve 5 + 3, they count 
their fingers starting with a dump: 1 and then 2, 3, 4, 5, and further on with the other 
hand 6, 7, 8. Mostly, they are not able to see five as a whole to count further on. Finger 
counting and not using 5 and 10 as wholes is characteristically for children who will 
meet difficulties in math during their school career. Using a lot of time through count-
ing is a sign for difficulties in math (Tobia, Rinaldi, & Marzocchi, 2018). It is not 
possible to prevent dyscalculia; nevertheless it is possible to observe weak math per-
formance in an early stage of the school career of a child. It is very important to help 
these low-performing children from an early start point (Toll & Van Luit, 2014a).

Most kindergartners develop early numeracy almost automatically, while for a 
minority of the children (around 20%), this development is less naturally. Research 
shows the importance of mastering such skills before children move toward formal 
math in first grade of primary school (Jordan, Glutting, & Ramineni, 2010). 
Especially for children who find these skills difficult, it is of great importance to 
support them adequately. Therefore, specific instruction and exercise in preparatory 
math skills are necessary in young age.

Dowker (2005) points out that more and more indications are being found that, 
apart from the possibility of early signaling (Van Luit & Van de Rijt, 2009), treating 
early mathematical learning problems improves further mathematical education 
(Gersten, Jordan, & Flojo, 2005; Van Luit & Schopman, 2000). Dowker (2005) 
states that the prevention of these problems during kindergarten forms a main chal-
lenge in research for the following decades. Morgan, Farkas, and Wu (2009) high-
light that it is very important to trace problems in early numeracy as early as possible 
to be able to provide the best possible support at that stage, also when they later turn 
out to have dyscalculia.

Our own research shows that kindergartners greatly benefit from early detection. 
It’s not just about determining a score, but more importantly identifying specific 
deficits. Hereby it is possible to help children specifically at areas where they expe-
rience problems (Van Luit, 2011). For this purpose effective programs have been 
developed (Aunio, Hautamäki, & Van Luit, 2005; Toll & Van Luit, 2014b; Van Luit 
& Schopman, 2000).

Dyscalculia can’t be prevented with it, but potentially weak math children can 
learn a lot from it, and the necessary help for children with dyscalculia should be 
started at a young age for the highest chance on school success.

J. E. H. van Luit
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 From Problems at a Young Age to Dyscalculia

Incorrect number sense at the preparatory level and problems with elementary arith-
metic in first grade increasingly lead to more limitations in the abilities of children 
to adequately solve mathematical tasks. Therefore, these difficulties manifest in 
children with dyscalculia at a young age in gaining early numeracy during the first 
half of primary school. These basic difficulties become observable when kindergart-
ners, for example, have problems with fluently naming small quantities (using struc-
ture), counting, and automatizing number symbols (Van Luit, 2011).

One of the most striking characteristics Dowker (2005) identifies for dyscalculia 
is a weakness in recollecting numeric knowledge from memory (e.g., in a young 
age – 6 to 8 years – they do not know that five is between four and six or that adding 
four to three equals seven). This problem can persist through older age. Furthermore, 
they keep using (sometimes into adulthood) number lines to solve simple math 
problems (12 + 6 = 12, 13, 14, 15, 16, 17, 18, while they keep track of additional 
units using their fingers under the table). These two characteristics, although on a 
more basic level, are also observable in kindergartners. It is not yet possible to diag-
nose dyscalculia in kindergartners. However, children who turn out to have dyscal-
culia from third grade and upward were also among the weakest kindergartners 
concerning early numeracy.

Literature provides multiple explanations for the cause of dyscalculia (Van Luit, 
2015): poor planning skills, a strongly limited capability for using and learning to 
use correct strategies, having no control over their math actions, lacking good short- 
term memory, an inadequate knowledge of automatized numeracy, limited knowl-
edge in math, little or no self-confidence, having no confidence in self-improvement, 
lacking faith in personal growth, and not being open to help from others. On top of 
that, it appears that memorization or even automatization problems (not being able 
to remember that 7×8 equals 56 quickly), discrimination problems (not being able 
to understand that the number 3 in 13 is worth less than the number 1), and thinking 
problems (not using association to quickly solve 19 minus 7 via 9 minus 7) play an 
important role in having no or strongly challenged math learning abilities (Tobia 
et al., 2016).

Therefore, dyscalculia is especially concerned with the failure of declarative 
knowledge: numeric facts and naming numbers, such as a deficiency in fluently 
naming numeric information like numbers and quantities (Busch, Schmidt, & 
Grube, 2015; Fuchs et  al., 2005; Landerl et  al., 2004; Willburger, Fussenegger, 
Moll, Wood, & Landerl, 2008). This implies that automatization problems are 
always present with dyscalculia (see Criterion 1). However, some children practice 
so intensively that they in the end of primary school are able to remember, for 
example, multiplication tables or all summations up to 10. Unfortunately, this 
knowledge is not adaptable and remains fragmented. For example, when multiply-
ing they will know that “4×8 = 32”, but they don’t know how to solve “14×8” (not 
seeing by themselves that “14×8” consist of “10×8” and “4×8”). For children with 
dyscalculia, this will be true already at a young age. They would not see, for instance, 
that when four toy cars and one toy car are added up, they can continue counting 
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from five toy cars when they add another one. These children will invariably start 
counting from the first toy car. A deficiency in declarative knowledge almost never 
stands alone. It will in turn complicate the establishment of procedural knowledge: 
understanding solution procedures. For example, using the solution procedure for 
solving “9×6” by subtracting “1×6” from “10×6” assumes that the facts “10×6 = 60” 
and “60–6 = 54” are known. It also assumes that the student has insight into the act 
of multiplication, is able to visualize it, has insight into the connection between dif-
ferent multiplication problems, multiplying and adding, and as in this example, 
even between multiplying and subtracting. When this insight is present, a child will 
understand how mathematical facts are related and would not need as much automa-
tized knowledge. Factual and procedural knowledge are therefore strongly related.

To sum up the most important characteristics of children with dyscalculia (see 
also Dowker, 2005):

 (a) Regarding declarative knowledge: automation/memorization deficits, namely, 
problems remembering the basic combinations and easy and/or accurate recall-
ing of math facts from memory.

 (b) Regarding procedural knowledge: problems implementing procedures, namely, 
progressive schemes, applying terms and concepts needed for applying these 
plans, and the sequence of these steps in complex algorithms.

 (c) Regarding visual-spatial processing: problems with notion and conception of 
space. Problems placing numbers on a number line, mixing numbers in big 
digits, and problems with geometry and reading time.

 (d) Regarding number knowledge: lack of notion of the number system and insuf-
ficient knowledge regarding the position value of numbers (not knowing the 
value of a unit, a dozen, or the value of numbers in fractions above and under 
the line).

 Conclusion

There is need for accurate diagnostics of dyscalculia (Rubinsten & Henik, 2009). To 
diagnose dyscalculia, three criteria have to be determined: severity, delay, and 
didactic resistance. To be able to judge whether these criteria are met, different test 
instruments, process research, and an evaluation of the school records should be 
used. In addition the clinical therapist is expected to be able to observe during the 
research moments. It might appear that a student does not benefit from instruction 
and practice of new strategies on the first research moment and is not able to 
independently reproduce the strategies. This is an indication for obstinacy. 
Furthermore it is important to start in kindergarten when children lag behind in 
match prerequisites. Prevention and early help show better results over time than 
remediation on a later moment in their school career. Adequate early math educa-
tion will not prevent dyscalculia, but might help for a better basis.

J. E. H. van Luit

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)



665

 Appendix

 The Five Steps of Math Help

 1. Offering more structure
Reorganization of the written task

• Tim has to pay € 1017 for a new drum set.
• Tim already has € 623.
• How much does he need?

 2. Decrease of complexity.
Using less complex numbers

• Tim has to pay € 500 for a new drum set.
• Tim already has € 350.
• How much does he needs?

 3. Giving verbal help.
Asking questions about the content of the task

• How much money does Tim have?
• What is the price for the drum set?
• Does he have enough money to buy the drum set?
• How much more money does he need?

 4. Giving material help.
Presenting the task with help of a picture (see Fig. 38.2).

• As you can see, Tim has € 350.
• The price of the drum set is € 500.
• What is the difference between 500 and 350?
• Which sum is connected with this problem?

Example

Tim saves for a new drum set. He has already saved € 623.
The drum set will cost € 1017. How much money does he need to” have to 

save more?

500 500

350
350 or

0 350 500
?

Æ

?

Fig. 38.2 Presenting the task with the help of a picture
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• How much more money does Tim need?
• What is the answer for this sum?

 5. Modelling of step 4.
Demonstration, doing together, and imitation

• Tim has already € 350, but the drum set is € 500.
• The drum set is more expensive and therefore Tim needs more money.
• The question is how much money does he need.
• This is about the difference between 500 and 350.
• I make, for example, a picture of the number line. I write down 350 and 500.
• The problem is solvable by counting from 350 to 500. First I am doing plus 

100 that makes 450 and after that another 50 makes 500.
• The answer is 500 minus 350 makes € 150.
• Tim needs € 150 more.

Take care

If a more easy math task has been done without a good result (in one of the 
phases of help), more comparable and a little bit less complex tasks can be 
given.

For example only using hundreds:

• The drum set costs € 300 and Tim has already € 200 saved. How much does 
Tim needs more?

With this more easy task, the same levels of help will be followed.

Take care

If a more easy math task has been done with a good result (in one of the 
phases of help), more comparable and a little bit more complex tasks can 
be given after that. For example:

• The drum set costs € 800. Tim has already € 363 saved. How much does 
Tim needs more?

or

• The drum set costs € 1000. Tim has already € 360 saved. How much does 
Tim needs more?

When this was going well, then you can return to the original task.

J. E. H. van Luit
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Chapter 39
Three Frameworks for Assessing 
Responsiveness to Instruction as a Means  
of Identifying Mathematical Learning 
Disabilities

Lynn S. Fuchs, Douglas Fuchs, Pamela M. Seethaler, and Nan Zhu

The conventional model of learning disability (LD) identification involves calculat-
ing a discrepancy between two assessment scores, one measuring intelligence and the 
other measuring achievement, as an index of the degree to which a student’s aca-
demic learning is commensurate with his/her academic learning potential. The intel-
ligence-achievement discrepancy has come under attack for technical and conceptual 
problems (Fletcher et al., 1994), including the delay of identification and intervention 
until the intermediate grades (Vaughn & Fuchs, 2003). As a result, the 2004 reautho-
rization of the US Individuals with Disabilities Education Improvement Act (P.L. 
108-446) encouraged as a supplementary framework for LD identification.

In the USA, the term RTI denotes a school-based prevention model, with an 
interconnected system of assessments and increasingly intensive levels of interven-
tion. The first level of this RTI prevention framework is primary prevention (com-
monly known as Tier 1), which comprises the instructional practices general 
educators conduct with all students: (a) the core instructional program along with 
(b) classroom routines that provide opportunities for instructional differentiation, 
(c) accommodations that permit access to the primary prevention program for all 
students, and (d) problem-solving strategies for addressing students’ motivational 
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problems that interfere with them performing the academic skills they possess. 
The major function of RTI assessment within Tier 1 is to identify students who are 
at risk of not responding to the primary prevention program. The goal is to allocate 
intervention with greater intensity to these students, whose learning would suffer 
without it, and provided in a timely manner to circumvent severe, long-term aca-
demic difficulty. Primary prevention assessment to identify risk for poor outcomes 
is typically accomplished using a brief screening test administered to all students 
(i.e., universally). A cut-point is established based on research for the specific test 
used (i.e., conducted by the test developer or by the district or school) to classify 
students in terms of success versus failure on future important outcomes (e.g., suc-
cess in later grades or passing a future high-stakes test).

When screening reveals the need for more intensive intervention, secondary pre-
vention (Tier 2) services are made available. Tier 2 intervention typically involves 
small-group instruction that relies on a validated intervention program (i.e., valida-
tion denotes that studies with high-quality experimental designs support the pro-
gram’s efficacy). The validated program specifies instructional procedures, duration 
(typically 10–20 weeks of 20- to 45-min sessions), and frequency (3 or 4 times per 
week). The intensity of Tier 2 intervention differs from primary prevention in two 
ways. First, Tier 2 intervention is scientifically validated whereas primary preven-
tion is based on research principles. Second, Tier 2 intervention relies on adult-led 
small-group tutoring whereas primary prevention relies largely on whole-class 
instruction. Schools can design their RTI prevention systems so students receive just 
one or a series of Tier 2 intervention programs. In secondary prevention, the major 
purpose of assessment is to formulate sound decisions about whether students have 
responded to the intervention and whether students should return to primary preven-
tion without additional support or instead require more intensive intervention. 
This is typically based on assessment that is conducted at the end of tutoring.

More intensive intervention is at the heart of tertiary (or Tier 3) intervention. 
Here intervention typically begins with a validated intervention platform (which 
may also have been used in Tier 2). However, the Tier 3 interventionist collects 
weekly progress monitoring and uses the resulting data on a regular basis to deter-
mine whether progress is adequate for goal attainment and, if not, to make an indi-
vidualized adjustment to the intensive intervention platform.

A fundamental assumption is that RTI can be used as an LD identification 
method, in which inadequate learning – in the face of high-quality instruction – is 
assumed due to an LD, which requires a special form of instruction. LD identifica-
tion is most frequently assessed at the end of Tier 2, with intensive intervention 
reserved for students with identified LD. The methods for operationalizing RTI in 
the 2004 reauthorization were not, however, prescribed.

The purpose of this chapter is to consider three frameworks for operationalizing 
RTI as a means of identifying mathematical LDs. We begin with the most complex 
framework, Systemic RTI Reform, and then address two more efficient versions: 
Embedded RTI and Dynamic Assessment. We describe how each framework is con-
ceptualized and operationalized and explain how each attempts to assure quality 
instruction and to assess responsiveness to that instruction. We conclude by  comparing 
the strengths and weaknesses of the three frameworks. Although we contextualize 
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our discussion within RTI, readers should note that LD identification, framed as 
responsiveness to high-quality instruction, can be conducted within other models of 
RTI or entirely outside a school-based RTI system.

 Systemic RTI Reform

In this chapter, we refer to the three-tier RTI framework just summarized as Systemic 
RTI Reform, which involves at least four components. The first is universal screen-
ing, with different measures and benchmarks specified for each grade level. These 
are used to identify the subset of students who are likely to experience poor aca-
demic outcomes if their school program is limited to the Tier 1 general education 
program.

These students receive the Systemic RTI Reform’s second major component: 
Tier 2 intervention. This intervention tier typically relies on a time-limited (i.e., 12- 
to 20-week) validated small-group program that has been shown, in randomized 
control trials or in strong quasi-experiments, to accelerate the learning of at-risk 
learners. It is usually conducted as a supplement to but sometimes replaces parts of 
the Tier 1 program. As with screening, schools must select a suite of Tier 2 interven-
tion programs to address different grade levels and academic domains. The goal is 
to boost the student’s academic performance to a level that supports his/her return 
to the Tier 1 program as a full-time participant.

During or at the end of the Tier 2 intervention, the school conducts assessment to 
inform a decision about whether this has been accomplished, that is, to determine 
whether the student has responded adequately to Tier 2 intervention. If responsive-
ness is adequate, the student is deemed ready for full-time Tier 1 participation. 
Inadequate response indicates the student requires Tier 3 intervention, which differs 
from or is more intensive than what is provided with a standard (packaged and vali-
dated) Tier 2 intervention. As already noted, in many schools, inadequate response 
to validated Tier 2 intervention also is a major determinant of the LD identification 
process, which in turn provides the basis for special education.

So, a student with inadequate response proceeds to the fourth major component of 
the Systemic RTI Reform: Tier 3 intervention. Such intensive intervention involves a 
specialized teacher (often a special educator), who begins with a validated Tier 2 
program as the Tier 3 intervention platform. The teacher, however, does not assume 
the standard intervention platform will produce adequate response for this student. 
Instead, the teacher uses ongoing, systematic progress-monitoring data to continu-
ously monitor the student’s response to the platform and to adjust the platform over 
time to ensure a strong match with the student’s needs. Thus, an important dimension 
of Tier 3 intervention is individualization.

These four Systemic RTI Reform components represent a sophisticated, com-
plex design task for school personnel and present schools with demanding imple-
mentation challenges (Fuchs, Fuchs, & Compton, 2012b). These implementation 
challenges are reflected in two recent reports. In an evaluation of 68 schools in one 
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large city in the USA, Ruffini, Lindsay, McInerney, Waite, and Miskell (2016) 
raised questions about the integrity with which many schools implement Systemic 
RTI Reform, even following 2 years of adoption. Also, the recent US National RTI 
Evaluation (Balu et al., 2015) raised questions about the effects of Systemic RTI 
Reform on student learning, at least in the domain of reading for students in the 
primary grades (ages 6–10).

In terms of this chapter’s focus on assessing mathematical LDs, however, our 
central questions pertain to the second tier of intervention within Systemic RTI 
Reform: How is quality instruction assured? And how is response to that quality 
instruction assessed? Within Systemic RTI Reform, assuring quality instruction 
requires provision of a validated Tier 2 program implemented with fidelity. On the 
basis of faithful implementation of a validated program, the vast majority of at-risk 
students are expected to respond adequately. Yet, the availability of validated math-
ematics interventions to address the full range of curricular targets across all grade 
levels is limited (Fuchs, Fuchs, & Compton, 2012a), with most validated programs 
focused on numeration, calculations, word problems, or fractions at ages 6–12. 
Moreover, fidelity of implementation is not often monitored in school-based imple-
mentation, as done in research.

In terms of measuring response to quality instruction at Tier 2, additional research 
is also still required. Studies do, however, indicate widely varying mathematical LD 
prevalence and LD severity as a function of the measure used and the method by 
which response is gauged. The most prominent methods within the Systemic RTI 
Reform research base are low final performance at the end of Tier 2 intervention or 
low rate of improvement across the Tier 2 intervention or some combination thereof. 
In Fuchs et al. (2005), a large-scale randomized control trial examining the effects 
of a first-grade mathematics intervention focused on numeration, calculations, and 
word problems, we contrasted these options for operationalizing responsiveness to 
intervention. Results indicated the following.

For methods based on low final performance, the groups of students labeled 
unresponsive (i.e., LD) manifested uniformly more severe difficulty than respond-
ers. However, the prevalence of unresponsiveness was unrealistically high. Also, a 
problem with relying exclusively on low final achievement to denote unresponsive-
ness is that it identifies some students as unresponsive even when they make strong 
improvement over the course of intervention. Therefore, as an alternative, we con-
sidered improvement as the basis for denoting responsiveness, which provided a 
more representative but still unrealistically high rate of unresponsiveness. Moreover, 
relying exclusively on improvement presents its own problem, because it permits 
students who complete intervention with respectable performance level to be identi-
fied as unresponsive. For this reason, we also considered a dual discrepancy, which 
permits classification as unresponsive only when students experience unacceptable 
improvement over the course of intervention as well as unacceptable final perfor-
mance level at the end of intervention. This approach reduced unresponsiveness to 
a realistic 4% of the general population, while retaining an acceptable degree of 
severity in mathematics difficulty.
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The main point for the present discussion is that findings suggest different methods 
and measures for designating response to Tier 2 mathematics intervention yield 
different sets of students designated as having mathematical LDs, with varying 
prevalence rates and fluctuations in the severity of mathematics difficulty. A lack of 
standard procedure for using RTI to identify LD creates heterogeneity in the LD 
population. Such heterogeneity may plague Systemic RTI Reform methods of iden-
tification, as occurred with the IQ-achievement discrepancy approach to identifica-
tion. Before Systemic RTI Reform can represent a tenable method for identifying 
mathematical LDs, research is needed to achieve concurrence on technically strong 
methods for designating inadequate response to intervention in ways that forecast 
the long-term severe difficulty students with mathematical LDs are expected to 
experience. Alternatively, each validated Tier 2 intervention might be required to 
provide a research-based cut-point for responsiveness, which corresponds with 
long-term mathematics success. This issue is further complicated by the fact that 
many Systemic RTI Reform schools appear to designate responsiveness without any 
formal measurement of the construct, relying instead on informal judgment. 
Research is needed to describe what methods schools use and how well informal 
judgments correspond to students’ trajectories of mathematical development.

 Embedded RTI

An alternative framework for operationalizing students’ responsiveness to quality 
instruction situates the entire process within the general education classroom. In 
this chapter, we refer to this framework as Embedded RTI. This framework was 
introduced as an alternative to IQ-achievement discrepancy classification at the 
1995 National Research Council Board on Testing and Assessment of the National 
Academy of Sciences in the USA, and a version of that white paper (Fuchs, 1995) 
was subsequently published (Fuchs & Fuchs, 1998). To our knowledge, it represents 
the initial conceptualization of RTI.

An important advantage of the Embedded RTI framework is that because it is 
situated entirely in the classroom, it does not require “systemic” reform, in which 
schools design, find resources to support, and monitor the fidelity of an additional 
Tier 2 intervention capacity not ordinarily found in schools. For schools that strug-
gle to implement a tenable Tier 2 intervention system, available resources might be 
better allocated toward enhancing the quality of the general education classroom 
program and thereby creating a context in which responsiveness to quality instruction 
can be viably assessed.

At the same time, the Embedded RTI framework does instead require implemen-
tation of a validated progress-monitoring system school-wide, to produce at least 
twice monthly estimates of all students’ slopes of improvement and performance 
levels (see Fuchs & Fuchs, 1998 for a full discussion of such progress-monitoring 
systems, their design, and the technical basis). The Embedded RTI framework 
requires that LD classification occurs under two conditions that reflect objective 

39 Three Frameworks for Assessing Responsiveness to Instruction as a Means…



674

documentation of inadequate response to quality instruction. First, the ongoing 
progress-monitoring data must demonstrate the student is receiving instruction in a 
classroom with generally adequate progress. This is operationalized as a mean rate 
of improvement commensurate with grade-level norms for that progress-monitoring 
tool for the vast majority of students in the class. This is the indicator of quality 
instruction.

Second, the Embedded RTI framework requires that LD classification be consid-
ered only when a student’s performance reveals a dual discrepancy from classroom 
norms for two consecutive half-month intervals: The student performs at least two 
standard deviations below the level demonstrated by classroom peers and demon-
strates a learning rate at least two standard deviations below that of classmates. This 
is the indicator of inadequate response to the quality instruction (to which the vast 
majority of students in the classroom are making adequate growth).

To illustrate the rationale for this focus on dual discrepancies, we borrow an 
example from pediatric medicine. The endocrinologist monitoring a child’s physi-
cal growth is interested in height not only in terms of level but also in terms of 
growth velocity over time (Rosenfeld, 1982). Given a child whose current height 
falls below the third percentile, the endocrinologist considers the possibility of 
underlying pathology and the need to intervene only if, in response to an adequately 
nurturing environment, the individual’s growth trajectory is flatter than that of 
appropriate comparison groups. For 7-year-olds, for example, large-scale normative 
data (Tanner & Davies, 1985) operationalize this as an annual growth rate of less 
than 4 cm. Consequently, the physician judges a 7-year-old who manifests a large 
discrepancy in height status but who is nonetheless growing at least 4 cm annually 
in response to a nurturing environment to be deriving the available benefits from 
that environment to not be an appropriate candidate for special intervention.

The endocrinologist’s decision logic reflects three assumptions. The first is that 
genetic variations underlie normal development, producing a range of heights across 
the population. The second assumption is that in response to a nurturing environ-
ment, a short but growing child does not present a pathological profile indicative of 
a need for special treatment to produce growth. Instead, this profile suggests an 
individual who may legitimately represent the lower end of the normal distribution 
on height, an individual whose development is commensurate with his or her capac-
ity to grow. The third assumption is that under these circumstances, special inter-
vention is unlikely to increase adult height sufficiently to warrant the risks associated 
with that intervention. Of course, when questions about the quality of the environ-
ment arise, the first-level response is to remove those uncertainties by enhancing 
nurturance, even with hospitalization (Wolraich, 1996), so that growth can be tested 
under adequate environmental conditions. We return to this point soon.

Applied to LD identification, this decision logic translates into three related 
propositions. First, because student capacity varies, educational outcomes will dif-
fer across the population of learners, and a low-performing child who is nonetheless 
learning may ultimately perform less well than peers. For example, we do not expect 
all children to achieve the same degree of mathematics competence.
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Second, if a low-performing child is learning at a rate similar to the growth rates 
of other children in the same sufficiently strong classroom learning environment, 
he/she is demonstrating the capacity to profit from that educational environment. 
Additional intervention, therefore, is not warranted even though a discrepancy in 
performance level may exist. That is, given the benefits being derived from the 
classroom instructional environment, the student probably does not require a unique 
form of instruction and probably is achieving commensurate with his/her capacity 
to learn. Moreover, the risks and costs associated with entering the remedial or spe-
cial education system are deemed inappropriate and unnecessary in this case because 
it is unlikely, in light of the growth already occurring, that a different long-term 
educational outcome could be achieved as a function of that intervention. Of course, 
the converse is also assumed. When a low-performing child is not demonstrating 
growth in a situation where others are thriving, LD identification and special inter-
vention are warranted.

The third assumption, however, is that when the vast majority of students in a 
classroom are not achieving adequate growth rates (compared with local or national 
norms), one must question the adequacy of that educational environment before 
formulating decisions about individual student responsiveness and the presence of 
an LD. Growth under more nurturing environmental conditions must be indexed 
before any child’s need for special intervention can be assessed. In classrooms with 
poor growth rates, intervention aimed at enhancing the overall quality of the class-
room instructional program must occur. The school must bring to bear resources to 
help these teachers reconfigure and expand their instructional environment.

In this way, Embedded RTI is not business as usual. It instead represents its own 
reform, situated in the general education classroom. It also requires ongoing, objec-
tive evidence that a high-quality general education instruction is in effect, tolerating 
that no more than ~10% (2 of 25 students) experience inadequate growth, before 
students in that classroom may be identified with an LD. In the context of a class-
room in which the vast majority of students are growing, school personnel may be 
confident that students who are identified for intervention (because their perfor-
mance level and growth rate are substantially below those of classmates) are not 
casualties of an inadequate general education classroom environment. Embedded 
RTI therefore meets both fundamental assumptions of an RTI LD identification 
system by ensuring identification is based on inadequate response to high-quality 
classroom instruction.

This does, however, prompt the question: Is it possible to expect classrooms to 
produce generally adequate growth? After all, in the USA, Systemic RTI Reform 
expects approximately 20% of students to experience poor learning in the general 
education classroom (e.g., Vaughn & Fletcher, 2012). In a classroom of 25 students, 
it thus tolerates five who will require Tier 2. In some locales, rates of Tier 2 inter-
vention in the USA are much higher. For example, in the National RTI Evaluation 
(Balu et al., 2015), 41% of students received Tier 2 or 3 intervention. This floods the 
Tier 2 intervention system and compromises its potential to provide meaningful 
supports.
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So it is important to note that research demonstrates instructional routines 
situated in the general education classroom can substantially expand the range of 
students who experience success (see http://www.bestevidence.org/ and the forth-
coming Evidence for ESSA, http://www.huffingtonpost.com/robert-e-slavin/
evidence-and-the-essa_b_8750480.html). For example, in the mathematics Peer-
Assisted Learning Strategy (PALS) series of randomized control trials (e.g., Fuchs 
et al., 1997; Fuchs, Fuchs, & Karns, 2001; Fuchs, Fuchs, Yazdian, & Powell, 2002), 
control condition (non-PALS) classrooms experienced inadequate growth rates 
averaging 25%. In PALS classrooms, that percentage was cut in half. In the general 
education classroom, resources must be dedicated to ensure high-quality instruction 
with strong instructional core programs and routines for differentiating instruction 
in a feasible manner (such as PALS), with accommodations that ensure instruction 
is accessible to all students, and with behavior management systems that guarantee 
students produce the work of which they are capable.

It is also important to note that some research indicates Tier 2 intervention is not 
necessary for identifying LDs. Compton et  al. (2012), for example, showed that 
assessment conducted in the fall of first grade can be used productively to move 
students directly to the more intensive and perhaps longer-duration intervention 
they require, instead of first requiring students to endure 10–20 weeks or more of 
failure in Tier 2 intervention. In this sense, for students who eventually will emerge 
as having an LD, Systemic RTI Reform represents an “RTI wait-to-fail” model that 
delays the provision of the more intensive intervention these students require and 
increases RTI costs.

 Dynamic Assessment

Dynamic Assessment (DA), which typically requires a 50–60-min testing session, is 
the most efficient of the three frameworks for assessing a student’s response to qual-
ity instruction. DA provides instruction in a structured way, and the ease of the 
student’s learning is quantified in order to predict the student’s responsiveness to 
instruction in classrooms. In this way, DA can be used outside an RTI system to 
formulate LD identification decisions.

As the focus of discussion and research for more than eight decades (Kern, 1930; 
Penrose, 1934; as cited in Grigorenko & Sternberg, 1998), DA is designed to address 
the major concern that “static” estimates of learning reveal only two states: unaided 
success or failure. Yet, as Vygotsky (1962) proposed, children may function some-
where between these states: unable to perform a task independently but able to suc-
ceed with assistance.

This has implications for formulating distinctions among students at the lower 
end of the distribution. For example, when two children earn the same low score on 
a calculations test, they may not have the same potential to develop word-problem 
skill. One may succeed in solving word problems with only minimal assistance. 
This would suggest that the initially low score on the static assessment stems from 
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inadequate learning opportunity in the child’s present environment but indicates 
good learning potential with strong instruction in the future. The other child, by 
contrast, may struggle to learn word problems even when provided high-quality 
instruction, revealing a mathematical LD and the need for special intervention.

As noted, DA involves structuring a learning task, providing instruction to help 
the student learn the task, and indexing responsiveness to the assisted learning phase 
as a measure of learning potential – in the context of this chapter, as a measure of 
responsiveness to quality instruction. The DA’s instruction is designed with gradu-
ated levels of scaffolding. The first level is minimal (for students who require only 
a simple set of directions explaining what the task requires). For students who 
require additional scaffolding to learn the unfamiliar task, instruction incorporates 
principles reflective of high-quality general education, and higher levels of scaffold-
ing mirror more explicit, structured instruction that can be incorporated with dif-
ferentiated routines (such as PALS). The DA’s resulting score indexes the level of 
scaffolding needed to effect learning.

Research on DA varies as a function of the DA’s structure and design and the 
methodological study features. In the past 15 years, most work has examined the 
contribution of DA in explaining future academic performance while accounting for 
competing predictors of outcome. This seems most applicable to the assessment of 
LDs. For example, Fuchs, Compton et al. (2008) examined the value of a DA at the 
start of third grade in predicting year-end word-problem skill. The DA’s focus, 
learning three simple algebra skills, was selected for five reasons. First, the algebra 
skills are of sufficient difficulty that few third graders would solve problems without 
assistance, yet most beginning third graders should have mastered the simple calcu-
lation skills needed to solve the problems. Second, rules underlying the algebra 
skills could be delineated to construct clear explanations within a graduated 
sequence of prompts. Third, the sequence of prompts for the three skills could be 
constructed in an analogous hierarchy, to promote equal interval scaling of the DA 
scoring system. Fourth, the three skills are increasingly difficult (as established in 
pilot work), and later skills appear to build on earlier skills, such that transfer across 
the skills might facilitate better DA scores. Last, algebra requires understanding of 
the relations among quantities, as is the case for word problems.

The study controlled for other variables potentially important in predicting the 
word-problem outcome: children’s initial word-problem and calculations skill; their 
language ability, attentive behavior, and nonverbal reasoning; and the quality of 
instruction students received over the course of third grade (whether students 
received conventional or validated mathematical problem-solving instruction, 
which was determined via random assignment). Structural equation measurement 
models showed that DA measured a distinct dimension of pretreatment ability. It 
also showed that whereas instructional quality was sufficient to account for word- 
problem outcome proximal to instruction, the DA, along with language and pre-
treatment math skills, was needed to forecast learning on word-problem outcomes 
more distal to instruction.

These findings, along with those of other studies (e.g., Caffrey, Fuchs, & Fuchs, 
2008; Seethaler, Fuchs, Fuchs, & Compton, 2016; Swanson & Howard, 2005), 
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 suggest DA might serve an important function in predicting responsiveness to 
intervention, by forecasting distal aspects of learning that are not highly relevant to 
the present grade level’s curricular focus. For example, within RTI models at first 
grade, supplemental intervention focuses dominantly on the subdomains of numera-
tion and calculations. Yet, some studies (e.g., Fuchs, Fuchs, et al., 2008) show that 
~25% of the population experience later word-problem solving difficulty even when 
calculation skill is adequate. A first-grade DA (e.g., Seethaler, Fuchs, Fuchs, & 
Compton, 2012) may be used to forecast development of later-emerging forms of 
mathematical LDs, which would help teachers design more appropriate early inter-
vention, focused on word-problem solving, for such students.

In a different way, DA might be used productively to help schools immediately 
identify students, after only a single DA session, to receive the level of intensity 
required for students with mathematical LDs. By contrast, within a three-tier RTI 
framework, these students would wait 10–30 weeks to ultimately prove unrespon-
sive to the less intensive form of supplemental intervention delivered at Tier 2. With 
Embedded RTI, demonstrating a dual discrepancy from classroom performance 
takes a minimum of 4 weeks but can run longer.

Even so, despite promising DA research conducted over the past 15 years, work is 
required to address the full complement of initial grade levels for the DA administra-
tion, designed to predict the full range of mathematical outcomes. These studies also 
must address the predictive validity of these tools, as assessed in the Fuchs, Fuchs, et al. 
(2008) study discussed above. Developing a system of technically strong DAs to 
address the many forms of mathematical learning represents an ambitious undertaking 
before DA may be used routinely in the assessment of mathematical LDs.

 Comparisons across the Three Frameworks

We close this chapter by comparing the three frameworks for assessing responsive-
ness to high-quality instruction, as a means of identifying mathematical LDs, along 
four dimensions: ensuring that assessment provides quality instruction, technical 
strength of responsiveness decisions, feasibility and affordability of the assessment 
process, and early access to special education for students with LDs.

To provide quality instruction within the RTI assessment, Systemic RTI Reform 
relies on validated Tier 2 intervention programs. This offers the advantage of small- 
group instructional programs demonstrated to boost the mathematics trajectories of 
at-risk students but suffers at least three important problems: the paucity of avail-
able programs to address the range of mathematics curricular topics across the grade 
levels, inadequate monitoring of the extent to which Tier 2 interventions are imple-
mented in schools according to prescribed methods used in validation studies, and 
school schedules that complicate or undermine student availability for supplemental 
intervention.

Embedded RTI takes a very different tack, which restricts the focus of the RTI 
assessment to the general education classroom. Here, quality is operationalized not 
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in terms of an analysis of the programs delivered but rather in terms of the adequacy 
of student learning for the students served in those classrooms. This is achieved via 
the school-wide ongoing progress-monitoring system. Implementing such a 
progress- monitoring system represents an ambitious undertaking but pales in com-
parison to the complexity involved in introducing a system of validated supplemen-
tal interventions into school cultures not accustomed to, resourced for, or skilled in 
an additional layer of services. A disadvantage of Embedded RTI echoes one of 
Systemic RTI Reform’s problems: inadequate coverage of the mathematics curricu-
lum in existing progress-monitoring systems.

Dynamic Assessment avoids the complexity of a Tier 2 intervention system and 
the challenges of school-wide progress monitoring by encapsulating the quality 
instruction experience with a self-contained, hour-long, standardized assessment. 
A tester need only follow the prescribed testing procedures to ensure the delivery of 
the graduated series of instructional scaffolds that constitute the quality instruc-
tional experience. Even so, as with Systemic RTI Reform and Embedded RTI, the 
breadth of DA’s coverage – for the various mathematics domains and across the 
grade levels – is lacking.

With respect to the technical strength of responsiveness decisions, Systemic RTI 
Reform suffers the most tenuous basis for classifying adequate versus inadequate 
response to Tier 2 intervention. As discussed earlier, research suggests excessive 
variability in the groups of students designated as unresponsive as a function of the 
measures and methods used. Moreover, it is unclear what methods schools use, 
beyond informal judgments, for distinguishing adequate from inadequate response. 
At the present time, there is no basis for estimating whether school-based respon-
siveness decisions represent a reliable or valid basis for sorting students back into 
Tier 1 classroom participation versus more intensive intervention. By contrast, 
Embedded RTI and Dynamic Assessment provide clear rules for making such 
designations, with technical data that support such decision-making. Even so, all 
three frameworks suffer from few decision utilization studies examining how LD 
versus non-LD classifications based on RTI data predict or classify students accord-
ing to their long-term mathematics performance and success.

On the feasibility and affordability criterion, DA is the easy winner among these 
three frameworks for operationalizing RTI as a means of mathematics LD assess-
ment. It can take up to one full hour. This represents a long test. However, it involves 
one single session and can be conducted by a well-trained school psychologist. 
Embedded RTI offers the next most feasible and affordable option, by containing 
resources within the general education classroom and encouraging the reform of 
classroom instruction to expand the range of its effectiveness. Systemic RTI Reform 
is clearly the most resource intensive framework for schools to implement, requir-
ing a new level of validated intervention without school personnel who are trained 
in or supervised and without schools organized for successful implementation.

Finally, in terms of early access to special education for students with LDs – a 
major impetus for the 2004 Reauthorization’s focus on RTI – Systemic RTI Reform 
requires students with mathematical LDs to pass through at least one level of 
supplemental (less intensive) intervention before gaining access to the most 
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intensive and individualized services available within the school building. Students 
must demonstrate risk for inadequate response to classroom instruction before 
becoming eligible for Tier 2 intervention and then must demonstrate inadequate 
response to Tier 2 intervention before entering the formal LD assessment process 
and eventually special education services.

Yet, some research indicates that LD students who ultimately fail to respond to 
Tier 2 intervention can be identified before they enter Tier 2 intervention. This avoids 
(a) an extended period of waiting-to-fail before gaining access to services with the 
appropriate level of intensity and (b) the costs associated with providing ineffective 
Tier 2 intervention. Embedded RTI shortens this process, with its exclusive focus on 
response within the classroom instructional program. It does, however, require 
schools to implement a systematic data-based process of ensuring a classroom is 
providing quality instruction, as evidenced via generally strong student learning, 
before LD identification may occur. DA provides the most direct and fastest route to 
the appropriate level of intensity for students with mathematical LDs.

This analysis of strengths and weaknesses provides the basis for a systematic 
program of research designed to describe relevant school practices, assess the accu-
racy and feasibility of methods for assessing responsiveness to quality instruction, 
examine the long-term decision utility of responsiveness decisions, systematically 
consider the feasibility and affordability of contrasting assessment processes, and 
determine how alternative methods affect early access to special education services 
for students with mathematical LDs.
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Chapter 40
Technology-Based Diagnostic Assessments 
for Identifying Early Mathematical Learning 
Difficulties

Gyöngyvér Molnár and Benő Csapó

 Introduction

The work presented in this chapter is located in the overlapping area of four research 
and development domains of education which have recently received growing atten-
tion. (1) Information communication technologies (ICT) have proliferated in all 
areas of life, including school learning. The ubiquitous ICT has made it more real-
istic to transfer all assessment to computerised platforms; therefore, technology- 
based assessment can be widely utilised to support everyday educational processes 
(Csapó, Ainley, Bennett, Latour, & Law, 2012). (2) Adapting education to the indi-
vidual needs of students, and thus giving special support to those who really need it, 
has always been an intention of educators, but such a goal required assessment 
instruments that could diagnose students’ difficulties early enough and monitor 
their progress. Therefore, assessment for learning, i.e. formative and diagnostic 
assessment, has recently become a dominant field within the research on educa-
tional assessment (Black & Wiliam, 1998), especially technology-based assess-
ment. (3) Research has shown that preschool development and the first school years 
determine later success (Aunola, Leskinen, Lerkkanen, & Nurmi, 2004; Watts, 
Duncan, Siegler, & Davis-Kean, 2014); therefore early childhood education is one 
of the most rapidly growing areas in educational research, which development is 
strongly supported by the means of technology-based formative and diagnostic 
assessment. (4) Finally, mathematics is one of the most important school subjects; 
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success in learning it has a strong impact on a number of other areas of education, 
including science. Due to its importance in modern societies in everyday life as well 
as in science and technology-related professions, mathematics education has 
become one of the focal areas in improving educational systems. Besides reading 
and science, it is one of the three most frequently tested domains, both in interna-
tional and national assessment programmes, thus attracting broad public attention.

There are many initiatives in progress, and a number of computer-based tests are 
available in the field of mathematics, but they are mainly developed for summative 
assessment, as well as the large-scale international (OECD PISA, IEA TIMSS) and 
national assessment programmes (e.g. MAP, Missouri Assessment Program, 
Missouri; SOL, Standards of Learning, Virginia; OAKS, Oregon Assessment of 
Knowledge and Skills, Oregon; SBAC, Smarter Balanced Assessment Consortium; 
PARCC, The Partnership for Assessment of Readiness for College and Careers). 
There are much fewer formative or diagnostic tests available, especially for measur-
ing younger students’ mathematics knowledge and skills. In general, there is a lack 
of research-based online diagnostic mathematics tests available for everyday class-
room applications. Although there are several initiatives for online assessments 
(see, e.g. Pearson’s MyMathLab (n.d.); Let’s Go Learn (n.d.); The Diagnostic 
assessment part of PARCC (n.d.); Math Garden from the University of Amsterdam 
(n.d.); PAT: Mathematics in New Zealand (n.d.)), but these are all commercial prod-
ucts not completely and freely available for students and teachers.

As an exception, Panamath is available for free, but it is measuring only one part 
of mathematics’ knowledge, students’ approximate number system (ANS) aptitude. 
In the Panamath tasks, students are presented two sets of dots (blue and yellow), and 
they have to decide in a brief flash whether the number of blue or yellow dots is 
greater. The result tells about the accuracy of the test takers’ basic sense for num-
bers. It can be used across the entire lifespan from 2-year-olds to old adults (DeWind 
& Brannon, 2016).

As there are large differences between students in a number of dimensions, suc-
cessful mathematics education, especially in the first school years, requires differ-
entiated and personalised teaching. This includes early identification of learning 
difficulties, frequent feedback, individualised well-targeted interventions, and con-
tinuous monitoring of development. An assessment system which can diagnose 
learning difficulties and can be used frequently enough must be built on a deeper 
understanding of students’ developmental processes, the impacts of mathematics 
education on it, and the organisation of students’ knowledge in general.

The first part of this chapter presents the advantages and possibilities of 
technology- based assessment. It describes how technology and its advantages ini-
tiated to rethink the purpose of assessment focusing more on diagnostic instead 
of summative assessment and realising efficient testing for personalised learning. 
The second part of the chapter summarises the scientific foundations for the diag-
nostic assessments. The theoretical foundations of framework development have 
resulted in a three-dimensional framework that outlines mathematics learning and 
the development of mathematical abilities and skills in three dimensions. These 
dimensions cover students’ psychological development, the applicability of their 

G. Molnár and B. Csapó

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)

iPad de Silvia (261)



685

knowledge, and the curricular content of teaching. To implement the diagnostic 
assessment, a complex online platform called eDia has been constructed to support 
the entire assessment process from item writing through item banking, test deliv-
ery, and storing and analysing the data to providing feedback to students and their 
teachers. The third part of the chapter shows how the mathematics framework has 
been mapped into an item bank containing over a thousand items by dimension for 
the first six grades of primary school. The diagnostic assessment system has been 
offered to schools for application in everyday practice. The fourth part shows the 
implementation process, some early results from field testing, scaling issues, and 
framework validation. Finally, the last part discusses how the system can be further 
developed and how it can be integrated into everyday educational processes to sup-
port personalised education and provide customised support for atypical learners of 
mathematics.

 Advantages and Possibilities of Technology-Based Assessment: 
The Move from Summative to Diagnostic Assessment 
to Realise Efficient Testing for Personalised Learning

The most prominent educational developments of the past few decades have been 
aimed at establishing the feedback mechanisms of different levels of educational 
systems. Therefore, both the theory and the practice of educational assessment have 
seen considerable advances. Large-scale international assessments have become 
regularly administered by collaborative teams of experts of the leading test centres 
of the world. As a result, a huge improvement of data transfer technology and data 
analysis methods could be witnessed. Systems of assessment and evaluation in 
national contexts taking into account both the international trends and the local 
characteristics have been gradually set up. Due to the rapid development, the means 
of paper-based assessments most widespread and accepted at the millennium 
imposed serious constraints on their usability. To facilitate potential improvement 
and meet the twenty-first century needs of the new kinds of assessment and evalua-
tion, an essential qualitative change had to be made (Scheuermann & Pereira, 2008). 
The direction of the change was mainly determined by technology. The fact that 
technology has developed, spread, and become accessible offers extraordinary 
opportunities for the improvement of the practice of educational assessment. 
Applying technology allows more exact and more varied testing procedures of sig-
nificantly more complex skills and abilities by devising tasks in more realistic, 
application-oriented, and authentic testing environments than those of the earlier, 
paper-based assessments (Beller, 2013; Bennett, 2002; Breiter, Groß, & Stauke, 
2013; Bridgeman, 2010; Christakoudis, Androulakis, & Zagouras, 2011; Csapó, 
Ainley, et al., 2012; Farcot & Latour, 2009; Kikis, 2010; Martin, 2010; Martin & 
Binkley, 2009; Moe, 2010; Ripley, 2010; van Lent, 2010). Its effectiveness and the 
increase of effectiveness under certain conditions could be detected on every level 
of assessment and evaluation.
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• The economy of testing (Bennett, 2003; Choi & Tinkler, 2002; Farcot & Latour, 
2008; Peak, 2005).

• The diversity of test editing and development (Csapó, Ainley, et al., 2012) and 
the speed of test administration and data flow (Csapó, Lőrincz, & Molnár, 2012).

• The opportunity to provide instant, objective, and standardised feedback (Becker, 
2004; Dikli, 2006; Mitchell, Russel, Broomhead, & Aldridge, 2002; Valenti, 
Neri, & Cucchiarelli, 2003).

• The motivation of the students for testing changes (Meijer, 2010; Sim & Horton, 
2005).

• Innovative item development opportunities, multimedia, dynamic, and interac-
tive items, applying second- and third-generation tests (Pachler, Daly, Mor, & 
Mellar, 2010; Strain-Seymour, Way, & Dolan, 2009), which were impracticable 
in a paper-based form (Molnár, Greiff, Wüstenberg, & Fischer, 2017).

• An adaptive test algorithm has become available, which allows a more exact 
assessment of levels of knowledge and skills and abilities (Frey, 2007; Jodoin, 
Zenisky, & Hambleton, 2006).

• The circle of test takers could be extended (e.g. audio version of tasks and 
instructions could be played, which makes testing of children who cannot read 
possible) (Csapó, Molnár, & Nagy, 2014).

• Technology serves as an effective means of logging and analysing contextual 
data (e.g. the time needed for the execution of a task could be measured; besides 
the number of attempts made by the student to modify their solutions, the num-
ber and location of a student’s clicks during a test could also be mapped) (Csapó 
et  al., 2014). Consequently, instead of the only indicator used in paper-based 
testing, which is the test result, a rich and well-structured database is available, 
which makes a more thorough following and analysis of the student’s move-
ments and behaviour possible during the test (Molnár & Lőrincz, 2012).

• Indicators of test goodness criteria could increase (Csapó et al., 2014; Jurecka & 
Hartig, 2007; Ridgway & McCusker, 2003).

Although approaching the problem from different perspectives, major relevant 
research and development projects in an international context (e.g. Assessment and 
Teaching of 21st Century Skills  – ATC21S, Class of 2020 Action Plan; Griffin, 
McGaw, & Care, 2012; SETDA, 2008) have all agreed that the direction for 
improvement could be computer-based testing exclusively (Csapó, Ainley, et  al., 
2012; Pearson, 2012; Scheuermann & Björnsson, 2009). Today computer-based 
assessment permits more effective assessments than traditional face-to-face or 
paper-based testing. Therefore, within a reasonably foreseeable time, all important 
assessment will probably be put on a technological basis. International summative 
tests have already shown such a tendency. Furthermore, given the opportunity to 
provide instant feedback on assessments, besides the predominantly summative 
approach, recently, there has been an emphasis on individualised diagnostic testing 
in order to enhance fast and effective learning by means of exploiting the learning 
supporting function of diagnostic testing (Kettler, 2011; Redecker & Johannessen, 
2013; Van der Kleij, Eggen, Timmers, & Veldkamp, 2012). Traditional paper-based 
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tests are not suitable for diagnostic assessment, which bottom line is sufficiently 
frequent student assessment. The development of technology together with that of 
assessment and evaluation in the past 15 years has created numerous new opportuni-
ties in early childhood assessment, which so far have mainly been based on indi-
vidual data collection (Csapó et al., 2014).

 Theoretical Foundations of Framework Development: 
A Three-Dimensional Model of Mathematical Knowledge

In the history of mathematics education, three perennial goals have remained clear 
from the very beginning of the history of schooling up to present-day approaches. 
To create a diagnostic assessment system which can precisely identify students’ 
weaknesses and strengths, a framework must be created which clearly distinguishes 
these three directions, three types of goals.

Cultivating general cognitive abilities has always been one of the main declared 
goals of learning mathematics. Adjusting learning to students’ mental development 
is a precondition of successful teaching, while obtaining feedback on how maths 
teaching stimulates the developing mind requires regular testing. To create assess-
ment instruments to meet this goal, psychological processes must be studied.

Another obvious goal is that mathematics education should provide learners with 
practical skills applicable outside the school context. Seneca’s often cited aphorism, 
“Non scholae sed vitae discimus”, expresses the expectations of modern societies as 
well, and this aim, making mathematics education more relevant for the average 
learner, is embodied in national and international assessment projects.

Finally, mathematics is one of the oldest and best organised bodies of human 
knowledge. As Banach has formulated his admiration, “Mathematics is the most 
beautiful and most powerful creation of the human spirit”. To comprehend the organ-
isation of this branch of knowledge, students must study mathematics as a disci-
pline, including its specific terminology, its axioms, theorems, definitions, proofs, 
etc. Another set of goals can be deduced from this need which can be further shaped 
taking into account the educational requirements of those students who prepare to 
be professional users of mathematics, becoming research mathematicians or dealing 
with high-level applications in a number of other areas of research and development.

 A Three-Dimensional Model of Students’ Knowledge 
for Diagnostic Assessment in Early Education

The arguments for assessing students’ progress in three dimensions may be further 
elaborated by analysing some national and international assessment frameworks. 
Large-scale international assessment programmes publish their frameworks well 
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before the actual assessment. The first international assessment programmes in 
mathematics were conducted by the IEA (International Association for the 
Assessment of Educational Progress) in the early 1970s and 1980s, and the assess-
ments became regular since 1995 under the acronym TIMSS (Trends in International 
Mathematics and Science Studies). The early IEA assessments focused on the cur-
ricular content of mathematics teaching and were closer to the disciplinary view of 
mathematics. Although the curricula in the participating countries remained the pri-
mary source of content for recent TIMSS assessments, they distinguish the content 
domains (covering the main domains of mathematics as a discipline) and the cogni-
tive domains which are knowing, applying, and reasoning (Mullis & Martin, 2013).

The other large-scale international programme launched in 2000 under the aegis 
of the OECD, PISA (Programme for International Student Assessment), aims to 
assess the knowledge and skills that students are expected to possess at the age of 
15 to be prepared for the challenges they will face in modern societies. To charac-
terise the type of broadly applicable knowledge, PISA extended the conception of 
literacy and termed the assessment domains reading literacy, mathematical literacy, 
and scientific literacy. For mathematical literacy, a novel definition was developed:

Mathematical literacy is defined in PISA as: the capacity to identify, to understand, and to 
engage in mathematics and make well-founded judgments about the role that mathematics 
plays, as needed for an individual’s current and future private life, occupational life, social 
life with peers and relatives, and life as a constructive, concerned, and reflective citizen. 
(OECD, 2000, p. 50)

Based on this definition, the framework was elaborated in three dimensions, 
dealing with mathematical processes, mathematical content, and situations and 
contexts of applying mathematical knowledge. Both the definition of mathematical 
literacy and the detailed framework proceeding from it as well as item development 
placed much stronger emphasis on the application of knowledge as the disciplinary 
content and the mathematical processes were embedded in contexts and situations 
relevant for young students living in developed societies. Over the assessment 
cycles, the conception of mathematical literacy further evolved, and its core idea 
remained very similar to the original:

Mathematical literacy is an individual’s capacity to formulate, employ and interpret math-
ematics in a variety of contexts. It includes reasoning mathematically and using mathemati-
cal concepts, procedures, facts and tools to describe, explain and predict phenomena. It 
assists individuals to recognize the role that mathematics plays in the world and to make the 
well-founded judgments and decisions needed by constructive, engaged and reflective citi-
zens. (OECD, 2016, p. 65)

Following the traditions of framework development in international assessment 
projects and taking into account several further theoretical considerations (see 
Csapó, 2004, 2010) and empirical results (Csapó, 2007), a three-dimensional model 
of teaching and learning goals was proposed. This approach (outlined in Fig. 40.1) 
assumes that these three aspects of teaching should be present at the same time in 
school education, to develop the intellect and to cultivate thinking and general cog-
nitive abilities. These goals must not exclude each other, and they should not com-
pete for teaching time. Focusing on one of these goals, e.g. teaching the disciplinary 
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content (which traditionally happens in many education systems), is not satisfying 
in modern societies; students are expected to apply their mathematical knowledge 
in a broad variety of contexts (as PISA assesses it), and they should be able to solve 
problems in unknown, novel situations (as was assessed, e.g. in PISA 2012 in the 
domain of problem-solving, see OECD, 2014). These goals (teaching disciplinary 
content knowledge in mathematics, preparing students to apply it in a broad range 
of contexts, and developing thinking skills; see Csapó & Szendrei, 2011) have been 
competing with each other for teaching time over the past few decades. One or 
another became from time to time dominant in the curricula; however, they should 
receive equal attention for interacting and reinforcing each other.

The model in Fig. 40.1 has been elaborated for each assessment domain taking 
into account the specific characteristics of the particular domain and has been pub-
lished in three parallel volumes (see Csapó & Csépe, 2012 for reading; Csapó & 
Szendrei, 2011 for mathematics; and Csapó & Szabó, 2012 for science). The simi-
larities and differences of these frameworks highlighted the specific roles each 
domain plays in education. Reading is the basis for all further learning, including 
mathematics, while mathematics provides foundations for learning certain sciences. 
Further developmental work (creating items and carrying out assessments with 
them) based on this three-dimensional framework indicates the validity of the 
approach in educational practice.

As for mathematics, each dimension has been separately considered and elabo-
rated in detail in the light of literature from the particular field of research. It is of 
great use to separate these different dimensions in diagnostic assessments because a 
precise identification of areas of delayed differences is a precondition of person-
alised interventions. The scope of studying these dimensions is also different. The 
roots of the psychological development of mathematical reasoning may be universal 
as far as early neurocognitive development in children is alike across cultures and 
societies. Studies related to the application dimension can mostly be shared with 
researchers dealing with the contexts and expectations of developed countries, 
while the curricular content is related to the national educational system.

Fig. 40.1 A three-dimensional model for developing a framework of diagnostic assessments. 
(Csapó, 2007)

40 Technology-Based Diagnostic Assessments for Identifying Early Mathematical…



690

The psychological dimension has been conceptualised as the interaction between 
students’ cognitive development and learning mathematics at school (Nunes & 
Csapó, 2011). The questions in this dimension are how well mathematics education 
is adjusted to students’ psychological development, on the one hand, and how learn-
ing mathematics can contribute to the development of specific reasoning skills and 
how effectively it stimulates students’ general cognitive development, on the other. 
Research in this field provides rich resources ranging from the classical works of 
Piaget (see, e.g. Inhelder & Piaget, 1958) to the most recent neurocognitive studies. 
A long list of skills can be taken into account in this field that are strongly embedded 
in psychological development, such as counting skills, additive and multiplicative 
reasoning as well as spatial, probabilistic, combinatorial, and proportional reason-
ing, and so on. Assessments of a number of such skills are especially crucial at the 
beginning of schooling and in the first school years, as their developmental level 
determines later success (see Nguyen et al., 2016).

The application dimension of the goals of learning mathematics is interpreted as 
mastering mathematical literacy, the type of skills that make mathematics useful in 
areas other than the immediate school context. Mathematics is applied in a number 
of areas, ranging from other school subjects to a broad cross section of everyday 
life (Csíkos & Verschaffel, 2011). The key questions in this field are how students 
can construct mathematical models of problems they face and how well they can 
mobilise mathematical knowledge to solve those problems. Transfer of knowledge 
to new contexts is not automatic, and children must learn and practise applying their 
knowledge. Research on realistic mathematical modelling is the most useful source 
for elaborating the assessment framework of this dimension (see, e.g. Verschaffel, De 
Corte, & Lasure, 1994). The tasks that can be taken into account for the measurement 
of this dimension range from pseudo-real-world to real-world problems which embed 
mathematical knowledge in a number of relevant contexts and real-life situations.

The disciplinary dimension can be defined as the mathematics content knowledge 
described in the national core curriculum. This is the prescribed content on which 
textbooks, local curricula, and teachers’ actual work are based (Szendrei & Szendrei, 
2011). A precise translation of the core curriculum into an assessment framework 
and later on into test tasks makes it possible to monitor how students progress with 
their daily mathematics studies. Previous research has indicated that mastering and 
reproducing the immediate teaching material does not necessarily have a long-term 
impact on students’ cognitive development (see, e.g. Csapó, 2007), but for a precise 
diagnosis, it is necessary to know if students actually learn what they are expected to 
in mathematics lessons.

Teaching students disciplinary content knowledge in mathematics, preparing 
them to apply it, and developing their thinking skills are not considered as exclusive 
alternatives but processes that reinforce and interact with each other. That is, educa-
tion must achieve these objectives in an integrated way, but for diagnostic purposes 
the tests must be able to show if there is insufficient progress in one or another of 
these dimensions, thus they should be treated as distinct dimensions in diagnostic 
assessments.

Taking this principle into account and considering the specific aspects of early 
education and the diagnostic orientation of the assessment, the former tridimensional 
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model was further developed and used as a foundation for item development. The 
continuum of the first six grades has been divided into 2-year sections, and the test 
items have been prepared to cover these periods (Csíkos & Csapó, 2011, see Fig. 40.2).

The three-dimensional approach indicates that these aspects of learning are not 
independent of each other. Disciplinary content is the means of developing stu-
dents’ reasoning skills, and this is what students are then expected to apply in other 
contexts. The following sections show how items were developed for these dimen-
sions, how students’ knowledge is measured in these dimensions, and how their 
disciplinary knowledge, reasoning skills, and applicable knowledge are related.

 Creating an Assessment System: Online Platform Building 
and Innovative Item Writing

Based on the model of mathematical knowledge described in the previous section, 
an item bank was constructed for diagnostic assessments. This item bank contains 
6182 tasks (each task consists of several items) to measure disciplinary content 

Fig. 40.2 The model of mathematical knowledge to develop the framework for diagnostic assess-
ment in Grades 1–6. (Csíkos & Csapó, 2011)
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knowledge in mathematics (MD; n  =  2119), mathematical reasoning (MR; 
n = 1965), and mathematical literacy (MA; n = 2098) in first to sixth grades (age 
6–12). The content of the assessment as a function of the three dimensions of learn-
ing and target population is shown in Fig. 40.2.

The tasks were grouped into clusters (4–5 tasks per cluster), meaning 15–20 
items per cluster for the lower grades and 20–25 items for the higher grades. One 
45-min test contains at least three clusters (at least 45–50 items).

In the first to third grades, instructions are provided both in written form and 
online by a prerecorded voice to prevent reading difficulties and ensure the validity 
of the results. Thus, students must use headphones during the administration of the 
tests. After listening to the instructions, they must indicate their answer using the 
mouse or keyboard (in the case of desktop computers, which is the most common 
infrastructure in the Hungarian educational system) or directly tapping, typing, or 
dragging the elements of the tasks with their fingers on tablets. It takes no more than 
45 min (one school lesson) to complete the test.

At the beginning of the tests, participants are provided with instructions, includ-
ing a trial (warm-up) task with immediate feedback, in which they can learn how 
to use the programme: (1) at the top of the screen, a yellow bar indicates how far 
the have advanced in the test; (2) they must click on the speaker to be able to lis-
ten to the task instruction; (3) to move on to the next task, they must click on the 
“next” button; and, finally, (4) after completing the last task, they receive game-
based immediate feedback with one to ten balloons depending on their achieve-
ment. The better their results are, the more balloons they will see over Piglet’s 
head. The immediate feedback also contains their achievement in each dimension 
of knowledge.

The feedback system, which is available for the teacher, is more elaborated. As 
the tasks in the item bank have been scaled by means of IRT, students’ achievement 
can be objectively compared. Teachers receive feedback on students’ achievements 
both in percentage and in ability scores, which are comparable to each other and 
also contain a point of reference to the national standards. In each of the grades and 
fields, the national-level average achievement was transferred to 500 points with a 
100-point standard deviation, which constructs the point of reference to the stu-
dents’ achievement.

 Mathematical Reasoning Items

Based on the framework for the diagnostic assessment of mathematics (Csapó & 
Szendrei, 2011), reasoning items encompass the measurement of inductive reason-
ing, deductive reasoning, combinative reasoning, systematisation skills, and pro-
portional reasoning. The task presented in Fig. 40.3 combines the mathematical 
concept of whole numbers with the assessment of students’ inductive reasoning 
skills within the context of a famous Hungarian cartoon. In the task, students must 
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discover regularities by detecting dissimilarities with respect to attributes of differ-
ent objects. In this operation, they must use their knowledge of quantities and their 
understanding of the relations of greater than, less than and the same. According 
to Klauer’s definition (1993) of inductive reasoning, students must use the opera-
tion of discrimination in this item. In the present case, students can provide their 
answers by clicking on the “odd-one-out” element, scoring a maximum of 4 points, 
one in each group of chocolate bars. As demonstrated, inductive reasoning tasks 
are often connected to other areas of mathematics, in this case to whole numbers 
and computation.

In the task presented in Fig. 40.4, students’ systematisation skills and their level 
of understanding of the number concept are assessed. The formulation and develop-
ment of the number concept must be supported from three directions: number symbols, 
the name of the numbers, and the quantities indicated by the numbers.

The tasks, which support the connections between these representations, are suit-
able for diagnostic purposes for the reasoning dimension of counting. The present 
task provides an example of the combination of number symbols and quantities in a 
reasoning context. Students need to recognise number symbols and then connect them 
to quantities and place them in increasing order by clicking on the numbers. In short, 
the order of the clicking was evaluated.

Fig. 40.3 Mathematical reasoning task: combining the mathematical concept of whole numbers 
with the assessment of students’ inductive reasoning skills in a familiar Hungarian cartoon
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 Mathematical Literacy Items

In the lower grades, mathematical problems become realistic when everyday experi-
ences and observations come to play an active role in the problem-solving process. 
It is easier to interpret the problem if it is supported by a relevant picture or situation. 
The word problems can be made realistic if they can be solved with the accompany-
ing picture or by manipulating the pictures given. The task presented in Fig. 40.5 
using online technology encompasses an important feature of an authentic problem 
beyond the real-life-like context; namely, several solutions are possible, and the 
students can interact with the problem environment. With the scoring procedure, it 
is all the same which of the teddy bears are placed – dragged and dropped – on the 
bed; only the number of teddy bears counts. All of the combinations are accepted. 
The task measures skill level addition up to 10 in a realistic application context.

The task presented in Fig. 40.6 illustrates that it is impossible to split the tasks of 
the three dimensions from each other. It is a mathematical literacy type task, which 
measures number concept and relations and functions in a realistic application con-
text. The aim is to measure students’ ability to follow, recognise, and continue peri-
odically repeating rhythms and movements by detecting similarities in relations 
among objects in an application context. Task scoring is automatised for all of the 

Fig. 40.4 Mathematical reasoning task: recognising and combining number symbols and 
quantities
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Fig. 40.5 Mathematical literacy task: adding up to ten in a realistic application context

Fig. 40.6 Mathematical literacy task: following, recognising, and continuing periodically repeat-
ing rhythms and movements in a realistic application context
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tasks in the item bank, even those with several correct answers. In the present case 
(Fig. 40.6), students had the option of typing their answer for the number of beads 
used in the bracelet in several ways, e.g. using number symbols or letters, using 
small letters or capitals or a mixture of them, or using spaces. All of these possibili-
ties were accepted by the scoring system.

 Items that Assess Disciplinary Mathematics Knowledge

In early mathematics education, among the most effective teaching methods are learn-
ing-by-doing activities. This is also the case for geometry, where students need to dis-
cover three-dimensional forms through different activities. The experience gained 
during these activities provides the foundations and in many cases determines the 
conceptual building work in lower and higher grades. In an online environment, the 
possibilities of manipulation play an important role. The task presented in Fig. 40.7 
illustrates this. Students need to connect three-dimensional forms built out of cubes 
with other three-dimensional forms consisting of the same number of cubes by clicking 
on them to draw the connections. As GeoGebra elements and tasks uploaded from 
GeoGebraTube can be used in the eDia system, students can even rotate and engage in 
a manipulative interaction with these three-dimensional geometric forms.

Fig. 40.7 Mathematical disciplinary task from geometry involving learning-by-doing with the 
possibility of manipulative interaction
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In the first few years of schooling, operations with whole numbers, which build the 
foundations for additive reasoning, form an essential part of mathematics education. 
They include not only the operation of addition but all the knowledge elements for 
comparing quantities and numerosities. By reading the different numbers, sums, 
and differences, students are prepared for the mathematical concepts of addition and 
subtraction. In the process of understanding and interpreting addition and subtrac-
tion, the number line plays an important role. The task presented in Fig. 40.8 inte-
grates the understanding of number symbols, the operation of addition, the comparison 
of quantities and numerosities, and the knowledge of relation symbols. During the 
solution process, students had to click on the name of the child who scored the least 
points and then choose the right relation symbol from the drop- down menus.

 Field Trial and Empirical Validation of the Theoretical Model

We launched a field trial study to ascertain the applicability of computer-based tests 
in regular educational practice for assessing students at the beginning of schooling 
and for the empirical validation of the theoretical model of mathematical knowledge 

Fig. 40.8 Mathematical disciplinary task: integrating the understanding of number symbols, the 
operation of addition, the comparison of quantities and numerosities, and the knowledge of rela-
tion symbols
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introduced above. The objectives of the study were threefold. First, we examined 
the applicability of an online diagnostic assessment system in the field of math-
ematics for students at the beginning of schooling. We then empirically validated 
the three-dimensional model of mathematical knowledge based on research results 
collected with first graders using eDia, the Hungarian online diagnostic assessment 
system. Finally, we examined the relationship between disciplinary content knowl-
edge (MD), mathematical reasoning (MR), and mathematical literacy (ML) and 
answered the research question: how are the three different dimensions of math-
ematical knowledge related?

The sample was drawn from first-grade students in Hungarian primary schools. 
School classes formed the sampling units. 5115 first graders were involved in the 
study. The proportion of girls and boys was about the same.

The instrument was only a part of the whole test battery; it consisted of 48 items, 
which measured MD, ML, and MR in that order. To prevent reading difficulties, 
instructions were provided online using a prerecorded voice. Children had to indi-
cate their answer by using the mouse or keyboard. Testing took place in the com-
puter labs at the participating schools. Test completion lasted no more than 45 min 
(one school lesson). The tests were automatically scored, and students received 
immediate feedback at the end of the testing.

Reliability, time-on-task, and missing and achievement data were analysed to 
test the applicability of the online assessment system by first graders. The Rasch 
model was used to scale the data and draw the three-dimensional item-person map 
of mathematics. We conducted confirmatory factor analyses (CFA) within structural 
equation modelling (SEM; Bollen, 1989) to test the underlying measurement 
model of mathematical knowledge with the three different dimensions: disciplinary 
knowledge, literacy, and reasoning. Bivariate correlations, partial correlations, and 
SEM analyses were employed to test construct validity, that is, the relations between 
the three dimensions of mathematical knowledge.

Why have we conducted confirmatory factor analyses and what is it good for? 
Confirmatory factor analysis is a special form of factor analyses. In the present case, 
it is used to test whether the model based on the empirical data is consistent with our 
understanding of the nature and of the three-dimensional model of mathematical 
knowledge. That is, the objective of confirmatory factor analysis is to test whether 
the data fit a hypothesised measurement model, which is based on the three- 
dimensional theory of knowledge.

Bivariate correlation indicates the numerical relationship, the strength of the 
association between two measured variables, while partial correlation measures the 
degree of this association with the effect of controlling variables removed. Bivariate 
correlations can give misleading results if there is another variable that is related 
to both of the examined variables. This misleading information can be avoided by 
computing the partial correlation coefficient. Both of the coefficients take on a value 
in the range from −1 to 1. The value 0 conveys that there is no relationship, the 
value −1 means a perfect negative correlation, and the value 1 conveys a perfect 
positive association.
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Construct validity describes the degree to which a test measures what it claims, 
indicating how well it really covers the targeted content; whether the scale behaves 
like the theory predicts a measure of that construct should behave. It describes the 
degree to which empirical evidence and theoretical rationales support the adequacy 
and appropriateness of inferences and actions based on test scores (Messick, 1995).

 Applicability of the Diagnostic System in Everyday School 
Practice

The results confirmed our hypotheses. The internal consistency of the mathematics 
test proved to be high both on the test (α = 0.942) and subtest levels (α_MD = 0.89; 
α_MR = 0.83; α_ML = 0.89), so the results are reliable and generalisable. Less than 
0.4%, that is, 18 students out of 5115, were not able to finish the test on time (within 
45 min). As none of them completed more than 70% of the test and reached the third 
subtest, all of their data were deleted from the databases that form the data for the 
5097 students involved in the analyses. Generally, the students managed to finish 
the test within the given timeframe, 1690 seconds on average (sd = 673).

 Scaling and Item Difficulty

Participants’ score distribution on the mathematics test also confirmed the applica-
bility of the online assessment system. The mean achievement was about 50% 
(49.39%, sd  =  23.87). The subtest level achievement distribution changed (M_
md = 42.29, s = 26.66; M_ml = 53.96, s = 26.67; M_mr = 53.18, s = 28.14) and was 
significantly different (t_md_ml = −40.96, p < 0.01; M_md_mr = −33.45, p < 0.01; 
M_ml_mr = 2.35, p < 0.05). The level of standard deviations indicated that the test 
could be used to test the variability of the sample even on a subtest level.

The three-dimensional item-person map (Fig. 40.9) shows the match between 
the item difficulty distribution and the distribution of students’ Rasch-scaled 
achievement estimates for MD, MA, and MR. For any person engaged with an item 
located at that person’s level, the Rasch model routinely sets the probability of 
success on the item at 50% on an item-person logit scale.

The probability of success increases to 75% for an item that is 1 logit easier or 
decreases to 25% for an item that is 1 logit more difficult. The MD (green signs) 
and MA (blue signs) items were well matched to the sample (“x” and number are 
parallel), and with MR some hard and easy items were missing from the test. The 
achievement distribution in MD was the highest; there were more low-developed 
students than in the two other dimensions. Generally, the test was suitable for mea-
suring and discriminating student achievement based on the three-dimensional 
model of mathematical knowledge in first grade in an online environment.
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Gender-level achievement differences changed between the different dimensions. 
Girls’ achievement proved to be significantly higher on the test level (M_girl = 50.36, 
s_girl = 23.46, M_boy = 49.01, s_boy = 23.92, t = −2.011, p = 0.044); however, the 
level of significance might only have been caused by the large sample size. On the 
subtest level, there were no gender-level achievement differences on the MD and MA 
subtests, while significant differences could be detected on the reasoning part of the 
test (t = −2.923, p < 0.01), thus causing the gender-level differences on the test level.

Fig. 40.9 The three-dimensional item-person map of first graders’ mathematical knowledge
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Based on this result, we can conclude that, first, computer-based assessment can 
be carried out even at the very beginning of schooling without any modern touch 
screen technology on normal desktop computers using a general browser and the 
school infrastructure, and, second, the online diagnostic system can be used to test 
students’ mathematics knowledge at the beginning of schooling in a school context.

 Dimensionality and Structural Validity

In validating the three-dimensional model of mathematical knowledge, SEM analy-
ses were outperformed. The three-dimensional measurement model for mathemat-
ics showed a good model fit (Table  40.1), based on Hu and Bentler’s (1999) 
recommended cut-off values. The comparative fit index (CFI) and the Tucker-Lewis 
index (TLI) value above 0.95 and the root mean square error of approximation 
(RMSEA) below 0.06 indicate a good global model fit. As significant and high cor-
relations were found between the pairs of dimensions (rMD_MR  =  0.685, rMD_

ML = 0.749, rML_MR = 0.634, p < 0.001) on a latent level – latent variables are not 
directly observed but are inferred from other variables that are observed (directly 
measured) – within the three-dimensional model, we also tested the one- dimensional 
model with the three dimensions combined under one general factor. With the one- 
dimensional model, the fit indices decreased considerably.

In order to test which model fitted the data better, a special χ2-difference test was 
carried out in Mplus, which showed that the three-dimensional model fitted signifi-
cantly better than the one-dimensional model (χ2 = 3389.111; df = 6; p < 0.001). In 
summary, the three-dimensional model fitted well and better than the one- 
dimensional model. Thus, the disciplinary, literacy, and reasoning dimensions of 
mathematical knowledge were empirically distinguished, supporting our hypothesis.

The bivariate correlations between MD, ML, and MR were high, ranging from 
0.63 to 0.71 (Fig. 40.10). The relationships proved to be similar between MR and 
either ML or MD (r  =  0.63 and 0.64, p  <  0.001, respectively), and they were 
significantly weaker than the correlation between ML and MD (r = 0.71, p < 0.001).

Partial correlations were significantly lower as all bivariate relationships were 
influenced by the third construct (rMR_ML  =  0.32; rMR_MD  =  0.35; rML_MD  =  0.51, 
p < 0.001). Like the bivariate correlations, the partial correlation coefficients between 
MR and either ML or MD were of the same strength (p < 0.001), while the partial 

Table 40.1 Goodness of fit indices for testing dimensionality of mathematics

Model χ2 Df p CFI TLI RMSEA (90% CI) n

Three-dimensional 16955.213 1067 0.001 0.965 0.963 0.054 (0.053–0.055) 5097
One-dimensional 31445.929 1073 0.001 0.931 0.928 0.075 (0.075–0.076) 5097

Note: df degrees of freedom, CFI comparative fit index, TLI Tucker-Lewis index, RMSEA root 
mean square error of approximation, χ2 and df are estimated by WLSMV

40 Technology-Based Diagnostic Assessments for Identifying Early Mathematical…



702

correlation between ML and MD proved to be the highest. This is supported and was 
indicated by the correlation coefficients on a latent level as well (see above).

We assumed that disciplinary knowledge and mathematical reasoning predict 
performance in literacy, the application dimension of mathematics, since we need 
that dimension of mathematics most in everyday life. Thus, we regressed MD and 
MR on ML and estimated the proportion of variance explained. The results showed 
that MD and MR explained performance in ML on a high level (90%) but with a 
different effect (see Fig. 40.11). The residuals of measures of MD and MR were still 
correlated on a moderate level (r = 0.35), indicating common aspects of MD and 
MR that are separable from ML. The model fit well (CFI = 1.000, TLI = 1.000, 
RMSEA = 0.000).

To sum up, our results showed that MD, MR, and ML are highly correlated 
constructs, though not identical. Students’ levels of disciplinary knowledge and 
mathematical reasoning strongly influence and predict achievement in the context 
of mathematical application. That is, if we enhance disciplinary knowledge in 
mathematics and students’ thinking skills, we can expect a stronger transfer from 
the disciplinary to the application contexts. This suggests that beyond factual 

Fig. 40.10 Relations 
between MR, ML, and MD 
(Solid lines depict bivariate 
correlations; dotted lines 
represent partial 
correlations. All 
coefficients are significant 
at the p < 0.001 level)

Fig. 40.11 A structural 
model of mathematical 
knowledge: disciplinary 
knowledge and 
mathematical reasoning as 
predictors of mathematical 
literacy (*p < 0.01)
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knowledge, thinking skills should become an integral part of school agendas 
(de Koning, 2000) and should be incorporated into a broad range of school-related 
mathematical learning activities.

 Conclusions and Further Research and Development

In this chapter, we have presented the theoretical foundations and technological 
realisation of an online diagnostic assessment system in the domain of mathematics. 
The applicability of this system in educational practice was demonstrated in an eco-
logically valid context, when the online tests were administered to a large sample in 
real school settings. The assumption that computer-based assessment is applicable 
even in the early school grades was confirmed. We validated the three-dimensional 
model of mathematical knowledge empirically, having addressed the psychological, 
application, and disciplinary dimensions of knowledge. These results strengthen 
the foundations for a complex online diagnostic assessment platform called eDia, 
which contains about 2000 tasks (8000 items) per dimension for the first six grades 
of primary school.

According to the empirical results, the three-dimensional approach is valid; the 
disciplinary, application, and reasoning aspects of learning are neither independent 
of nor identical to each other. Consequently, each of these three aspects of knowl-
edge must be enhanced at the same level and at the same time at school, and all of 
them must be incorporated into a broad range of mathematical learning activities 
and must not be mutually exclusive. In modern societies, it is neither sufficient nor 
satisfying to focus on only one of these goals, a common tendency in many education 
systems in which the teaching of disciplinary content is favoured.

The system can be used to identify students with atypical development, that is, 
children whose achievement is significantly lower in one of the three dimensions. 
Teachers receive prompt feedback about their students’ development in each of the 
dimensions separately in a comparable way. At this moment, in the phase of system 
development, the system administers the tests having different difficulty levels to 
the students in a random way; it is not enough to provide only percentage-based 
feedback to the teachers, as they are strictly taken not objectively comparable to 
each other. The feedback is based on students IRT-based ability levels in ability 
points, which can be referred to the national mean ability values that is transferred 
to 500 (with 100-point standard deviation) in each grade, which constructs the point 
of reference to the students’ achievement. Beyond the student-level results and 
national standards, teachers receive feedback about their class-level and school- 
level achievement with comparison to the other class-level, school-level, regional- 
level, and strata-level achievements. Our future plan is to put the test administration 
on an adaptive level.

Training programmes adjusted to their specific deficiencies can then be imple-
mented to help them catch up. The efficacy of such a training can also be monitored 
with the assessment system. Further research can be carried out with the diagnostic 

40 Technology-Based Diagnostic Assessments for Identifying Early Mathematical…



704

assessment system to explore the reason for an atypical mathematical development 
and the ways in which the different dimensions of mathematical knowledge can be 
effectively enhanced.
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Chapter 41
Small Group Interventions for Children 
Aged 5–9 Years Old with Mathematical 
Learning Difficulties

Pirjo Aunio

 Introduction

This chapter begins with a description of some important concepts – who are the 
children having problems in mathematics, what do we mean with the concept of 
intervention, what does Responsiveness to Intervention mean, and which interven-
tion features have been found effective for children aged 5–9 years with learning 
difficulties in mathematics. Then, I describe the research and developmental work 
that has been done in Finland on designing web services for educators related to 
mathematical learning difficulties, assessments, and interventions. The two web 
services (LukiMat and ThinkMath) have been developed by two different, but 
related, research teams at the Niilo Mäki Institute (University of Jyväskylä) and 
the University of Helsinki.

 Learning Difficulties in Mathematics

In literature, there are several different terms used in relation to learning difficulties 
in mathematics, such as low performance in mathematics, mathematical learning 
disability, dyscalculia, mathematics disorder, and many more. These various terms 
refer to different definitions (e.g., in terms of various cutoff scores) and different 
origins of the problems ranging from neurological dysfunctions to inappropriate 
opportunities to learn and practice mathematical skills (e.g., low socioeconomic 
status of the child’s family) (Ansari, 2015; Mazzocco, 2009). Geary (2013) suggests 
that children who score at or below the tenth percentile on standardized mathemat-
ics achievement tests for at least two consecutive academic years are categorized as 
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having an MLD (mathematical  learning disability). He further suggests that all chil-
dren scoring between the 11th and 25th percentiles, inclusive, across 2 consecutive 
years are classed as LA (low achievers). The various terms are quite confusing, but 
when we talk about young children just starting their school career, it seems to be 
appropriate to use the terms “low performing” or “mathematical learning difficul-
ties,” thus avoiding the “stronger terms” like “mathematical learning disability” and 
“dyscalculia,” which clearly indicate to the possible neurological dysfunctions in 
the background of severe learning problems in basic arithmetic learning which is 
mostly visible in educational context only after a couple of years of math learning. 
For teachers it is also important to understand that mathematics performance is a 
continuum; there is no definite point where the problem starts.

 Intervention

At the moment the concept “intervention” is a popular term and used with various 
meanings in education. Intervention can refer to the intervention programs which 
are used for children who have learning difficulties to change the originally bad 
learning prognosis (i.e., extra educational support). Intervention can also refer to the 
research design that is used to study children’s development, and aims to investigate 
what factors affect learning. This approach is often used by developmental psy-
chologists. In addition, intervention research design can be used to investigate the 
effects of a particular intervention program, which can then be published and used 
by educators. This approach is common among special education and educational 
psychology research.

The most important way to measure the effectiveness of the educational inter-
vention programs is to study the increase in learning (i.e., achievement) of the chil-
dren as a result of extra practice, hence intervention (Jimerson, Burns, & 
VanDerHeyden, 2007). The recommended and often used intervention research 
design includes a pretest (i.e., baseline measurement) and immediate and delayed 
post-test measurements with control groups. The intervention and control group 
design allows researchers and teachers to investigate whether the children receiving 
intervention develop faster than their peers who are not getting extra attention, for 
instance, in mathematics learning. Researchers use approaches that are a bit differ-
ent to judge whether the intervention program is effective. In general, it is possible 
to say that an intervention program is effective if the children with low performance 
or learning difficulties progress better than their performance control peers. 
Secondly, an intervention program shows better results if the children with low 
performances are able to maintain their head start compared with the control group 
even after the intervention phase has ended. Thirdly, the results would be best, in 
addition to the aforementioned effects, if the low-performing children closed the 
gap to their average performing peers. It is the researchers’ task to explain these 
possibilities of effectiveness measuring to educators who need to make decisions 
about how to support children with learning difficulties (Jimerson et al., 2007).
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However, to determine which intervention program is best for particular children 
is more complex than only deciding how effects need to be detected. When we need 
to make a decision on which intervention program to use, we need to compare pro-
grams and studies with different features. This task needs to be carried out carefully 
as intervention programs and studies can differ in various aspects, which can make 
comparison difficult (Fischer, Moeller, Cress, & Nuerk, 2013; Mononen, Aunio, 
Koponen, & Aro, 2014). The interventions can vary in terms of target children, 
comparison group, aims, setting, duration, mathematical content, conductor and 
professional developmental support, and instructional design features, which all can 
have an impact, individually or combined, on the intervention’s effectiveness 
(Fischer et al., 2013; Mononen et al., 2014).

The aims of an intervention program can be remedial or preventive. Remedial 
intervention is needed when children have already been identified as having a severe 
mathematical learning difficulty (i.e., mathematical learning disability, dyscalculia) 
(Kucian et al., 2011). Preventive intervention programs aim to avoid later learning 
problems. Preventive interventions are often used with younger children in pre-
school and primary grades and aim to assure that children form a basis of funda-
mental skills needed in later learning (Toll & Van Luit, 2014). The focus groups can 
differ in intervention studies; they can be children who are diagnosed with severe 
problems in learning mathematics (Kucian et al., 2011), or children who have low 
achievement (i.e., performance) in mathematics (Toll & Van Luit, 2012), or children 
who are at risk of developing learning difficulties based on their low socioeconomic 
family background (Dyson, Jordan, & Glutting, 2011). Target groups can also differ 
in their age, at the moment most research is done with younger children (preschool 
and primary grades) (Bryant, Bryant, Gersten, Scammacca, & Chavez, 2008; 
Clarke, Doabler, Smolkowski, Baker et  al., 2016; Clarke, Doabler, Smolkowski, 
Kurtz-Nelson et al. 2016), but there also is good progress in interventions for older 
students (Moser Opitz et al., 2016; Xin et al., 2017). There can also be differences 
in intervention settings: interventions can be conducted individually (Fuchs, Fuchs, 
& Compton, 2012; Hunt, Tzur, & Westenskow, 2016), in pairs (i.e., dyads) (Barnes 
et  al., 2016), in small groups of 3–8 children (Bryant et  al., 2008; Mononen & 
Aunio, 2014; Moran, Swanson, Gerber, & Fung, 2014), or with a whole classroom 
(Clarke et al., 2011). In terms of the setting, the intervention can be core instruction, 
thus taking place during regular mathematics lessons and replacing the math cur-
riculum previously used in that classroom (Clarke et al., 2011). Intervention can be 
supplementary, during which children follow the average mathematics lessons and 
on top of that get extra educational support in skills they have a higher need of sup-
port in (Powell et al., 2015). Time practiced is also an important feature (i.e., expo-
sure time for treatment); intervention programs can be short, e.g. a couple of hours, 
or more extensive with a duration of more than 60 hours; also the duration of one 
session can vary a lot, for instance, from 10 to 60 min, and on top of that the number 
of sessions can differ. For instance, Salminen and her colleagues (2015) investigated 
the differences in time used in computer-assisted instruction research in the field of 
mathematical learning difficulties and found them to vary between 2 weeks and a 
whole semester and sessions lasting from 1 to 60 min, and there also appeared to be 
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great variance in number of sessions, from 7 sessions to 50 sessions. Dennis and his 
 colleagues (2016) reported the intervention length in minutes to vary between 400 
and 5400 min in mathematics learning small group interventions for kindergarten-
ers. Mathematical content can also vary. There are intervention programs that prac-
tice only some quite narrow skill, like numerical magnitude comparison and number 
line estimation in a study of Siegler and Ramani (2009), and then there are interven-
tion programs that practice several mathematical skills (Aunio, Hautamäki, & Van 
Luit, 2005; Barnes et  al., 2016). The skills practiced can be very basic skills by 
nature (Siegler & Ramani, 2009), or the focus can be on complex mathematical 
problem-solving (Pfannenstiel, Bryant, Bryant, & Porterfield, 2015; Sharp & 
Dennis, 2017).

Interventions can be led by researchers (Dyson et  al., 2011) or educators 
(Mononen & Aunio, 2014, 2016) (i.e., agents of intervention). If the intervention is 
conducted by the teacher, there is a need for good professional development support 
so that she/he understands the principles and way of conducting the intervention the 
same way as has been the developers’ idea; this way the ecological validity is 
secured (Cary et al., 2017). Interventions can include various instructional features 
such as explicit and systematic instruction (Toll & Van Luit, 2014), use of visual 
representations in the introduction of mathematics ideas at concrete- representational- 
abstract (CRA) levels (Mononen & Aunio, 2014, 2016), or use of computer-assisted 
instruction (CAI) (Salminen et al., 2015). When the effectiveness of interventions is 
studied, it is important to measure the impact related to comparative groups of chil-
dren, so children on similar performance levels are compared with each other in 
similar learning environments; ideally the intervention is the only difference 
between participating children.

In summary, finding the best intervention program to support children is a com-
plex issue. We need more results comparing similar intervention programs applied in 
a similar way, to be able to be sure about the best ways to support children in their 
learning. Maybe good a guideline for educators is to think about what kind of math-
ematical learning problems children have (what skills are the ones the child lacks) 
and then to look at the literature to find out what kind of intervention programs have 
been developed to meet those learning needs. Then it might be sensible for the educa-
tor to check whether the situation (children, learning needs, learning environment) is 
similar to that in which the particular intervention program has been found efficient.

 The Features of Effective Instruction for Children 
with Mathematical Learning Difficulties

There has been fast progress in the development in intervention study methodology. 
At first there were individual intervention studies with quite small samples with 
convenient sampling but with quite many control variable measures. Currently there 
seems to be a high demand of randomized control trials (RCT), large-scale 
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interventions, and replication studies (e.g., Gersten et al., 2015), to produce reliable 
evidence about effectiveness of interventions. The alternative ways to understand 
the effectiveness of interventions in children’s learning are the meta-analyses, 
reviews, and systematic reviews which aim to summarize the previous intervention 
research results. They provide a broader picture of the field of interventions than 
individual studies do. Research reviews have produced some results with interven-
tions for students with learning difficulties in mathematics (Chodura, Kuhn, & 
Holling, 2015; Codding, Burns, & Lukito, 2011; Gersten et al., 2009; Jitendra et al., 
2018; Kroesbergen & Van Luit, 2003; Maccini, Mulcahy, & Wilson, 2007; Zhang & 
Xin, 2012), but only few have concentrated on young children (Dennis et al., 2016; 
Mononen et al., 2014).

In the review of Mononen et al. (2014), the interventions show small to average 
effect sizes in improvement of the early numeracy skills of children aged 4–7. 
Results indicate that different types of instructional design features, including 
explicit instruction, computer-assisted instruction (CAI), game playing, or the use 
of concrete-representational-abstract levels in representations of math concepts, 
lead to improvements in mathematics performance. Therefore, rather than waiting 
to provide effective mathematics interventions at school (e.g., Baker, Gersten, & 
Lee, 2002; Slavin & Lake, 2008), evidence-based programs before the onset of 
school could be used to promote early numeracy skills, especially for low- performing 
children and to children from low socioeconomic environments.

In a recent meta-analysis that included younger children, Dennis et al. (2016) 
found that studies conducted at kindergarten level yielded significantly weaker 
effects than studies conducted at elementary level. Their results also showed that the 
interventions provided for students who had low math performance (at or below 
35th percentile) at the time of identification yielded strong intervention effects com-
pared to children performing above the 35th percentile. In addition, interventions 
were more effective when they were provided by the researchers and researcher-
trained graduate assistants; those provided by teachers and paraprofessionals pro-
duced weaker effects. Dennis et al. (2016) found effective instructional variables to 
be peer-assisted learning and explicit teacher-led instruction (i.e., sequencing tasks 
from easy to difficult, task analysis), but interventions including the use of technol-
ogy were least effective in improving the mathematics performance of students with 
mathematical learning difficulties. In addition, they found that intervention deliv-
ered in form of small group instruction was more effective for students with math-
ematical learning difficulties.

Dennis et  al. (2016) replicated the results, at least partly, in a previous meta- 
analysis concerning group-based interventions for children with mathematical 
learning difficulties (Baker et  al., 2002; Swanson, Hoskyn, & Lee, 1999). These 
studies show that intervention studies that used explicit and strategic instructional 
procedures with students with learning difficulties have been found to have larger 
effect sizes compared to other instructional approaches (Baker et al., 2002; Chodura 
et al., 2015; Gersten et al., 2009; Kroesbergen & Van Luit, 2003; Miller, Butler, & 
Lee, 1998; Mononen et  al., 2014; Swanson et  al., 1999). Explicit interventions 
included, for instance, sequencing of instruction into logical sequences; providing a 
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clear presentation of subject matter, guided practice, and independent practice; and 
evaluating student learning on a regular basis. Explicit instruction often includes 
using a concrete-representational-abstract (CRA) sequence which has been found to 
be an effective instructional feature (Miller et al., 1998; Mononen et al., 2014; Xin 
& Jitendra, 1999). Peer-assisted instruction has been found to be an effective 
instructional feature with younger students (Baker et al., 2002; Kunsch, Jitendra, & 
Sood, 2007). The effects of CAI in interventions for children with learning difficul-
ties in mathematics are controversial, some found support (Kroesbergen & Van Luit, 
2003; Miller et al., 1998; Mononen et al., 2014), and other ones were rather criti-
cized (Dennis et al., 2016; Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009).

Previous meta-analysis (Chodura et al., 2015; Dennis et al., 2016; Jitendra et al., 
2018; Mononen & Aunio 2012a; 2012b; 2012c) has pointed out some weaknesses 
in intervention studies in the field of mathematical learning difficulties. These are, 
for instance, longitudinal effects of an intervention which are hard to study as there 
is no delayed measurement used; there is also not enough information to know how 
children with mathematical learning difficulties are identified (challenges with 
selection and outcome measurements and cutoff criteria).

To know whether the intervention studies published after the latest meta-analysis 
(Dennis et al., 2016) have faced the pointed weaknesses, the author made a small 
review with intervention studies published after 2014  in peer-reviewed English 
journals, conducted in small groups of children, applied with an at least quasi-
experimental design with a control group, and focused on early numeracy (grade 
K-2) and children with learning difficulties in mathematics (Table 41.1). I found 
seven intervention studies published in peer-reviewed English journals, all of them 
had been made in the United States; in half of the studies, some way to randomize 
students in the intervention and control group was used, and they were used as 
supplementary, not replacing the core mathematics instruction. The children showed 
low performance in early numeracy in six studies and possibly also in Clarke, 
Doabler, Smolkowski, Baker et al., (2016); Clarke, Doabler, Smolkowski, Kurtz-
Nelson et al. (2016) in which the teacher identified those children who most likely 
benefit from small group instruction. In three studies the children also had a low-
income family background (Barnes et  al., 2016; Dyson, Jordan, Beliakoff, & 
Hassinger-Das, 2015; Hassinger-Das, Jordan, & Dyson, 2015). Three (Clarke, 
Doabler, et al., 2016; Clarke, Dobler, et al., 2016; Doabler et al., 2016) out of seven 
studies used the ROOTS intervention program developed by Clarke’s research 
group in University of Oregon. All of the intervention studies focus on several math-
ematical skills. Cutoff criteria for low early  performance varied between below 10 
and below 35 percentile in standardized mathematics measurement, resulting in a 
quite big variation in skills in the target group of children. In all of the studies, a 
variety of standardized measurements was used (such as the Number Sense Brief 
Screener; SAT; TEMA-3: WJ-III), but also measurements designed by the research 
group were used (EN-CBM, ASPENS) as outcome measurements. All seven studies 
reported significant intervention effects on children’s early mathematics perfor-
mance. But only three studies reported the delayed measurements results, confirm-
ing the lasting effects of interventions (Clarke, Doabler, et al., 2016; Dyson et al., 
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2015; Hassinger-Das et al., 2015). This small review confirms the pervious findings 
that explicit and systematic small group  interventions have effects on early numer-
acy learning of low-performing students. From the European point of view, it would 
be good to validate the findings also with samples outside the United States. One 
challenge that science face here is that we have to develop ways on how to describe 
our measurements, criteria, and outcome, so that it becomes possible to relate them 
to measurements designed in other countries as well. In some countries we still lack 
good quality standardized measurements to identify mathematical learning difficul-
ties and to follow the development in core skills. We still need more intervention 
studies to report the results from delayed measurements.

 Responsiveness to Intervention Practice in Supporting 
Children with Learning Difficulties

At the beginning of the twenty-first century in the United States and Europe, the way 
to approach individuals with learning difficulties started to change. The focus shifted 
from diagnosing the individual in clinical settings to viewing individuals’ learning 
as part of his or her learning context and emphasizing the early identification of 
learning difficulties to provide early interventions (i.e., Responsiveness to 
Intervention, RtI) (Hallahan, Pullen, & Ward, 2013). Responsiveness to Intervention 
can be seen as a pedagogical problem-solving model, whose most important goal is 
to provide all children with the most efficient instruction and intervention according 
to their needs (Jimerson et al., 2007). The instruction and intervention are mostly 
divided into three levels of support: Tier 1, Tier 2, and Tier 3 (Riley-Tillman & 
Burns, 2009), but other tier systems also exist (Fuchs, Fuchs, & Schumacher, 2011). 
Increasing levels mean that the focus becomes more individualized, the support 
becomes more intense, and the support is provided over a longer period of time 
(Riccomini & Smith, 2011). Bryant et al. (2008) describe the relations between tiers 
so that Tier 1 consists of evidence-based core instruction for all children, Tier 2 
includes supplementary intervention and ongoing progress monitoring for children 
who struggle with learning, and Tier 3 is designed for children who are struggling so 
much that they require intensive intervention. Previous research shows that research- 
based intervention programs that are provided with care and whose effectiveness has 
been investigated produce better learning results in the classroom than non- research- 
based interventions (e.g., Jacob & Parkinson, 2015; Slavin & Lake, 2008).

In general, intervention programs can be used on classroom level, small group, 
and individual level. The most important difference between them is their focus. 
The classroom interventions mostly try to raise the level of a whole group of learn-
ers; these can be called Tier 1 interventions if RtI is applied. The need for such 
interventions comes from the information about, for instance, the differences 
between schools and school districts. Small group interventions are designed to 
meet the specific learning needs of children who have learning difficulties. Individual 
interventions focus on learning difficulties of an individual student. Individual and 
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small group interventions are often used in Tiers 2 and 3 if RtI is applied. Small 
group interventions offer good possibilities for children to work together and prac-
tice skills that they have problems with, utilizing tasks designed to their level of 
knowledge and needs. When there are only 4–8 children in a group, it is easier for 
the teacher to focus on children’s learning; she is able to guide and coach their learn-
ing. In small groups, there is also a possibility for the teacher to teach the target skill 
or topic and then let the children practice together and individually. The main chal-
lenge with individual interventions is the demand of resources; at the moment 
schools do not have enough resources to offer individual interventions for children 
who need support.

 Finnish Web Services for Educators

In Finland there has been a positive tendency over the last 10 years to boost teach-
ers’ levels of knowledge concerning individual learning differences in early reading 
and mathematical skills. The emphasis has been mainly on the early identification 
of learning difficulties and early intervention, with the aim of moving toward the 
Responsiveness to Intervention model and general (Tier 1), intensified (Tier 2), and 
special educational support (Tier 3) in the national education system (National core 
curriculum for basic education (2014/2016)). The nationwide attempts in the field 
of early mathematics funded by the National Ministry of Education and Culture 
have focused on producing evidence-based knowledge for educators and providing 
them with assessment tools and intervention programs to be used with children 
struggling with learning. The author have been part of two teams that have designed 
two Web services for educators, namely, LukiMat (www.lukimat.fi) and ThinkMath 
(http://blogs.helsinki.fi/thinkmath/in-english/). From these Web services, 
ThinkMath focuses on small group intervention programs; thus it is in focus of this 
chapter; LukiMat has been described in another paper (Aunio, 2016).

ThinkMath Web service development started at the University of Helsinki in 
2011. It provides educators with hands-on intervention materials to be used with 
children, aged 5–8  years, who have problems with learning early mathematical 
skills. The main idea behind ThinkMath was that educators needed evidence-based 
materials for offline use, as there was a significant lack of computer devices for 
young children to use in early childhood settings or in early primary school grades. 
ThinkMath delivers intervention materials and knowledge to educators. There is a 
knowledge base with evidence-based information concerning (1) mathematical 
skills development and learning difficulties, (2) thinking skills development, (3) 
motivational issues related to learning, (4) executive functions relevance for learn-
ing, and (5) (special) educational interventions. In the knowledge base, we have 
provided short videos to explain the main ideas to educators as clear and fast as 
possible. The Material section offers group-based intervention materials for practicing, 
for instance, mathematical skills with children in small groups.
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The base for the development of mathematics knowledge base and materials 
was the core factor model of the mathematical skills in children aged 5–8 years 
(Aunio & Räsänen, 2015), which we originally developed for LukiMat. The model 
aimed to be a working model for the educators by presenting them with an over-
view of the most important skills that develop in early childhood and, secondly, 
aimed to make educators aware of the individual differences in early mathematical 
skill development. This model was based on a systematic literature review of lon-
gitudinal studies investigating mathematical development in this age group. We 
also analyzed the assessment batteries designed for identifying children with 
potential learning difficulties in mathematics. We were able to categorize skills into 
four main groups of numerical factors that are most crucial for the development of 
mathematical skills: symbolic and nonsymbolic number sense, understanding 
mathematical relations, counting skills, and basic skills in arithmetic (Aunio & 
Räsänen, 2015). In the ThinkMath materials, we focused on practicing these skills 
with children performing low.

The design related to pedagogical characteristics followed the findings in the 
research literature (Mononen et  al., 2014). In the ThinkMath mathematical skill 
intervention programs, explicit teaching was one of the main guidelines along with 
several ways to practice the skills in focus (e.g., Gersten et al., 2008, 2009). In line 
with these recommendations, each lesson consists of a teacher-guided activity to 
model a new mathematical learning concept or strategy as well as guided and peer 
activities (e.g., hands-on activities with manipulatives or card and board games 
based on the current topic). At the end of the lesson, there is a short, paper-and- 
pencil individual activity. Another general feature is that mathematical ideas are 
represented following the concrete, representational, and abstract levels, thus giving 
meaning to abstract concepts by using visual representations (e.g., cubes, bundles of 
sticks, dot cards structured in tens and hundreds) (e.g., Mononen, 2014). The teacher 
manual includes 12–15 lesson plans of 35–45 min each. The lesson plans include 
specific instructions for teachers to follow in each activity. The manipulatives are 
made of low-cost, everyday materials found in every classroom, combined with 
printable materials (e.g., dot and place value cards) included in the manual. During 
the development of the intervention materials, we worked closely with educators 
and investigated the effects of these intervention programs on low-performing chil-
dren through a quasi-experimental, pre-post measurement with intervention and 
control groups in different age groups (Mononen, Aunio, & Leijo, in revision; 
Mononen & Aunio, 2014; Mononen & Aunio, 2016).

 Studies with ThinkMath Intervention Programs

The second-grade intervention study (Mononen & Aunio, 2014) was done with 88 
children (M age 8 years and 2 months) from 4 classes in schools located in 2 south-
ern Finnish cities. The intervention program used in this study was Improving 
Mathematics Skills in the Second Grade (Mononen & Aunio, 2012a). It aims to 
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practice number-word sequence skills, counting, and conceptual place value 
 knowledge in the 1–1000 range, following the guidelines of explicit instruction. 
Children’s mathematical skills were measured with the Assessment of Mathematics 
Skill in the Second Grade (AMS-2) (Aunio & Mononen, 2012a). It is a paper-and- 
pencil test and measures (1) the number of forward and backward word sequence 
skills; (2) numerical relational skills associated with base 10 and place value 
knowledge; (3) addition and subtraction word problems; (4) multi-digit addition 
and subtraction calculations with number symbols, all within a 1–1000 range; and 
(5) addition and subtraction facts in the 1–20 range (40 items, 2  min’ time). 
Children’s thinking skills were assessed using the Assessment of Thinking Skills in 
the Second Grade (Hotulainen, Mononen, & Aunio, 2012a). Reading comprehen-
sion and fluency skills were measured using a standardized reading test for primary 
grades (Lindeman, 2005). Mathematical skills were measured three times: shortly 
before the intervention, immediately following the intervention, and 3 months after 
the intervention. The thinking and reading skills were assessed at the first of the 
three time points. Children were divided in the low-performing intervention group 
(n = 11), the low-performing control group (n = 13), and the typically performing 
control group (n = 64 children). The intervention program lasted 6 weeks, and there 
were two 45-min intervention sessions per week. The results demonstrated that the 
low-performing intervention group made significant improvements in mathematics 
whole scale and addition and subtraction facts but did not show significantly better 
scores compared to the low-performing control group. In addition, neither the 
intervention children nor the control children were able to perform at the same 
level of their peers following the intervention. There was no difference between 
low performance children in the control and intervention groups in terms of their 
thinking and reading skills. Although there were not many scientifically significant 
results, there was a trend to be seen that when children with low mathematical 
skills received extra support, their skills developed, but when the intensified instruc-
tion ended, so did the development of their skills. This was especially true of arith-
metical fluency skills.

Mononen and Aunio (2016) investigated the impact of ThinkMath intervention 
for Finnish first graders (N = 151, M age = 7 years and 2 months) with low numeri-
cal performance. The children were from nine classrooms located in three cities of 
Southern Finland. This program focused on increasing the counting skills knowl-
edge, including the number sequence and enumeration skills in number range 1–20 
(Mononen & Aunio, 2012b). The study applied a quasi-experimental design using 
control groups. The effects of intervention were examined using the Assessment of 
Mathematics Skills in the First Grade (Aunio & Mononen, 2012b). This  group- based 
paper-and-pencil test includes mathematical tasks in the range from 1 to 100: (1) 
mathematical relational skills (i.e., number comparison), (2) counting skills (i.e., 
verbal and object counting), and (3) word problems (i.e., verbal addition and sub-
traction problems). Single-digit addition and subtraction facts in the range from 1 to 
20 are also assessed (within a 2-min time limit). A sum score for the subscales 1–3 
(i.e., a combined scale) was used to identify the low-performing children. In addi-
tion, the relations between inductive reasoning (Assessment of Thinking Skills in 
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the First Grade by Hotulainen, Mononen, & Aunio, 2012b), language (reading 
 fluency Allu by Lindeman, 2005; listening comprehension Ytte test by Kajamies, 
Poskiparta, Annevirta, Dufva, & Vauras, 2003), and mathematical skills were exam-
ined. The intervention program was provided in small groups 12 times during 
8 weeks; 1 session lasted about 45 min. The development of intervention children 
(n = 11) was compared to the development of low-performing (n = 26) and typically 
performing (n = 114) children. The results showed significant effects of interven-
tion, as the children in the intervention group made significantly greater gains in 
their mathematical performance from Time 1 to Time 2, compared with the low- 
performing control and typically performing children. One important finding was 
that the children with low performance in mathematical skills showed lower perfor-
mance also in their inductive reasoning and reading fluency skills than did children 
with typical performance. This means that when supporting these children, we also 
need to think about how to support children’s thinking skills early on. The main 
conclusion is that a relatively short counting skill intervention that applied explicit 
teaching showed promising effects in improving low-performing children’s mathe-
matical performance as a supplemental instruction.

In our kindergarten intervention study (Mononen, Aunio, & Leijo, in revision), 
the children in the low-performing group were studied in more detail. The children 
in this group were children whose mathematics performances were below the 10th 
percentile (i.e., very low performing, n  =  20) and children whose mathematical 
performances lay between the 11th and 25th percentiles (i.e., low performing, 
n = 18). The results were collected with a scale (Aunio & Mononen, 2012c) measur-
ing mathematical relational skills, number-word sequence skills, and counting skills 
which showed that the number of children who reached an average level of perfor-
mance at the posttest stage was higher among the group of children with low perfor-
mance (67%) versus those with very low performance (35%) (Mononen, Tapola, & 
Aunio, 2015).

Westerholm and Aunio (submitted) investigated the effects of ThinkMath inter-
vention for Finnish as second language kindergarteners. There were nine children (M, 
age 6 years 8 months) participating in the study from one metropolitan area school.

In this study we used ThinkMath: mathematical relational and counting skill 
intervention program (Mononen & Aunio, 2012b) as was used in the study of 
Mononen and Aunio (2016). Children practiced making comparisons on quantities 
and numbers using related concepts such as more and less and counting number 
sequences orally. In addition, counting objects and matching them with number 
words and number symbols was practiced. Based on the research literature concern-
ing the learning challenges of children with the instruction language as a second 
language (Arnold, Fisher, Doctoroff, & Dobbs, 2002; Clements & Sarama, 2008; 
Codding, Chan-Iannetta, Palmer, & Lukito, 2009; Fuchs et al., 2008; Fuchs, Fuchs 
ym., 2008; Klein, Starkey, Clements, Sarama, & Iyer, 2008; Mercer & Sams, 2006; 
Starkey, Klein, & Wakeley, 2004), we added motivation (i.e., prize), explaining 
mathematical talk in the intervention program. Children’s mathematical skills were 
measured with Early Numeracy Test (Van Luit, Van de Rijt, & Aunio, 2006) before, 
immediately after, and five weeks after the intervention ended. The intervention 
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program lasted 8  weeks having 35–75  min sessions twice a week. The results 
showed that the ThinkMath intervention program with added motivating features 
and explicit mathematical talk was a useful way to support the early mathematics 
learning of children that had Finnish as a second language and low mathematical 
performance in kindergarten.

ThinkMath service has risen interest outside Finland as well. We now have two 
international research projects, one in South Africa (e.g., Aunio, Mononen, Ragpot, 
& Törmänen, 2016) and one in Norway (https://thinkmathglobal.com). The most 
important scientific question still is, if it is possible to enhance the early mathematics 
learning of children with low performance with ThinkMath small groups interven-
tions. In South Africa the learning context is quite different to Finland; it will be 
interesting to see what kind of challenges the differences in teacher education, 
classroom organization, and children’s background offers us. Our project in Norway 
will increase our knowledge about how well our originally Finnish programs work in 
system where school starting age is different and teacher education is less research 
based than in Finland.

 Conclusion

The existing intervention studies, meta-analysis, and reviews have shown that it is 
beneficial to use explicit and structured small group mathematics interventions with 
low-performing young children. The work on Finnish LukiMat and ThinkMath 
projects have not only shown that it is possible to develop evidence- based materials 
and that educators appreciate them but also that Web services are a very efficient 
way to deliver such information and materials. Even though it is challenging to 
obtain significant and lasting learning effects with intervention studies in natural 
educational settings, these studies are essential in providing educators with evi-
dence-based materials. In the future we will need more research reviews and large-
scale intervention studies to be able to understand how to support children with 
various age and needs in mathematical learning.
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Chapter 42
Perspectives to Technology-Enhanced 
Learning and Teaching in Mathematical 
Learning Difficulties

Pekka Räsänen, Diana Laurillard, Tanja Käser, and Michael von Aster

Today, technology is a part of almost every aspect of life of those living in a devel-
oped country. People are constantly “online” and have an easy access to information 
and services. The speed of change has been high. Therefore, predicting how our 
digitalized life will change within the next 5 to 10 years could only go wrong. One 
new innovation in battery or processor chip technology will change totally how the 
future will look. Innovations appear nearly every day. Education is one of the areas 
where this rapid development of technologies has opened up a lot of new possibili-
ties, but it has also raised fears in the same way as when schoolbooks were intro-
duced 100 years ago. There were fears that introducing study books at school would 
destroy children’s abilities to memorize (Wakefield, 1998). But despite the fears, 
now that it is cheaper to buy tablets for children instead of printing books for them, 
the discussion is changing more toward questions about the key elements of the 
pedagogies inside the technologies.

It would be difficult to cover all possible ways in which technology-enhanced 
learning (TEL) is and could be used at schools or homes for learning, collabora-
tively or individually, and therefore we only take the reader on a short global trip to 
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consider the barriers and possibilities there are at the moment in using TEL in 
 mathematics education and learning. Our focus is especially on using TEL tools to 
support children with low performance in mathematics. Technology is not only used 
for educational applications; there are plenty of computer-assisted tools being used 
to organize and plan the education system, as well as tools for assessment, and in 
research on mathematical skills and disabilities. In addition, there are more and 
more computer-assisted tests, tools for brain imaging, and technologies affecting 
brain activations that have increased our understanding about the mathematical 
brain. However, these methodological and technical advancements are out of the 
scope of this chapter. Hence, we concentrate on technologies directed toward 
advancing learning and the pedagogies of mathematics in the classrooms (Fig. 42.1).

The majority of the chapters in this book tell us that the mathematical learning 
disabilities (MLD) are by definition something special: standard classroom educa-
tion is not enough for these children (see Landerl, Chap. 2, Santos Carvalho & Vitor 
Geraldi Haase, Chap. 22, this volume), and alternative pedagogies should be used. 
However, teachers have a limited amount of knowledge and information about 
effective and research-informed pedagogies on MLD. Additional knowledge is 
needed to understand the phenomena, how to identify these children in the class-
room, what kinds of alternative ways there exist, and how to use them to support the 
children in this special group. Technology can offer globally accessible media to 
inform teachers and other professionals about MLD on a level never seen before. 
Therefore, we will raise the issue of teacher professional education as one of the key 
global issues where TEL tools will play a significant role.

Fig. 42.1 Current questions in usage of TEL at schools
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The second story in this book is that there is a huge variety in mathematical skills 
in general and also within the group of children with MLD. There is a variance in 
both domain-general and domain-specific skills, both affecting learning and teach-
ing and requiring very individual pathways for development. Partly, this variation in 
individual skills is connected to differences in brain functioning (see, De Smedt, 
Peters, & Ghesquière, Chap. 23, this volume) and partly to learning environments 
and pedagogies (see Gaidoschik, Chap. 6, this volume). The brain development of 
the frontoparietal numerical network of the children with MLD seems to function 
differently than in typically developing children (McCaskey et al., 2017). However, 
two recent studies with computer-assisted training showed that abnormally func-
tioning connectivity in MLD will be normalized on the neuronal level by rather 
short, intensive training (Iuculano et  al., 2015; Michels, O’Gorman, & Kucian, 
2017). This indicates that at least under the age of 10, children with MLD do not 
develop compensatory mechanisms to reach the same level of proficiency, but the 
training offers them the means to build representations that are similar to those of 
their typically performing peers.

Technology offers many possibilities for this kind of very individualized inten-
sive training that has not been possible to conduct in large classrooms. However, 
before we discuss the different types of interventions, we need to look at the global 
questions in ICT in classrooms. One of them is access to technologies.

 Global Inequalities in Access to Learning Technologies

An access to electricity is one of the key issues for educational equality today. The 
United Nations Department of Economic and Social Affairs reported that even 
though the access to electricity has more than tripled from 1990s still “about 90 
percent of children in Sub-Saharan Africa go to primary schools that lack electricity, 
27 percent of village schools in India lack electricity access, and fewer than half of 
Peruvian schools are electrified. Collectively, 188 million children attend schools 
not connected to any type of electricity supply” (UNDESA, 2014).

According to UNDESA the educational benefits of electrification are clear. 
Lighting extends the studying hours by enabling longer school days, more reading 
time, and possibilities to do homework. It also allows teachers to prepare learning 
materials after the school days. Electricity enables both students and teachers to use 
modern mass media tools such as radio, television, computers, and the Internet. 
Likewise, it improves the quality of the basic circumstances, such as sanitation and 
health. Electricity in schools is needed for many of the basic tools used daily in 
developed and developing countries: audiotapes, projectors and slide projectors, 
printers and copy machines, digital cameras, radios and television, phones, and the 
ICT technologies – computers, tablets, mobile phones, and the Internet. Therefore, 
it is not a surprise that the electrified schools outperform non-electrified schools on 
crucial  educational indicators and that electricity enables broader social and 
 economic development of the communities (see, e.g., UNESCO, 2014a, 2014b; 
Zhang, Postlehwaite, & Grisay, 2008).
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As always when there is development in access to technologies, inside the big 
positive picture, the data from individual cases show contradictory results. While 
some studies on access to electricity do find a positive effect, some find no effect, 
and some even negative effects. For example, when we look at the effects of bring-
ing electricity to the area, some studies do find an effect in an increase in time spent 
studying (Barron & Torero, 2014; Khandker, Samad, Ali, & Barnes, 2012), but 
some do not (Bensch, Kluve, & Peters, 2011). Squires (2015) actually found that 
access to electricity in rural areas in Honduras increased the school dropout and 
produced less attendance to the school due to increased “need for child labour” at 
homes. Whatever the question with technology, just having it does not guarantee 
positive outcomes.

From 2015 in developing countries, more households had a mobile phone than 
they had electricity or running water (World Bank, 2016). Mobile devices, with 
their increasing affordability and storage, can contain a vast amount of educational 
content, including reading and learning materials and games targeted to on a range 
of ages. In addition, unlike computers, handheld mobile devices require substan-
tially less electricity or infrastructure. Due to the advantages in solar power, mobile 
devices are capable of reaching even the most marginalized communities, and 
research has shown mobile learning devices have the potential to widen access and 
supplement education in remote and underserved areas of the world (Kim et al., 
2012; Ling, 2004). In their meta-analyses Sung, Chang, and Liu (2016) showed that 
the effect size of implementing mobile devices into classroom education was sig-
nificantly more effective than teaching methods that only use pen and paper or desk-
top computers. For mathematics the effect size was 0.34 including different types of 
approaches from cooperative learning to games. That is about the same level as the 
other meta-analyses have given to using TEL in mathematics education (summa-
rized in Räsänen, 2015).

Still only one in seven persons in the world has access to a high-speed Internet 
connection. High-speed connections are needed for the rich educational contents 
already available on the Internet. The situation in access to TEL tools via the Internet 
is changing rapidly. However, there is only a limited amount of up-to-date world-
wide information about the current situation of ICT at schools. UNESCO has 
recently started a project to collect such information (http://uis.unesco.org/).

 Online Learning, Virtual Worlds, and Social Learning 
Environments

All teachers, most parents, and some students know that poor mathematical skills 
will affect chances in life. In fact, poor mathematical skills are more of a handicap 
in life than poor reading (Bynner & Parsons, 1997; Parsons & Bynner, 2005). The 
problem for teachers and parents is to identify the causes of the MLD. It is often 
assumed that children who cannot learn even simple arithmetic must be low intel-
ligence (just as it used to be assumed that children who were unable to learn to read 
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must be stupid). In fact, intelligence has little to do with the ability to learn arithme-
tic. Almost any child can. However, there is a small proportion of children who are 
unable to learn arithmetic in the normal way. These children are dyscalculic. That 
is, they show quite early and specific cognitive deficits, just as we now know, as well 
as dyslexics with different specific deficits making it more difficult to acquire read-
ing skills (Vanbinst, Ansari, Ghesquière, & De Smedt, 2016). We can now easily 
distinguish children with dyslexia from children with other difficulties that prevent 
the normal acquisition of reading, and we can now distinguish dyscalculia from 
other causes of poor math attainment. However, very few teachers or parents or 
educational psychologists, not to mention education authorities, have heard about 
dyscalculia and therefore have never been trained to identify it or to provide the 
specialist help needed for the people concerned.

One way of spreading the word about the MLD and dyscalculia is to use a tech-
nology that is accessible to most of the key professionals in many developing coun-
tries, namely, the Internet. Technology works best by responding to the most 
challenging problems, and education has plenty to offer. By 2025, the global demand 
for higher education will double to ~200 m per year, mostly from emerging econo-
mies (NAFSA, 2010). It has been estimated that there is a need for millions of new 
teaching posts for universal primary education (UNESCO, 2014b), the largest 
growth being in sub-Saharan Africa.

One of the big challenges is how to reach the children who need good primary 
education and, especially, how to train teachers to spot MLD as early as possible. 
There are straightforward tests that have already been standardized in many coun-
tries for identifying the children at risk and models of how to build personalized 
learning plans, including the use of interactive games that could be applied. Many 
of these games are digital, adaptive, and available widely at low cost. This is an 
example of how teachers – and other professionals – globally could make use of an 
educational technology resource that has been created and developed in one place. 
A different technology-enhanced method, for developing teachers on the large 
scale, is to create massive open online courses (MOOC), and a start has been made 
on this, aimed at primary teachers (Laurillard, 2016a, b).

An international course team working in partnership with UNESCO developed a 
Coursera MOOC on “ICT in Primary Education,” which reached ~10,000 teachers 
around the world, over 1200 of whom were located in low-income countries (see 
Laurillard, 2016a, b), showing that such an approach is not confined to reaching 
only the rich countries. A more niche course on Primary Education, dyscalculia and 
other mathematics disabilities, with targeted marketing, could certainly provide col-
laborative professional development for teachers and leaders in most of the coun-
tries of the world.

To generate the network of development in the most underdeveloped areas, one 
possibility could be that each of these MOOC-participating teachers could work 
locally to engage 25 teachers in collaborating on using the course resources to 
develop improved localized classroom methods at regional level. To reach the chil-
dren in need, each of those teachers could then set up support groups of eight adults 
in villages, townships, and communities, working together to train them to become 
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more able teachers. This multiplies up to hundreds of thousands of teachers. The 
large-scale technological capability is only needed at the first stage. After that the 
local systems can be used, making use of the cascaded digital resources and innova-
tive ideas. However, for the collaborative approach to be preserved, it is important 
for the teachers experimenting with their localized solutions to pass their ideas and 
experiences back up the chain.

Increasingly, some of the most challenging contexts – remote rural areas, urban 
slums, and border cities – are beginning to have access to mobile devices and con-
nectivity. It is not the technology that makes it difficult, but the organization and 
support for the human systems in the network. In the urban slum areas, for example, 
adults set up their own private schools where there are too few government schools, 
but they are unofficial, so they have no support or access to professional develop-
ment (Oketch, Mutisya, Ngware, & Ezeh, 2010). Providing this kind of support 
could now be affordable but would still have to overcome the political barriers.

This is where digital technology could make the critical difference by offering 
the means for collaborative professional development. The two-way communica-
tion and sharing of designs, products, and localized solutions is a way of building 
professional knowledge of effective practice. This is not the typical trajectory of 
pilot – rollout – fade. For example, Khan Academy, an educational website with 
thousands of free video lessons on various topics, especially illustrating ways to 
present mathematical content from basics to upper classes, has more than ten mil-
lion users monthly. And it is not only students using it, but also teachers, to improve 
their pedagogical skills.

It is worth asking, for any big challenge, “how can technology help?” because 
digital tools and environments operate on the very large scale and vastly increase 
efficiency and scope. MOOCs are an opportunity for the academic community to 
think through how such technologies could serve our moral imperative to achieve a 
wider reach and greater contribution to society. A new model of collaborative pro-
fessional development is one way to do that.

In the long run, we can expect that the Internet access will harmonize the peda-
gogies used in mathematics teaching and interventions on MLD globally. Some of 
the models of effective, research-informed methods used to support children with 
MLD in top performing schools can be localized and mimicked in rural schools and 
in less advanced schools. Most of the pedagogical methods do not require additional 
resources; the critical issue is how concepts are presented and what kinds of ele-
ments do the interactions between the teachers and students contain. As important 
as it is to use TEL to support the students, the effects can be multiplied via support-
ing teachers in their work.

 Availability: The Surge of Learning Games

Shuler, Levine, and Ree (2012) calculated 6  years ago that there were approxi-
mately half a million apps available on the Appstore. In the education category of 
the apps, general early learning was the most popular subject (47%) and 
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mathematics the second (13%). From that the total amount of apps has raised to 
over two million with educational apps reaching soon 200,000 individual apps or 
games, and the comparable store for Android machines shows even larger figures. 
However, there is no clear criteria what an educational app means in these distribu-
tion channels. In their discussion of mathematics apps, Pelton and Pelton (2012) 
noted that “while some are commendable, almost all of the rest are simple flash-
cards, numeric procedures, or mobile textbooks. Very few currently available apps 
have engaged best practices by integrating visual models to support sense-making.” 
The ease of access and the fact that the majority of these apps and games are low 
cost, often totally free, mean that they are readily available to the general popula-
tion, but the question remains, what quality they have and what is being learned by 
using these apps. There are relatively few applications that are built on research or 
have an evidence-based background (Doabler, Fien, Nelson-Walker, & Baker, 2012; 
Young et al., 2012). The What Works Clearinghouse (WWC, see https://ies.ed.gov/
ncee/wwc/FWW/) collects information about promising intervention programs 
including TEL applications, but only a few of them have any research that could be 
used to evaluate the program efficacy.

 Usage: Does Using TEL Tools Help to Produce Better 
Learning?

With increased use of TEL at schools, the question of effectiveness has been in focus 
of discussions during the last years. The answer to the question depends on the data 
and the design used. The often-found result from individual controlled studies (e.g., 
Carter, Greenberg, & Walker, 2017) to the international comparison datasets (OECD, 
2015) has been that increasing computer usage in studying at schools does not per se 
produce better learning. This discussion is actually old. Already Clark (1983; Kozma, 
1994) stressed that the content is more important than the media that is used to deliver 
it. They argued that separating media from educational method is an unnecessary 
schism which does not produce real new insights in education.

Nevertheless, the question is still important to educational policy-makers. 
Technologies require large investments but age very quickly. Are these investments 
worth doing, or could it be more beneficial to invest in something else? In this ques-
tion, we often turn to the international datasets. However, those have not shown 
promising results on these investments, but the complexity of interpreting these 
results is clear. If we look at the results from international datasets, like PISA 
( illustrated in Fig. 42.2), and compare the country averages in mathematics and the 
number of students that have used computers in the classroom to do mathematics 
during the last month before the PISA assessment, we find a negative correlation 
(r = −0.36). The more students there were who had used computers in a math class, 
the lower the respective country’s average score. The negative correlation seems to 
have two roots. Firstly the majority of the high-performing countries (e.g., Korea, 
Japan, or Finland) have taken a slow start in moving to digitalized education, and 
secondly, there are some below average-performing countries which have invested a 
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Fig. 42.2 The percentage of students who had used computers in mathematics lessons during the 
month prior to the PISA test in 2012 contrasted against (a) the country average in PISA 2015 
(trend line r = −0.36, p < 0.03) and (b) change in the average score from 2012 to 2015 (trend line 
r = 0.41, p < 0.01). (Source of the data: OECD, 2015)
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lot to using TEL in education. If we remove these extremes from the equation, the 
negative effect disappears. Also, the within-country data shows a nonlinear effect: 
students not using or using a lot of computers in classrooms do not perform as well 
as those who use computers moderately. Moderate usage seems to indicate better 
pedagogical considerations when and where the TEL is used. An alternative look on 
exactly the same data leads to another result. If we change the level of performance 
to improvement in average performance during the last 3 years, the correlation turns 
into positive (r = +0.41). It means that more usage of computers in a math class turns 
to better results 3 years later. Why is this? When we look at the gain score from the 
latest PISA studies (i.e., here the change from 2012 to 2015), we notice that many 
countries that had invested a lot in using ICT in education (e.g., Denmark, Sweden, 
Uruguay) have shown low average scores in 2012 but rapid improvement and at the 
same time many high-performing countries (e.g., Korea, Taipei, Finland) showed the 
largest declines. How much these changes are connected to ICT or whether they are 
connected to other changes in educational cultures and to other investments in educa-
tion require more detailed analyses from various national and international datasets.

The effectiveness of computer-assisted interventions has been studied since the 
1960s. This offers us another set of data to look at the value of investment to TEL 
tools in mathematics. There are several meta-analytic studies (summarized in, e.g., 
Räsänen, 2015) showing that there have been three most-gaining subgroups across 
the years of using TEL: (1) younger children show a larger gain than older children, 
(2) children with special needs seem to show more benefit than children in studies 
with more heterogeneous samples, and (3) studies where TEL has been used as 
supplementary education instead of replacing the teacher have shown better results 
(e.g. Lavin & Sanders, 1983; Li & Ma, 2010; Niemiec & Walberg, 1987; Slavin & 
Lake, 2008). In addition, the studies conducted in developing countries tend to show 
higher effectiveness than those done in developed countries. These results indicate 
that it seems to be easier to produce better results when the starting level is lower, 
especially if the reasons for a lower starting level have been poor access to educa-
tion or low SES and not cognitive factors. Children with cognitive deficits or math-
ematical learning disabilities have only recently become a focus of research. 
Chodura, Kuhn, and Holling (2015) looked specifically at interventions for children 
with MLD. They found a similar level of effectiveness for computer-assisted and 
face-to- face interventions. These two are often contrasted: While some stress  the 
importance of direct contact and social interaction in the learning process, one of 
the most commonly presented reasoning on using TEL tools has been that the gami-
fication brings engagement and motivation into the learning that the standard class-
room or special education lacks.

 Affective and Motivational Factors

Educational TEL programs are typically designed in a format of a game. The serious 
games, as educational games are often called, are hypothesized to address both the 
cognitive and the affective dimensions of learning (O’Neil, Wainess, & Baker, 2005), 
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to enable learners to adapt learning to their cognitive needs and interests and to 
provide motivation for learning (Malone, 1981). However, the assumption underly-
ing the motivational appeal of serious games is based on the addictive nature the 
commercial computer games have. However, the results of a meta-analysis show 
that serious games are not more motivating than other instructional methods 
(ES = 0.26, a nonsignificant difference; Wouters, Van Nimwegen, Van Oostendorp, 
& Van Der Spek, 2013).

An essential difference between leisure computer games and serious games is 
that playing for entertainment is chosen by the players and played whenever and 
for as long as the player wants, whereas with the serious games, the playing and 
playing time are defined by someone else (e.g., teacher, game developer, 
researcher). In addition, logic of effort needed and cognitive load in entertainment 
and educational games are different. Educational games typically aim to increase 
the difficulty and cognitive load systematically to match the players current skill 
level to boost performance (about the adaptive logic inside math games, see, e.g., 
Räsänen et  al., 2015), while in entertainment games, the cognitive load varies 
more freely and does not aim to maximize the performance level. Therefore, there 
is no strong evidence that gamification of TEL in mathematics education would 
produce by itself stronger and long-lasting internal motivation and that it would 
produce better learning that way.

 Contents: What Is Inside the Intervention Games for MLD?

There have been two content areas that have dominated the studies with TEL games 
targeted to children with MLD or low performance. The first has been the key symp-
tom area in MLD, the lack of arithmetic fluency. This approach dominated the first 
decades of research with flashcard-type of training and its variants to improve mem-
ory retrieval of arithmetic facts. The rise of ideas of number sense as a core diffi-
culty behind the difficulties to learn the basic arithmetic skills (e.g., Piazza et al., 
2010) has led to focus the interventions to either symbolic or nonsymbolic number 
sense and to games combining arithmetic to number line representation to illustrate 
the distances and relations between numbers. The latter approach has dominated the 
research during the last 10 years, and we will concentrate on these findings. A third 
raising hypothesis has been that training domain-general skills strongly connected 
to numerical cognition might likewise boost learning mathematics. Especially 
working memory (Passolungi & Costa, Chap. 25, this volume) and increasingly 
also, spatial skills (Resnick et al., Chap. 26, this volume) have recently grasped the 
attention of the researchers.
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 Training Number Sense

There is an ongoing debate about the roles of symbolic and nonsymbolic number 
sense in the development of MLD. Dehaene (1997) suggested that an evolutionarily 
grounded analogue magnitude representation, also called an approximate number 
system (ANS) or “number sense,” underlies the numerical understanding. After this 
suggestion many studies have aimed to train the ANS with the intention of transfer-
ring improvements to symbolic arithmetic. There are some grounds for this idea. 
The ANS, typically measured by requiring participants to choose which of two dot 
arrays contains more dots, correlates with measures of symbolic math in both adults 
and children (e.g., DeWind & Brannon, 2012; Halberda, Ly, Wilmer, Naiman, & 
Germine, 2012; Halberda, Mazzocco, & Feigenson, 2008; Lyons & Beilock, 2011) 
and also predicts from preschool to math achievement tests at school age (Gilmore, 
McCarthy, & Spelke, 2010; Mazzocco, Feigenson, & Halberda, 2011a). Likewise, 
children with MLD perform less well in ANS tasks compared with typically per-
forming children (Mazzocco, Feigenson, & Halberda, 2011b).

For example, Park and Brannon (2013, 2014) showed that adults after a very 
short training with nonsymbolic addition and subtraction tasks improved the perfor-
mance in symbolic addition tasks. In their training two clouds of dots were pre-
sented to the participant, who needed to estimate without counting, which one of the 
two new clouds of dots would match with the answer of the calculation presented. 
According to Park and Brannon this illustrates a causal link between these two rep-
resentations. Wang, Odic, Halberda, and Feigenson (2016) got similar results with 
5-year-old children (see however Merkley, Matejko, & Ansari, 2017 about the crit-
ics). Park and colleagues (2016) gave a similar tablet game with nonsymbolic 
approximate addition and subtraction of large arrays of items to 3–5-year-old chil-
dren finding selective improvements in math skills after multiple days of playing 
compared with children who played a memory game. Khanum and others (Khanum, 
Hanif, Spelke, Berteletti, & Hyde, 2016) have replicated these results using similar 
training tasks with Pakistani children of school-age, demonstrating that there is a 
cultural invariance in these results.

In addition to these experimental games, Wilson and colleagues (Wilson, Revkin, 
Cohen, Cohen, & Dehaene, 2006) have developed a free adaptive computer learn-
ing game for children with MLD (http://www.thenumberrace.com/nr/). The Number 
Race game is reminiscent of traditional board games in which one throws a dice and 
advances by that number of steps. The dice throwing has been replaced with a com-
parison task (nonsymbolic and symbolic). The game is constantly adapting based 
on an artificial intelligence algorithm. This algorithm represents the learner’s cur-
rent skill level (“knowledge space”) in three dimensions, and it is programmed to 
ensure an average accuracy of 75%. The three dimensions of the model are the ratio 
of the quantities presented (the distance effect), the time allowed to respond, and 
the conceptual complexity of the format in which the quantities are presented (from 
dot patterns to arithmetic). Several studies have used this game module to test if this 
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kind of training would produce benefits to learning (Obersteiner, Reiss, & Ufer, 
2013; Räsänen, Salminen, Wilson, Aunio, & Dehaene, 2009; Sella, Tressoldi, 
Lucangeli, & Zorzi, 2016; Wilson, Dehaene, Dubois, & Fayol, 2009). Szűcs and 
Myers (2017) critically analyzed these studies and concluded that there is no con-
clusive evidence that specific ANS training improves symbolic arithmetic. They 
found many problems in these studies, not limited to the fact that it was unclear 
whether the game directly focused on ANS or on some other numerical processes 
more important for learning arithmetic. In their study, Sella et al. (2016) divided 
4–6-year- old children into two groups, one playing Number Race and a control 
group playing with a drawing program. There were clear effects of the Number 
Race game compared to drawing activities to boost numerical skills of typically 
performing young children. However, the result does not directly point to the ben-
efits of computer- assisted number sense training in early development, because it 
was a comparison between math and non-math training. In the study of Obersteiner 
et al. (2013), exact numerical representations were contrasted against approximate 
training, and he found no difference in learning between these two trainings. 
Räsänen et al. (2009) used the Number Race training with 6-year-old children with 
a risk of MLD and contrasted this against a training with a game with explicit train-
ing of number symbols, where the latter, according to a reanalysis of Szűcs and 
Myers (2017), seemed to produce slightly better results. In a similar fashion, 
Honoré and Noël (2016) contrasted symbolic and nonsymbolic training. Both train-
ings produced significant learning effects compared to control conditions, but sym-
bolic training led to a significantly larger improvement in arithmetic than did 
nonsymbolic training.

Maertens and his colleagues (2016) used another type of approach to train the 
relations between numbers. They contrasted the above-described comparison tasks 
to number line training. Performance on tasks where the child is asked to estimate 
the position of numbers in the number line has been shown to be related to chil-
dren’s mathematical achievement (e.g., Booth & Siegler, 2008; Friso-van den Bos 
et al., 2015; Muldoon, Towse, Simms, Perra, & Menzies, 2013; Siegler & Booth, 
2004). Moreover, interventions that have focused on improving numerical represen-
tations through game-based number line  tasks have shown transfer to arithmetic 
learning and mathematical performance (Fischer, Moeller, Bientzle, Cress, & 
Nuerk, 2011; Link, Moeller, Huber, Fischer, & Nuerk, 2013; Siegler & Ramani, 
2008). Maertens et al. (2016) found that both comparison and number line estima-
tion trainings had a positive effect on arithmetic. However, there were no transfer 
effects from one task to another. This suggests that comparison and number line 
estimation rely on different mechanisms and probably influence arithmetic through 
different mechanisms.

Another game that uses number line as a way to present numbers and calculations 
is Calcularis (Käser, Baschera, et al., 2013). Because it is one of the few research-
informed games developed for children with MLD, we look at it in more detail. The 
model of the game is based on the theory of a hierarchical development of mental 
number representations (von Aster & Shalev, 2007): The game builds up on early 
available concrete number representations (number as a set of objects) and the verbal 
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symbolization (spoken number) that develops during preschool age followed by the 
development of the Arabic symbolization taught in school. At the last level, the men-
tal number line is gradually built over the first years of elementary school. Children 
with MLD often exhibit problems in constructing and accessing this mental number 
line representation (Kaufmann et al., 2009; Kucian, Loenneker, Dietrich, Martin, & 
von Aster, 2006; Mussolin et al., 2010). The scientific evaluation of the precursor 
version of Calcularis (called Rescue Calcularis) demonstrated that children with and 
without MLD benefit from a number line training. Kucian and others (2011) showed 
that the neuronal changes observed after playing the game indicated a refined mental 
number representation as well as more efficient number processing.

Calcularis turns these findings on number processing and numerical cognition 
into the design of different instructional games, which are hierarchically structured 
according to number ranges and can be further divided into three areas (a content 
model: numerical understanding and representations, addition and subtraction, mul-
tiplication and division). The first area focuses on different number representations 
as well as number understanding in general. Transcoding between alternative repre-
sentations is trained, and children learn the three principles of number understand-
ing: cardinality, ordinality, and relativity. The first area is exemplified by the 
LANDING game illustrated in Fig. 42.3a. In this game, children need to indicate the 
position of a given number on a number line. To do so, a falling cone has to be 
steered using a joystick or the right and left arrow key. The second and third areas 
cover cognitive operations and procedures with numbers. In this area, children train 
the concepts and automation of arithmetic operations. In the PLUS-MINUS game 
(see Fig. 42.3b), children solve addition and subtraction tasks using blocks of tens 
and ones to model them.

Fig. 42.3 In the 
LANDING game (a), the 
position of the displayed 
number (16) needs to be 
indicated on the number 
line. In the PLUS-MINUS 
game (b), the task 
displayed needs to be 
modeled with the blocks of 
tens and ones
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To offer optimal learning conditions, the training program adapts to the knowl-
edge state of a specific child (Käser et al., 2012; Käser, Busetto, et al., 2013). All 
children start the training with the same game. After each item, the program esti-
mates the knowledge state of the child and displays a new task adjusted to this state.

In order to adapt the difficulty level and the task selection to the needs of a spe-
cific child, the training program needs to represent and estimate the mathematical 
knowledge of the child. This knowledge is modeled with a dynamic Bayesian net-
work representing different mathematical skills and their dependencies as a directed 
acyclic graph. The model used for Calcularis consists of more than 100 different 
skills. A small excerpt of the network is displayed in Fig. 42.4. The skills are sorted 
into different number ranges. Within a number range, they are ordered according to 
their difficulties. The difficulty of a task depends on the magnitude of the numbers 
involved in the task, the complexity of the task, and the means allowed to solve the 
task. Modeling “46 + 33 = 79” with one, ten, and hundred blocks (Support Addition 
2,2) is easier than calculating it mentally (Addition 2,2). Furthermore, tasks includ-
ing a carry such as “46 + 37 = 83” (Addition 2,2 with bridging to ten) are more 
complex to solve than tasks not requiring carrying. In order to also be able to adapt 
to specific problems of a child, the program contains a bug library storing typical 
error patterns. If a child commits a typical error several times, the controller system-
atically selects actions for remediation.

The effects of the training program have been assessed in a pilot study with 41 
children conducted in Switzerland (Käser, Baschera, et al., 2013) and a following 
comprehensive study with 138 children in Germany, where children were randomly 
assigned to 1 of 3 conditions (Calcularis training group, waiting control group, 
spelling control training group) with 6 and 12 weeks of training time (Rauscher 
et al., 2016, 2017). The results largely confirmed those of the pilot study: Compared 
to the two control conditions, children of the Calcularis training group demonstrated 
significant improvements with regard to arithmetic performance and spatial number 
processing abilities. These effects were already present after 6 weeks of training 
and became even larger after 12 weeks. In addition, the positive effects in math 
performance were accompanied by a significant decrease of math anxiety, which is 

Fig. 42.4 Addition skill net in the number range 0–100 with example tasks
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known to substantially contribute to developmental dyscalculia. Due to its adaptive 
nature, Calcularis is widely used in inclusive classroom settings to achieve intra-
class differentiation. It is also suitable for intervention, in which children practice at 
home without direct supervision. The supervisors can monitor their students’ work 
with the coaching application, which, as Calcularis itself, is browser-based.

Another game that has used the number line representation to illustrate the num-
bers and calculations is a free tablet game Vektor (http://cognitionmatters.org). 
However, it differs from the other new research-informed games in a critical way that 
it combines numerical and cognitive training. In the Vektor game, the numbers and 
calculations are presented both as five- and ten-pals (see also “number bonds to ten” 
in Butterworth, Varma, & Laurillard, 2011) and in symbolic calculation tasks with a 
number line representation. The cognitive training in Vektor is based on WM training 
with predominantly visuospatial tasks that have previously been shown to be effec-
tive in increasing WM efficiency (Bergman-Nutley & Klingberg, 2014; Melby-
Lervåg & Hulme, 2013). The newest version of the game also contains visuospatial 
and visuospatial reasoning tasks, because it has been shown that visuospatial WM 
predicts later mathematical skills and that especially the number line representation 
is tied to visuospatial skills (Simms, Clayton, Cragg, Gilmore, & Johnson, 2016). 
However, even though there is a lot of evidence on the connections between 
visuospatial and numerical skills (Resnick et al., Chap. 26, this volume), we still 
lack studies about direct transfer effects from spatial training to arithmetic skills 
(however, see Lowrie, Logan, & Ramful, 2017).

Passolunghi and Costa (2016) have shown that working memory (WM) training 
significantly enhances children’s numeracy abilities involving concepts of compari-
son, classification, correspondence, seriation, counting, and general knowledge of 
numbers (see also Holmes, Gathercole, & Dunning, 2009; Kroesbergen, van’t 
Noordende, & Kolkman, 2014; Kuhn & Holling, 2014; St Clair-Thompson, Stevens, 
Hunt, & Bolder, 2010; Witt, 2011). In their study with the Vektor game on combin-
ing working memory and arithmetic training with 6-year-old children, Nemmi and 
his colleagues (2016) found that a combined training of cognitive skills and arith-
metic was more effective than either WM or arithmetic training alone. However, 
they also found that when going beyond these group effects to a more individual 
level, there is a whole new world for researchers to tackle.

Typically, the effectiveness of a training is analyzed at a group level. Effectiveness 
of an intervention is considered to be good when children in the experimental group 
improve significantly more than children in the control groups. Theoretically, the 
education is the same in all subjects in the experimental group of the TEL interven-
tion study. In a similar fashion as the education is the same to all children in the 
classroom. However, in the classroom the teacher should focus on individual perfor-
mances. In reality,  some children learn  more, and some  less, irrespective of the 
method used. This is a challenge to the teacher on how to raise the level of learning 
of the children who learned less. The same method and pedagogy is not beneficial 
to all. And every teacher knows this.

Likewise, this is a challenge to researchers. Instead of concentrating on groups, 
more research is needed about the factors behind the individual gains than about the 

42 Perspectives to Technology-Enhanced Learning and Teaching in Mathematical…

http://cognitionmatters.org


748

effects at the group level. In the study of Nemmi and others (2016), they divided the 
children into subgroups based on the baseline level of WM and mathematical skills 
measured before the intervention. The main finding of the effectiveness of the com-
bined WM and numerical training over numerical training alone was nonexistent in 
children with low WM and in children with below average skills in mathematics. 
The impact of an intervention varied by a factor of 3 between the subjects, depend-
ing on their baseline performance. Therefore, while one intervention can be 
extremely beneficial to some, another child with different profile of numerical and 
cognitive skills may not benefit from that specific training at all. Focusing on this 
question would bring researchers closer to the educational practices within the 
classroom. What do we need to know about the child to learn what kind of interven-
tion is beneficial? As soon as we have more understanding about this question, we 
can build individualized, adaptive, and effective interventions with TEL tools.

 From the Classrooms to the Lab

The majority of the noncomputerized interventions for children with MLD and pro-
grams for learning the basic number concepts recommend using manipulatives: 
small collections of objects to be ordered, categorized, compared, and counted 
(Clements & Sarama, 2011; Samara & Clements, 2009). This is a common knowl-
edge for well-trained special needs teachers, who use a wide variety of activi-
ties with manipulatives in their classes (Dowker, 2004; Emerson & Babtie, 2014). 
They help children with MLD to learn the meaning of numbers by using concrete 
materials as well as by articulating their practice in multiple representations of dia-
grams and number lines and then building up to symbols and equations (Emerson & 
Babtie, 2014). These kinds of activities are also offered as computerized tasks in 
some TEL programs, such as the Building Blocks early educational program 
(Sarama & Clements, 2004), and in the NumberBeads game targeted to children and 
adults with severe MLD (Laurillard, 2016b).

Investigations using computerized manipulatives for geometry and fractions 
show that these can lead to statistically significant gains in learning new concepts 
(Reimer & Moyer, 2005). Olson (1988) found that students who used both physical 
and software manipulatives demonstrated a greater sophistication in classification 
and logical thinking than did a control group that used physical manipulatives alone. 
A computer environment offers students greater control and flexibility over the 
manipulatives, allowing them to, for example, duplicate and modify the computer 
bean sticks (Char, 1989; Moyer, Niezgoda, & Stanley, 2005).

Digital entertainment games are more and more combining the realities of virtual 
and real worlds. Games happen in 3D worlds, and the players can more and more 
realistically manipulate objects in these worlds. The educational applications are 
slowly moving to this direction, and most probably the next wave of intervention 
research on supporting children with MLD using TEL will concentrate on bringing 
in the effective traditions used by the experienced and well-informed special need 
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teachers. Studies like Iuculano et  al. (2015) show that an intensive face-to-face 
intervention is very effective in helping children with MLD to built up numerical 
skills and, thus, will provide a good starting point for researchers to think about the 
key features of the effective interactions and pedagogies needed in TEL tools. Do 
we have virtual manipulatives in virtual classrooms only, or do we see virtual teach-
ers as well? Most probably yes, but first, there is still a lot to learn from the best 
teachers.

 Final Word

Technologies are spreading fast, and almost all children in OECD countries have 
computers at home, and cheaper mobile technologies are reaching even the most 
underdeveloped areas. Even though technologies have a promise of advancing the 
education, the OECD report on technology usage at schools gives a serious warn-
ing: “perhaps the most disappointing finding of the report is that technology is of 
little help in bridging the skills divide between advantaged and disadvantaged stu-
dents. Put simply, ensuring that every child attains a baseline level of proficiency in 
reading and mathematics seems to do more to create equal opportunities in a digital 
world than can be achieved by expanding or subsidising access to high-tech devices 
and services” (OECD, 2015).

The question of access to technology is easier to solve than the question of effec-
tive contents for learning, especially when we aim to improve the skills of those 
children with learning disabilities. In this chapter we have tried to introduce some 
new ideas from research during the last decade on how the question of content has 
been approached.  Advances in basic neuroscientific research will uncover more 
about the mechanisms of learning, raising new contents to be implemented in seri-
ous games and even to electronic school books. 

Technology is making education a joint global issue. It offers teachers new 
sources for collaboration as well as for professional development and training. It 
also gives access everywhere to the same TEL tools. Innovations connecting online 
systems with adaptive learning systems can easily create extensive datasets from 
tens if not hundreds of thousands of children to uncover individual learning path-
ways and mechanisms. Usage of big data is opening up new possibilities for using 
technology in educational research.

In the end, the successful solutions for TEL on MLD depend on building bridges 
between the best educational practices and basic research on the mathematical 
brain. These are at best combined on intervention studies that can inform us both 
about the mechanisms of numerical learning and about the  effective methods of 
using TEL tools in education and remediation. While the paper books are more and 
more changing  to net-connected e-books, the researchers will have a totally new 
possibility to build such studies in collaboration with teachers as part of children’s 
daily school and homework.
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Chapter 43
Executive Function and Early Mathematical 
Learning Difficulties

Douglas H. Clements and Julie Sarama

 Executive Function and Early Math Learning Difficulties

Young children who struggle for any reason in learning mathematics need support 
and personal resources, both cognitive and emotional. For most children, executive 
function (EF) processes develop most quickly in the early childhood years (i.e., 
birth to third grade) and provide resources that allow children to control their own 
thinking and emotions. Another category of resources that children need includes 
content or mathematical knowledge, skills, and dispositions. What role does each of 
these categories play in young children’s learning of mathematics? How are they 
related? How might we provide support for all young children, especially those with 
special needs, so that their struggles become productive challenges?

 The Role of Cognitive Executive Function

Children need to plan ahead, focus attention, and remember past experiences in all 
subject-matter areas, but these abilities may be particularly important to mathematics. 
Cognitive EF processes include attention shifting, cognitive flexibility, inhibitory con-
trol, and updating working memory, all of which may affect approaches to learning 
(Vitiello, Greenfield, Munis, & George, 2011). Attention shifting is switching a 
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“mental set” while simultaneously ignoring distractions. Counting by different units 
(e.g., tens and ones) and keeping them straight is an example of attention shifting. 
Cognitive flexibility is similarly involved in avoiding functional fixedness. For exam-
ple, children who solve every word problem in a set by adding the numbers may 
continue to do so, even if the situation changes to multiplication. Inhibitory control 
involves restraining an initial response (e.g., the first answer that occurs to you) to 
think about better strategies or ideas. Consider the following problem: “There were 
six birds in a tree. Three birds already flew away. How many birds were there from the 
start?” Children have to inhibit the immediate desire to subtract prompted by the 
words “flew away” and perform addition instead. Over the last 100 years, the demand 
for the application of EF processes such as inhibitory control has greatly increased in 
math education (Baker et  al., 2010). Finally, updating working memory involves 
maintaining and manipulating relevant information and keeping it in active memory 
often while engaging in another cognitively demanding task. Children solving multi-
step mathematics problems are helped by keeping the problem situation and their 
solution strategy in mind while performing necessary computations and then use the 
result without forgetting where they were in the process.

 The Role of Emotional Executive Function

Emotional EF allows children to work on difficult problems without quitting in 
frustration or anger. Children with low emotional EF lack social skills and may act 
with aggression (Broidy et al., 2003), leading to outbursts, inattention, and feeling 
overwhelmed (Saarni, Mumme, & Campos, 1998). These children are at higher risk 
for disciplinary problems and are less likely to make successful transitions through 
their early years (Huffman, Mehlinger, & Kerivan, 2000). Because they have diffi-
culty cooperating or resolving conflicts successfully, children who lack emotional 
EF also do not participate in classroom learning activities in a productive way 
(Ladd, Birch, & Buhs, 1999). This limits positive teacher-child interactions, per-
petuating the negative behavioral cycle (Hamre & Pianta, 2001; Neuenschwander, 
Röthlisberger, Cimeli, & Roebers, 2012). Lack of emotional control further impacts 
engagement, as evidenced by children’s rejection or angry withdrawal from tasks 
that become difficult (Bassett, Denham, Wyatt, & Warren-Khot, 2012).

Finally, emotional EF processes are also frequently inhibitory. That is, they 
include the ability to suppress one response, so you can respond in a better way. For 
example, a child may need to suppress the immediate impulse to grab another 
child’s math manipulatives, instead of asking to share manipulatives or work 
together. This process may involve affective decision-making or persistence in the 
face of difficulties (Zelazo et al., 2003). Together, emotional and cognitive EF allow 
children attend to and engage with tasks even when facing difficulties in problem- 
solving or learning, fatigue, distraction, or decreased motivation (Blair & Razza, 
2007; Neuenschwander et al., 2012). Considering this, it is unsurprising that early 
childhood teachers argue that such EF abilities are equally as important as academic 
subject matter (Bassok, Latham, & Rorem, 2016).
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 The Executive Function of Children with Special Needs

EF abilities are particularly important to certain groups of children, especially those 
identified as having special needs such as developmental delays or experiential 
gaps. EF tasks are used to screen or diagnose people with learning disabilities 
(Ikeda, Okuzumi, Kokubun, & Haishi, 2011; Toll, van der Ven, Kroesbergen, & Van 
Luit, 2010); however, categorizations are often not assigned in the earliest years, 
specifically when response to intervention strategies have not yet been attempted 
(Methe & VanDerHeyden, 2013). Deficits in EF processes, such as updating work-
ing memory, are prevalent in children with difficulties learning mathematics and 
literacy (Gathercole et  al., 2016; Mammarella, Hill, Devine, Caviola, & Szűcs, 
2015). Deficits in EF may also underlie ADHD (Barkley, 1997) and reading difficul-
ties (Biscaldi, Gezeck, & Stuhr, 1998; Moll, Snowling, Göbel, & Hulme, 2015). 
Additionally, working memory (but not attention) mediated the relation between 
groups to mathematics learning for older students with spina bifida myelomeningo-
cele (Raghubar et al., 2015).

Research has demonstrated that children from low-resource communities who 
experience gaps in opportunities for learning may also have lower EF (e.g., Blair, 
Protzko, & Ursache, 2011; Blair & Razza, 2007; Bull & Scerif, 2001; McLean & 
Hitch, 1999; Raver, 2013), and this risk is exacerbated for children who are second- 
language learners (Wanless, McClelland, Tominey, & Acock, 2011). Children identi-
fied as gifted and talented may also have exceptional needs in this domain (Mooji, 
2010). Differences in EF between groups raise important equity issues that we must 
address to fairly serve all children and thus the entire community of learners. As such, 
children with special needs likely require special interventions to develop EF compe-
tencies (Harris, Friedlander, Saddler, Frizzelle, & Graham, 2005; Lyon & Krasnegor, 
1996; Mazzocco & Hanich, 2010; Raches & Mazzocco, 2012; Toll et al., 2010).

 The Role of Subject-Matter Knowledge

Content knowledge, or knowledge of math concepts and skills, is notably important 
as well (Passolunghi & Lanfranchi, 2012)—early mathematical knowledge in par-
ticular. For example, researchers found that early math knowledge is the best pre-
dictor of later knowledge of math (Koponen, Salmi, Eklund, & Aro, 2013). The 
math that children know when they enter kindergarten and first grade has predicted 
their math achievement for years to come, throughout their school career. Moreover, 
what children know in math has also predicted their reading achievement as well as 
early literacy skills (Duncan et  al., 2007; Duncan & Magnuson, 2011; Koponen 
et  al., 2013). Mathematics then, including logical and mathematical reasoning, 
appears to be a core component of cognition (Clements & Sarama, 2011). Therefore, 
the combination of both EF and subject-matter competencies is critical in learning 
the important subject of early mathematics (cf. Blair, 2002), especially for children 
who need extra support in either or both of these.
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 Teaching Executive Function

Given that EF develops quickly in the early years for most, but not all, children, 
recent work has sought to promote its development. Studies have identified success-
ful methods of teaching EF, including three types of interventions: computer games, 
direct training of specific EF tasks, and particular curricula or educational programs. 
Findings about the utility of computer games are mixed (Otero, Barker, & Naglieri, 
2014; Razza & Raymond, 2015). As an example, 4- and 6-year-old children showed 
increases in attention after 5 days of computer game-based training, involving tasks 
such as helping direct a cartoon cat on the computer screen to move through a maze 
(Rueda, Rothbart, McCandliss, Saccomanno, & Posner, 2008). In another study, 
preschool children received training of either visuospatial working memory or inhi-
bition for 5  weeks (Thorell, Lindqvist, Nutley, Bohlin, & Klingberg, 2009). For 
training in working memory, children had to remember the location and order of 
objects. To train inhibition, children worked on go/no-go tasks, in which the child 
was told to respond (“go”) when a certain stimulus (e.g., a fruit) was presented, but 
to make no response (“no-go”) when another stimulus (e.g., a fish) was presented. 
Children trained on visuospatial working memory improved on spatial and verbal 
working memory, as well as attention; however, training on inhibition did not trans-
fer to working memory or attention tasks (Thorell et al., 2009). Goldin et al. (2014) 
also demonstrated that computer games lead to an increase in some, but not all, EF 
processes for 6-year-olds. Finally, 20 or more days of training on computer activi-
ties increased working memory and response inhibition of elementary-aged chil-
dren diagnosed with ADHD and resulted in a reduction of the parent-rated inattentive 
behaviors (Klingberg et al., 2005; Klingberg, Forssberg, & Westerberg, 2002).

Direct training of specific EF tasks is the second type of intervention that has 
garnered some success. For example, providing 4-year-olds with feedback and 
reflection training helped children change the attribute for sorting. Training occurred 
after every mistake and consisted of the following: the child was asked to name the 
attribute, such as color or size, given an example of a correct sort, and then asked to 
resort with assistance (Espinet, Anderson, & Zelazo, 2012). No information about 
the transferability of this training to other situations exists.

The third category of EF interventions includes enhancement of EF capabilities 
through the utilization of particular curricula or early childhood programs (e.g., 
Bierman, Nix, Greenberg, Blair, & Domitrovich, 2008; Diamond, Barnett, Thomas, 
& Munro, 2007; Diamond & Lee, 2011; Lillard & Else-Quest, 2007; Raver et al., 
2011; Weiland, Ulvestad, Sachs, & Yoshikawa, 2013; Weiland & Yoshikawa, 2013). 
While specific teaching approaches have proved successful, such as guiding impul-
sive children to self-monitor their behavior by talking to themselves (Reid, Trout, & 
Schartz, 2005), much remains to be understood about how to teach EF capabilities. 
The Tools of the Mind program is an example of an intervention that was designed 
to develop EF (Barnett et al., 2008; Diamond et al., 2007). This program was based 
on the Vygotskian theory that mature, intentional dramatic play represents the pri-
mary social context where children practice EF behaviors. Unfortunately, research 
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has demonstrated limited support for the utility of this program. Four separate ran-
domized cluster trial evaluations of the Tools program showed no effects on EF, 
even with good fidelity (Clements et  al., 2017; Farran, Lipsey, & Wilson, 2011; 
Lonigan & Phillips, 2012; Morris, Mattera, & Maier, 2016). Consequently, evi-
dence demonstrated that Tools was effective only with intensive and extensive sup-
ports for implementation, or as one reviewer concluded, pretend play was not crucial 
to building EF or other competencies {Lillard et al., 2013 #5779}. Furthermore, 
according to Elliott and colleagues (2010), neither training teachers to provide edu-
cational environments sensitive to children with working memory difficulties nor 
direct attempts to train children’s working memory were effective in enhancing 
EF. Despite these discouraging results, children who begin school with very low EF 
competencies may still benefit from the utilization of curricula designed to enhance 
EF (Tominey & McClelland, 2011).

 Relationships Between EF and Math

If we do develop successful training for children who need EF competencies, will 
that help them learn mathematics? Most studies on this topic are correlational—that 
is, they examine the relationship between achievement and EF but cannot tell us if 
one causes the other. Interestingly, although many researchers and other educators 
believe that EF will support later mathematics learning, the correlational research 
suggests a “two-way” relationship—that each may help support the development of 
the other throughout life.

 Relationships Between EF and Math Learning

Several studies have shown positive correlations between EF and achievement in 
various subjects in young children (e.g., Best, Miller, & Naglieri, 2011; Bierman 
et al., 2008; Blair et al., 2011; Blair & Razza, 2007; Cameron et al., 2012; Clements, 
Sarama, & Germeroth, 2016; Viterbori, Usai, Traverso, & De Franchis, 2015; 
Welsh, Nix, Blair, Bierman, & Nelson, 2010), albeit with some exceptions (Edens 
& Potter, 2013). For example, inhibitory control and attention-shifting EF processes 
in preschoolers were related to measures of math and literacy ability in kindergarten 
(Blair & Razza, 2007). Children with higher behavioral EF, including attention, 
working memory, and inhibitory control, also achieved at higher levels in literacy, 
language, and math (McClelland et al., 2007).

Evidence showed that EF is more associated with math than literacy or language 
(Blair et al., 2011; Blair, Ursache, Greenberg, Vernon-Feagans, & The Family Life 
Project Investigators, 2015; Bock et  al., 2015; Gathercole, Pickering, Knight, & 
Stegmann, 2004; Ponitz, McClelland, Matthews, & Morrison, 2009). Notably, 
though, deficits in EF evident in children with special needs also played a crucial 

43 Executive Function and Early Mathematical Learning Difficulties



760

role in math learning. For instance, Alloway (2007) identified low working memory 
as a substantial barrier to learning for children with developmental coordination 
disorder. EF has also been established as a predictor of children’s involvement dur-
ing learning opportunities, which in turn was related to their learning of literacy and 
mathematics (Nesbitt, Farran, & Fuhs, 2015).

Relationship Between Specific EF Skills and Math Learning A growing number of 
studies have indicated that inhibitory control and updating working memory may 
have a particularly close relationship to math learning and achievement (Bull, Espy, 
& Wiebe, 2008; Geary, 2011; Harvey & Miller, 2016; Miller, Rittle-Johnson, Loehr, 
& Fyfe, 2016; Neuenschwander et al., 2012; van der Ven, Kroesbergen, Boom, & 
Leseman, 2012), although some studies showed strong relationships for all three EF 
processes (Purpura, Schmitt, & Ganley, 2016). Inhibition and working memory 
tasks predicted success in math, and working memory tasks predicted math learning 
disabilities, above and beyond the predictive value of earlier mathematical abilities 
(Toll et al., 2010). Further, a lack of inhibition or working memory for children with 
lower mathematical ability represented a specific deficit that results in difficulty 
shifting and evaluating new strategies for dealing with math tasks (Bull & Scerif, 
2001). Working memory may also be uniquely important for children with learning 
difficulties or disabilities (Toll et  al., 2010). Thus, one can argue that these two 
components of EF play particularly important roles in the learning of math for 
young children, especially for those with low initial mathematical ability.

Although most studies have focused on cognitive EF, emotional EF should not be 
ignored. In one ironical example, first and second graders with the highest working 
memory also had the highest capacity to use advanced problem-solving strategies; 
yet, these children avoided utilizing advanced strategies when they were also high 
in math anxiety (Ramirez, Chang, Maloney, Levine, & Beilock, 2016). As a result, 
these children underperformed in math compared with their lower working memory 
peers. Environments that are designed to reduce stress, foster emotional well-being, 
and promote emotional EF help prepare children socially and cognitively for suc-
cessful learning and problem-solving in preschool, the primary grades, and beyond 
(Blair, 2002).

Although EF processes are important for math, we must remember that EF pro-
cesses are not the only factors that influence mathematical achievement. Content- 
specific competencies such as numerical competence also contribute to subsequent 
math achievement (Passolunghi & Lanfranchi, 2012). Even fine motor or spatial 
skills predict math and literacy achievement beyond measures of EF (Cameron 
et al., 2012). Similarly, a combination of EF and spatial skills of preschoolers pre-
dicted 70% of the variance in later math performance, with spatial skills uniquely 
predicting 27% of the variance in math competence (Verdine, Irwin, Golinkoff, & 
Hirsh-Pasek, 2014). Thus, EF and mathematical competence work together to 
influence mathematical achievement—EF does not determine success in math on 
its own.
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 Exploring Causality in the Relationship Between EF and Math 
Learning

Correlational studies cannot identify a causal connection in which EF competencies 
support learning of math (e.g., Best et al., 2011); however, some types of correla-
tional studies are designed to make stronger suggestions of causation. For example, 
if early EF predicts mathematics achievement years later, the suggestion that EF 
contributes to math achievement can be made (Best et al., 2011; Blair & McKinnon, 
2016; Clark, Pritchard, & Woodward, 2010; LeFevre et al., 2013). In one study, EF 
of entering preschoolers predicted end-of-the-pre-K-year literacy skills (Bierman 
et  al., 2008). In another, executive control at age 3 years predicted math perfor-
mance in kindergarten (Clark et  al., 2010). While studies such as these are only 
correlational, they link EF early in life to academic achievement later in life, ulti-
mately suggesting a causal interpretation. It is important to note, however, that these 
studies did not always test the relationship in both directions. For example, EF 
measures were found to predict math and reading achievement in the primary grades 
(Bull et al., 2008), but the researchers did not test for a relationship between early 
math skills and later EF competencies (see also Clark et al., 2010; LeFevre et al., 
2013). In a similar vein, McClelland and others (2007) focused exclusively on the 
role of behavioral EF in supporting achievement in literacy and math. They sug-
gested that strengthening these skills “prior to kindergarten may be an effective way 
to ensure that children also have a foundation of early academic skills” (McClelland 
et al., 2007, p. 956); however, they did not mention that in their own data, fall aca-
demic achievement predicted spring EF just as well as the reverse.

Further supporting the hypothesis of a two-way relationship, a longitudinal study 
showed that EF and math achievement influence each other (van der Ven et  al., 
2012). Interestingly, this may not be true of literacy competencies (Fuhs, Nesbitt, 
Farran, & Dong, 2014; Ponitz et al., 2009; Weiland, Barata, & Yoshikawa, 2014; 
Welsh et al., 2010), furthering support for the notion that the relationship between 
EF and math competencies may be particularly strong and significant. Finally, con-
trary to researchers’ expectation, none of the EF measures in one study predicted 
later math curriculum; however, early math achievement predicted all measures of 
EF (Watts et al., 2015), raising the possibility that mathematics may influence EF as 
much, or even more, than EF influences mathematics.

Overall, the results of such correlational, longitudinal analyses are mixed, with 
some suggesting that EF contributes to academic achievement rather than the 
reverse and many others finding that early math competencies or experiences can 
predict later-developing EF competencies. Remembering that these findings are 
correlational, not causal, is of the utmost importance, as the above set of studies 
delineated a two-way relationship between EF and math achievement, with each 
supporting the development of the other.
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 Causation: Experimental Studies of EF and Math 
Interventions

The gold standard for research on causation is the randomized control experiment, in 
which teachers and children are randomly assigned to treatment groups and only one 
group receives an intervention. What do experiments show us about the relationship 
between EF and math?

 Checking Whether Teaching EF Causes Math Achievement

As previously illustrated, evidence in support of existing methods of teaching EF is 
limited. A review of experiments evaluating programs teaching EF, such as Tools of 
the Mind, found no reliable evidence pointing to the positive impact of increasing 
EF and correspondingly raising achievement (Jacob & Parkinson, 2015). For exam-
ple, Barnett et al.’s (2008) experiment suggested that the Tools curriculum improved 
classroom quality yet actually served as a pertinent example of limited evidence in 
support of this method of instruction. Within the context of this study, lower scores 
on a measure of problem behaviors were interpreted as indicative of improvement 
in children’s EF by the original authors; however, Jacob and Parkinson {2015 
#6137} claimed that there were only minimum effects on achievement measure, the 
largest on language, and that these effects were not statistically significant when 
adjusted for hierarchical structure (classroom grouping of children). They also 
noted that there were no significant effects on math achievement, even though the 
curriculum included activities designed to promote math skills as well as EF skills. 
Thus, the study did not portray evidence that any cognitive EF skills increased after 
program participation, nor did it demonstrate that the program facilitated math 
learning (Jacob & Parkinson, 2015).

Further, computer training for 7-year-olds low in updating working memory and 
math achievement produced only small improvements in working memory immedi-
ately post-training; however, these small improvements were sustained 6 months 
later. Neither this computer training nor a comparison (Cogmed) training resulted in 
better performance in mathematics or generalized to other working memory tasks 
that differed from those included (Ang, Lee, Cheam, Poon, & Koh, 2015).

Some studies suggested that the relationship may run in the opposite direction—
rather than EF competencies leading to achievement in school, it may be the case 
that we can improve children’s EF competencies by teaching math. In one study, 
first graders were provided either computerized attention training or computerized 
academic training. Both forms of training positively affected attention according to 
a teacher rating scale, and this impact was greater for academic training. Further, 
only the academic training affected measures of academic achievement (Rabiner, 
Murray, Skinner, & Malone, 2010). As the above research suggests that teaching EF 
may not be a reliable way to support academic achievement, what else might we do?
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 Alternative Approaches, Especially for Children with Learning 
Difficulties

One possible explanation for the lack of evidence documenting a connection 
between teaching EF and higher levels of academic achievement is that teaching EF 
in a decontextualized way may simply be ineffective. Indeed, some studies have 
shown that teaching children to better use EF processes does in fact increase learn-
ing when taught within a subject-matter context (Naglieri & Gottling, 1995). 
Children with learning disabilities and mild mental impairments have benefited 
from verbalizing and reflecting on their strategies on arithmetic computation work-
sheets (Naglieri & Johnson, 2000), and effects were stronger for those with low 
planning skills (Naglieri & Gottling, 1997). Similarly, teaching planning strategies 
has supported children (again, especially those with poor planning processes) learn-
ing reading comprehension (Haddad et  al., 2003). Children also benefited from 
instruction on EF strategies to read math word problems with comprehension 
(Capraro, Capraro, & Rupley, 2011; Fuchs, Fuchs, & Prentice, 2004).

 Teaching Math Can Cause Both Math Learning and EF 
Development

Recall that some predictive research suggested a bidirectional relationship between 
the development of EF and academic competencies. Even when effects on EF are 
not planned, teaching math has had significant effects not just on math but on EF as 
well. For example, the combination of the Building Blocks math curriculum 
(Clements & Sarama, 2013) and the OWL literacy curriculum resulted in unplanned 
but positive, albeit small, statistically significant impacts on EF for children at risk 
for later difficulties in learning (Weiland & Yoshikawa, 2013). This “spill-over” 
phenomenon supported the hypothesis that cognitively demanding curricula 
improve other cognitive developmental domains such as EF, even without specifi-
cally targeting EF processes.

As discussed, two evaluations of the Tools of the Mind did not establish that this 
program had a strong effect on EF; however, these evaluations did produce intrigu-
ing results regarding the benefits of math activities. The first large-scale evaluation 
(Farran et al., 2011) found that the Tools program had little effect on EF; however, 
it also demonstrated that a positive association existed between the classroom and 
teacher’s level of focus on math and children’s gains in both math and EF (Farran 
et al., 2011). The second large-scale evaluation compared three treatment groups. 
The researchers hypothesized that the Tools + Building Blocks group would per-
form better than a Building Blocks-only (BB) group on EF, and perhaps even on 
math, given the facilitative effect of the (presumed) gains in EF (Clements et al., 
2017). It was further hypothesized that both of these groups would outperform the 
control group in math. The results of this evaluation were surprising as the BB group 
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not only had higher math scores but also outperformed the control group on one of 
the EF measures (HTKS) and the BB + Tools group on another working memory 
task (backward digit span).

These results are surprising and important. If confirmed, they may indicate that 
educators might replace (or complement) efforts to develop EF separately to build 
capacity for learning mathematics and other subjects and instead focus on imple-
menting effective mathematics activities as a way of developing both mathematics 
and EF competencies.

 Math Activities that May Develop EF

A Building Blocks activity from the experiments included above asks children to 
find all pairs of positive whole numbers that sum to six. This may require children 
to suppress initial responses (e.g., only stating “it’s 3 plus 3”), manipulate abstract 
structures (add 1 to one of the numbers and subtract 1 from the other to find a new 
pair), and remain cognitively flexible. The stronger relationship between EF and 
math activities, as opposed to literacy activities (e.g., Fuhs et al., 2014), may reflect 
that math makes greater demands on working memory and attention control. The 
ability to hold relevant information in mind, to operate on it while shifting attention 
appropriately among problem elements, and to inhibit automatic responding to only 
one aspect of a given problem represent prime examples of these increased demands. 
Indeed, it may be that 100 years of rising population mean IQ in the United States 
is due to the increasing cognitive demands of mathematical curricula (Blair, 
Gamson, Thorne, & Baker, 2005)!

Importantly, EF may be developed by learning the math in the context of chal-
lenging activities, not by simply “exercising” the math once learned. When children 
learn arithmetic facts, they use the frontal areas of their brains that support EF and 
working memory; however, once they know facts fluently, they use regions that store 
verbal memories and process symbols (Butterworth, Varma, & Laurillard, 2011). 
Thus, EF may develop in the early stages of learning when children are first exposed 
to mathematical material. Support for this idea was established by a study in which a 
computer game that challenged children to improve their arithmetic performance 
enhancement may have simultaneously improved their working memory capacity 
(Núñez Castellar, All, de Marez, & Van Looy, 2015). In summary, the research on the 
relationship between EF competencies and math learning suggests that high-quality 
math education may have the dual benefit of teaching an important content area and 
developing at least some EF competencies. A group of researchers funded by the 
Heising-Simons Foundation (https://dreme.stanford.edu) are currently exploring the 
impact of intentionally developed math curricula based on recent EF research that 
allows us to facilitate both benefits more effectively.

Moreover, research has identified mathematical environments (Fisher, Godwin, 
& Seltman, 2014) and teaching practices that can help children pay attention and 
grow in their ability to do so, as well as to develop general EF competencies (see 
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Clements & Sarama, 2014, for numerous activities so designed). Carefully guiding 
children to attend to specific mathematical features, such as the number in a collec-
tion or the corners of a polygon, is likely to improve their learning. The predisposi-
tion to spontaneously recognize numbers, for example, is a skill but also a habit of 
mind and includes the ability to direct attention to numbers (Lehtinen & Hannula, 
2006). These habits of mind generate further development of specific mathematical 
knowledge and the ability to direct attention to math in situations in which it is rel-
evant, that is, to generalize and transfer knowledge to new situations, as well as to 
develop both emotional and cognitive EF.

 Conclusions

Learning and doing mathematics requires both affective and cognitive resources. 
This is especially true for young children with learning difficulties. Executive func-
tion (EF)—the ability to control and supervise one’s own emotions and thinking—
may be one of the most important resources children need to succeed in math. Both 
emotional and cognitive EF contribute to social-emotional development and aca-
demic learning that are especially important in math curricula that increasingly 
require higher-order skills such as those provided by EF (Baker et al., 2010).

As EF develops most rapidly in the early childhood years, educators need to use 
research to provide environments, curricula, and experiences that develop these pro-
cesses, especially for children at risk due to developmental delays or low entering 
competencies. Several approaches to teaching EF have showed promise, but few 
have been consistently successful at a practically significant level. The research 
discussed in this chapter reveals the lack of causal evidence that interventions to 
develop EF will increase achievement. Although relationships between early EF and 
literacy are often weak, high-quality mathematics education may have the dual ben-
efit of teaching an important content area and developing at least some EF compe-
tencies. Given that early math knowledge predicts later mathematics achievement, 
later literacy achievement, and later EF (Watts et al., 2015) but that early EF does 
not predict these things, this approach stands as a potentially promising path. 
Ultimately, the evidence discussed in this chapter underlines the importance of 
increasing the intentional development of math curricula based on recent research 
on EF that may contribute to more effective facilitation of both math and literacy 
achievement.

References

Alloway, T. P. (2007). Working memory, reading, and mathematical skills in children with devel-
opmental coordination disorder. Journal of Experimental Child Psychology, 96(1), 20–36. 
https://doi.org/10.1016/j.jecp.2006.07.002

43 Executive Function and Early Mathematical Learning Difficulties

https://doi.org/10.1016/j.jecp.2006.07.002


766

Ang, S. Y., Lee, K., Cheam, F., Poon, K., & Koh, J. (2015). Updating and working memory train-
ing: Immediate improvement, long-term maintenance, and generalizability to non-trained tasks. 
Journal of Applied Research in Memory and Cognition, 4, 121–128. https://doi.org/10.1016/j.
jarmac.2015.03.001

Baker, D., Knipe, H., Collins, J., Leon, J., Cummings, E., Blair, C. B., & Gramson, D. (2010). One 
hundred years of elementary school mathematics in the United States: A content analysis and 
cognitive assessment of textbooks from 1900 to 2000. Journal for Research in Mathematics 
Education, 41(4), 383–423.

Barkley, R.  A. (1997). Behavioral inhibition, sustained attention, and executive functions: 
Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.

Barnett, W. S., Jung, K., Yarosz, D. J., Thomas, J., Hornbeck, A., Stechuk, R., & Burns, S. (2008). 
Educational effects of the tools of the mind curriculum: A randomized trial. Early Childhood 
Research Quarterly, 23(3), 299–313. https://doi.org/10.1016/j.ecresq.2008.03.001

Bassett, H. H., Denham, S., Wyatt, T. M., & Warren-Khot, H. K. (2012). Refining the preschool 
self-regulation assessment for use in preschool classrooms. Infant and Child Development, 
21(6), 596–616. https://doi.org/10.1002/icd.1763

Bassok, D., Latham, S., & Rorem, A. (2016). Is kindergarten the new first grade? How early 
elementary school is changing in the age of accountability. AERA Open, 1(4), 1–31. https://doi.
org/10.1177/2332858415616358

Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and aca-
demic achievement from ages 5 to 17 in a large, representative national sample. Learning and 
Individual Differences, 21(4), 327–336. https://doi.org/10.1016/j.lindif.2011.01.007

Bierman, K. L., Nix, R. L., Greenberg, M. T., Blair, C. B., & Domitrovich, C. E. (2008). Executive 
functions and school readiness intervention: Impact, moderation, and mediation in the Head 
Start REDI program. Development and Psychopathology, 20(03), 821–843. https://doi.
org/10.1017/S0954579408000394

Biscaldi, M., Gezeck, S., & Stuhr, V. (1998). Poor saccadic control correlates with dyslexia. 
Neuropsychologia, 36(11), 1189–1202.

Blair, C. B. (2002). School readiness: Integrating cognition and emotion in a neurobiological con-
ceptualization of children's functioning at school entry. American Psychologist, 57(2), 111–
127. https://doi.org/10.1037//0003-066X.57.2.111

Blair, C. B., Gamson, D., Thorne, S., & Baker, D. (2005). Rising mean IQ: Cognitive demand of 
mathematics education for young children, population exposure to formal schooling, and the 
neurobiology of the prefrontal cortex. Intelligence, 33(1), 93–106. https://doi.org/10.1016/j.
intell.2004.07.008

Blair, C. B., & McKinnon, R. D. (2016). Moderating effects of executive functions and the teacher–
child relationship on the development of mathematics ability in kindergarten. Learning and 
Instruction, 41, 85–93. https://doi.org/10.1016/j.learninstruc.2015.10.001

Blair, C. B., Protzko, J., & Ursache, A. (2011). Self-regulation and early literacy. In S. B. Neuman 
& D. K. Dickinson (Eds.), Handbook of early literacy research (Vol. 3, pp. 20–35). New York: 
Guilford.

Blair, C. B., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief 
understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 
647–663.

Blair, C.  B., Ursache, A., Greenberg, M.  T., Vernon-Feagans, L., & The Family Life Project 
Investigators. (2015). Multiple aspects of self-regulation uniquely predict mathematics but 
not letter–word knowledge in the early elementary grades. Developmental Psychology, 51(4), 
459–472. https://doi.org/10.1037/a0038813

Bock, A., Cartwright, K. B., Gonzalez, C., O’Brien, S., Robinson, M. F., Schmerold, K., & Pasnak, 
R. (2015). The role of cognitive flexibility in pattern understanding. Journal of Education and 
Human Development, 4(1). https://doi.org/10.15640/jehd.v4n1a3

Broidy, L. M., Nagin, D. S., Tremblay, R. E., Brame, B., Dodge, K. A., Fergusson, D., et al. (2003). 
Developmental trajectories of childhood disruptive behaviors and adolescent delinquency: A 
six-site, cross-national study. Developmental Psychology, 30(2), 222–245.

D. H. Clements and J. Sarama

https://doi.org/10.1016/j.jarmac.2015.03.001
https://doi.org/10.1016/j.jarmac.2015.03.001
https://doi.org/10.1016/j.ecresq.2008.03.001
https://doi.org/10.1002/icd.1763
https://doi.org/10.1177/2332858415616358
https://doi.org/10.1177/2332858415616358
https://doi.org/10.1016/j.lindif.2011.01.007
https://doi.org/10.1017/S0954579408000394
https://doi.org/10.1017/S0954579408000394
https://doi.org/10.1037//0003-066X.57.2.111
https://doi.org/10.1016/j.intell.2004.07.008
https://doi.org/10.1016/j.intell.2004.07.008
https://doi.org/10.1016/j.learninstruc.2015.10.001
https://doi.org/10.1037/a0038813
https://doi.org/10.15640/jehd.v4n1a3


767

Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive 
functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. 
Developmental Neuropsychology, 33, 205–228. https://doi.org/10.1080/87565640801982312

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics abil-
ity: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273–
293. https://doi.org/10.1207/S15326942DN1903_3

Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 
332, 1049–1053. https://doi.org/10.1126/science.1201536

Cameron, C. E., Brock, L. L., Murrah, W. M., Bell, L. H., Worzalla, S. L., Grissmer, D., & Morrison, 
F. J. (2012). Fine motor skills and executive function both contribute to kindergarten achievement. 
Child Development, 83(4), 1229–1244. https://doi.org/10.1111/j.1467-8624.2012.01768.x

Capraro, R. M., Capraro, M. M., & Rupley, W. H. (2011). Reading-enhanced word problem solv-
ing: A theoretical model. European Journal of Psychology of Education, 27(1), 91–114. https://
doi.org/10.1007/s10212-011-0068-3

Clark, C. A. C., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abili-
ties predict early mathematics achievement. Developmental Psychology, 46(5), 1176–1191. 
https://doi.org/10.1037/a0019672

Clements, D.  H., & Sarama, J.  (2011). Early childhood mathematics intervention. Science, 
333(6045), 968–970. https://doi.org/10.1126/science.1204537

Clements, D. H., & Sarama, J. (2013). Building blocks, volumes 1 and 2. Columbus, OH: McGraw- 
Hill Education.

Clements, D. H., & Sarama, J. (2014). Learning and teaching early math: The learning trajecto-
ries approach (2nd ed.). New York: Routledge.

Clements, D.  H., Sarama, J., & Germeroth, C. (2016). Learning executive function and early 
mathematics: Directions of causal relations. Early Childhood Research Quarterly, 36, 79–90. 
https://doi.org/10.1016/j.ecresq.2015.12.009

Clements, D. H., Sarama, J., Layzer, C., Unlu, F., Germeroth, C., & Fesler, L. (2017). Effects on 
executive function and mathematics learning of an early mathematics curriculum synthesized 
with scaffolded play designed to promote self-regulation versus the mathematics curriculum 
alone. Submitted for publication.

Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cogni-
tive control. Science, 318, 1387–1388. https://doi.org/10.1126/science.1151148

Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in chil-
dren 4 to 12 years old. Science, 333(6045), 959–964. https://doi.org/10.1126/science.1204529

Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., et al. 
(2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–
1446. https://doi.org/10.1037/0012-1649.43.6.1428

Duncan, G. J., & Magnuson, K. (2011). The nature and impact of early achievement skills, atten-
tion skills, and behavior problems. In G. J. Duncan & R. Murnane (Eds.), Whither opportu-
nity? Rising inequality and the uncertain life chances of low-income children (pp.  47–70). 
New York: Russell Sage.

Edens, K. M., & Potter, E. F. (2013). An exploratory look at the relationships among math skills, 
motivational factors and activity choice. Early Childhood Education Journal, 41(3), 235–243. 
https://doi.org/10.1007/s10643-012-0540-y

Elliott, J. G., Gathercole, S. E., Alloway, T. P., Holmes, J., & Kirkwood, H. (2010). An evaluation 
of a classroom-based intervention to help overcome working memory difficulties and improve 
long-term academic achievement. Journal of Cognitive Education and Psychology, 9(3), 227–
250. https://doi.org/10.1891/1945-8959.9.3.227

Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2012). Reflection training improves executive 
function in preschool-age children: Behavioral and neural effects. Developmental Cognitive 
Neuroscience. https://doi.org/10.1016/j.dcn.2012.11.009

Farran, D.  C., Lipsey, M.  W., & Wilson, S.  J. (2011, November). Curriculum and pedagogy: 
Effective math instruction and curricula. Paper presented at the early childhood math confer-
ence, Berkeley, CA.

43 Executive Function and Early Mathematical Learning Difficulties

https://doi.org/10.1080/87565640801982312
https://doi.org/10.1207/S15326942DN1903_3
https://doi.org/10.1126/science.1201536
https://doi.org/10.1111/j.1467-8624.2012.01768.x
https://doi.org/10.1007/s10212-011-0068-3
https://doi.org/10.1007/s10212-011-0068-3
https://doi.org/10.1037/a0019672
https://doi.org/10.1126/science.1204537
https://doi.org/10.1016/j.ecresq.2015.12.009
https://doi.org/10.1126/science.1151148
https://doi.org/10.1126/science.1204529
https://doi.org/10.1037/0012-1649.43.6.1428
https://doi.org/10.1007/s10643-012-0540-y
https://doi.org/10.1891/1945-8959.9.3.227
https://doi.org/10.1016/j.dcn.2012.11.009


768

Fisher, A.  V., Godwin, K.  E., & Seltman, H. (2014). Visual environment, attention allocation, 
and learning in young children: When too much of a good thing may be bad. Psychological 
Science. https://doi.org/10.1177/0956797614533801

Fuchs, L. S., Fuchs, D., & Prentice, K. (2004). Responsiveness to mathematical problem-solving 
instruction: Comparing students at risk of mathematics disability with and without risk of read-
ing disability. Journal of Learning Disabilities, 37, 293–306. https://doi.org/10.1177/002221
94040370040201

Fuhs, M. W., Nesbitt, K. T., Farran, D. C., & Dong, N. (2014). Longitudinal associations between 
executive functioning and academic skills across content areas. Developmental Psychology, 
50(6), 1698–1709. https://doi.org/10.1037/a0036633

Gathercole, S. E., Pickering, S. J., Knight, C., & Stegmann, Z. (2004). Working memory skills and 
educational attainment: Evidence from national curriculum assessments at 7 and 14 year of 
age. Applied Cognitive Psychology, 18, 1–16. https://doi.org/10.1002/acp.934

Gathercole, S.  E., Woolgar, F., Kievit, R.  A., Astle, D., Manly, T., & Holmes, J.  (2016). How 
common are WM deficits in children with difficulties in reading and mathematics. Journal 
of Applied Research in Memory and Cognition. https://doi.org/10.1016/j.jarmac.2016.07.013

Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitu-
dinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510

Goldin, A. P., Hermida, M. J., Shalom, D. E., Costa, M. E., Lopez-Rosenfeld, M., Segretin, M. S., 
et al. (2014). Far transfer to language and math of a short software-based gaming interven-
tion. Proceedings of the National Academy of Sciences, 111(17), 6443–6448. https://doi.
org/10.1073/pnas.1320217111

Haddad, F. A., Garcia, Y. E., Naglieri, J. A., Grimditch, M., McAndrews, A., & Eubanks, J. (2003). 
Planning facilitation and reading comprehension: Instructional relevance of the PASS theory. 
Journal of Psychoeducational Assessment, 21, 282–289.

Hamre, B. K., & Pianta, R. C. (2001). Early teacher-child relationships and the trajectory of chil-
dren's school outcomes through eighth grade. Child Development, 72, 625–638.

Harris, K. R., Friedlander, B. D., Saddler, B., Frizzelle, R., & Graham, S. (2005). Self-monitoring 
of attention versus self-monitoring of academic performance: Effects among students with 
ADHD in the general education classroom. The Journal of Special Education, 39(3), 145–156. 
https://doi.org/10.1177/00224669050390030201

Harvey, H. A., & Miller, G. E. (2016). Executive function skills, early mathematics, and vocabu-
lary in head start preschool children. Early Education and Development, 1–18. https://doi.org/
10.1080/10409289.2016.1218728

Huffman, L. C., Mehlinger, S. L., & Kerivan, A. S. (2000). Risk factors for academic and behav-
ioral problems in the beginning of school. Chapel Hill, NC: University of North Carolina, FPG 
Child Development Center.

Ikeda, Y., Okuzumi, H., Kokubun, M., & Haishi, K. (2011). Age-related trends of interference 
control in school-age children and young adults in the stroop color–word test. Psychological 
Reports, 108(2), 577–584. https://doi.org/10.2466/04.10.22.PR0.108.2.577-584

Jacob, R., & Parkinson, J. (2015). The potential for school-based interventions that target executive 
function to improve academic achievement: A review. Review of Educational Research, 85, 
512–552. https://doi.org/10.3102/0034654314561338

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). 
Computerized training of working memory in children with ADHD- A randomized, controlled 
trial. Journal of the American Academy of Child & Adolescent Psychiatry, 44, 177–186. https://
doi.org/10.1097/00004583-200502000-00010

Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children 
with ADHD. Journal of Clinical and Experimental Neuropsychology, 24, 781–791. https://doi.
org/10.1076/jcen.24.6.781.8395

Koponen, T., Salmi, P., Eklund, K., & Aro, T. (2013). Counting and RAN: Predictors of arithmetic 
calculation and reading fluency. Journal of Educational Psychology, 105(1), 162–175. https://
doi.org/10.1037/a0029285

D. H. Clements and J. Sarama

https://doi.org/10.1177/0956797614533801
https://doi.org/10.1177/00222194040370040201
https://doi.org/10.1177/00222194040370040201
https://doi.org/10.1037/a0036633
https://doi.org/10.1002/acp.934
https://doi.org/10.1016/j.jarmac.2016.07.013
https://doi.org/10.1037/a0025510
https://doi.org/10.1073/pnas.1320217111
https://doi.org/10.1073/pnas.1320217111
https://doi.org/10.1177/00224669050390030201
https://doi.org/10.1080/10409289.2016.1218728
https://doi.org/10.1080/10409289.2016.1218728
https://doi.org/10.2466/04.10.22.PR0.108.2.577-584
https://doi.org/10.3102/0034654314561338
https://doi.org/10.1097/00004583-200502000-00010
https://doi.org/10.1097/00004583-200502000-00010
https://doi.org/10.1076/jcen.24.6.781.8395
https://doi.org/10.1076/jcen.24.6.781.8395
https://doi.org/10.1037/a0029285
https://doi.org/10.1037/a0029285


769

Ladd, G. W., Birch, S. H., & Buhs, E. S. (1999). Children’s social and scholastic lives in kindergar-
ten: Related spheres of influence? Child Development, 70(6), 1373–1400.

LeFevre, J.-A., Berrigan, L., Vendetti, C., Kamawar, D., Bisanz, J., Skwarchuk, S.-L., & Smith- 
Chant, B. L. (2013). The role of executive attention in the acquisition of mathematical skills for 
children in grades 2 through 4. Journal of Experimental Child Psychology, 114(2), 243–261. 
https://doi.org/10.1016/j.jecp.2012.10.005

Lehtinen, E., & Hannula, M. M. (2006). Attentional processes, abstraction and transfer in early 
mathematical development. In L. Verschaffel, F. Dochy, M. Boekaerts, & S. Vosniadou (Eds.), 
Instructional psychology: Past, present and future trends. Fifteen essays in honour of Erik De 
Corte (Vol. 49, pp. 39–55). Amsterdam: Elsevier.

Lillard, A. S., & Else-Quest, N. (2007). Evaluating Montessori education. Science, 313, 1893–
1894. https://doi.org/10.1126/science.1132362

Lillard, A. S., Lerner, M. D., Hopkins, E. J., Dore, R. A., Smith, E. D., & Palmquist, C. M. (2013). 
The impact of pretend play on children's development: A review of the evidence. Psychological 
Bulletin, 139(1), 1–34. https://doi.org/10.1037/a0029321

Lonigan, C.  J., & Phillips, B. M. (2012, March). Comparing skills-focused and self-regulation 
focused preschool curricula: Impacts on academic and self-regulatory skills. Paper presented 
at the Society for Research on Educational Effectiveness, Washington, DC.

Lyon, G. R., & Krasnegor, N. A. (1996). Attention, memory, and executive function. Baltimore: 
Brookes.

Mammarella, I.  C., Hill, F., Devine, A., Caviola, S., & Szűcs, D. (2015). Math anxiety and 
developmental dyscalculia: A study on working memory processes. Journal of Clinical and 
Experimental Neuropsychology, 37(8), 878–887. https://doi.org/10.1080/13803395.2015.106
6759

Mazzocco, M.  M. M., & Hanich, L.  B. (2010). Math achievement, numerical processing, and 
executive functions in girls with Turner syndrome: Do girls with Turner syndrome have math 
learning disability? Learning and Individual Differences, 20, 70–81.

McClelland, M. M., Cameron, C. E., Connor, C. M., Farris, C. L., Jewkes, A. M., & Morrison, F. J. 
(2007). Links between behavioral regulation and preschoolers’ literacy, vocabulary, and math 
skills. Developmental Psychology, 43, 947–959. https://doi.org/10.1037/0012-1649.43.4.947

McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arith-
metic learning difficulties. Journal of Experimental Child Psychology, 74, 240–260. https://doi.
org/10.1006/jecp.1999.2516

Methe, S. A., & VanDerHeyden, A. M. (2013). Response to intervention for early mathematics. In 
V. Buysse & E. Peisner-Feinberg (Eds.), Handbook of response to intervention (pp. 169–184). 
Baltimore: Paul H. Brookes.

Miller, M. R., Rittle-Johnson, B., Loehr, A. M., & Fyfe, E. R. (2016). The influence of relational 
knowledge and executive function on preschoolers’ repeating pattern knowledge. Journal of 
Cognition and Development, 17(1), 85–104. https://doi.org/10.1080/15248372.2015.1023307

Moll, K., Snowling, M. J., Göbel, S. M., & Hulme, C. (2015). Early language and executive skills 
predict variations in number and arithmetic skills in children at family-risk of dyslexia and 
typically developing controls. Learning and Instruction, 38, 53–62. https://doi.org/10.1016/j.
learninstruc.2015.03.004

Mooji, T. (2010). Design and implementation of ICT-supported education for highly able pupils. 
Paper presented at the European conference on educational research, Helsinki, Finland.

Morris, P. A., Mattera, S. K., & Maier, M. (2016). Initial findings from Making Pre-K Count: 
Supporting New York City preschoolers’ learning through a math program [working paper]. 
New York: MDRC.

Naglieri, J. A., & Gottling, S. H. (1995). A cognitive education approach to math instruction for the 
learning disabled: An individual study. Psychological Reports, 76, 1343–1354.

Naglieri, J.  A., & Gottling, S.  H. (1997). Mathematics instruction and PASS cognitive pro-
cesses: An intervention study. Journal of Learning Disabilities, 30, 513–520. https://doi.
org/10.1177/002221949703000507

43 Executive Function and Early Mathematical Learning Difficulties

https://doi.org/10.1016/j.jecp.2012.10.005
https://doi.org/10.1126/science.1132362
https://doi.org/10.1037/a0029321
https://doi.org/10.1080/13803395.2015.1066759
https://doi.org/10.1080/13803395.2015.1066759
https://doi.org/10.1037/0012-1649.43.4.947
https://doi.org/10.1006/jecp.1999.2516
https://doi.org/10.1006/jecp.1999.2516
https://doi.org/10.1080/15248372.2015.1023307
https://doi.org/10.1016/j.learninstruc.2015.03.004
https://doi.org/10.1016/j.learninstruc.2015.03.004
https://doi.org/10.1177/002221949703000507
https://doi.org/10.1177/002221949703000507


770

Naglieri, J. A., & Johnson, D. (2000). Effectiveness of a cognitive strategy intervention to improve 
math calculation based on the PASS theory. Journal of Learning Disabilities, 33, 591–597.

Nesbitt, K. T., Farran, D. C., & Fuhs, M. W. (2015). Executive function skills and academic achieve-
ment gains in prekindergarten: Contributions of learning-related behaviors. Developmental 
Psychology. https://doi.org/10.1037/dev0000021

Neuenschwander, R., Röthlisberger, M., Cimeli, P., & Roebers, C.  M. (2012). How do differ-
ent aspects of self-regulation predict successful adaptation to school. Journal of Experimental 
Child Psychology, 113(3), 353–371. https://doi.org/10.1016/j.jecp.2012.07.004

Núñez Castellar, E., All, A., de Marez, L., & Van Looy, J.  (2015). Cognitive abilities, digital 
games and arithmetic performance enhancement: A study comparing the effects of a math 
game and paper exercises. Computers & Education, 85(0), 123–133. https://doi.org/10.1016/j.
compedu.2014.12.021

Otero, T. M., Barker, L. A., & Naglieri, J. A. (2014). Executive function treatment and intervention 
in schools. Applied Neuropsychology: Child, 3(3), 205–214. https://doi.org/10.1080/2162296
5.2014.897903

Passolunghi, M. C., & Lanfranchi, S. (2012). Domain-specific and domain-general precursors of 
mathematical achievement: A longitudinal study from kindergarten to first grade. British Journal 
of Educational Psychology, 82(1), 42–63. https://doi.org/10.1111/j.2044-8279.2011.02039.x

Ponitz, C. C., McClelland, M. M., Matthews, J. S., & Morrison, F. J. (2009). A structured observa-
tion of behavioral self-regulation and its contribution to kindergarten outcomes. Developmental 
Psychology, 45(3), 605–619. https://doi.org/10.1037/a0015365

Purpura, D. J., Schmitt, S. A., & Ganley, C. M. (2016). Foundations of mathematics and literacy: 
The role of executive functioning components. Journal of Experimental Child Psychology, 153, 
15–34. https://doi.org/10.1016/j.jecp.2016.08.010

Rabiner, D.  L., Murray, D.  W., Skinner, A.  T., & Malone, P.  S. (2010). A randomized trial of 
two promising computer-based interventions for students with attention difficulties. Journal 
of Abnormal Child Psychology, 38(1), 131–142. https://doi.org/10.1007/s10802-009-9353-x

Raches, D., & Mazzocco, M. M. M. (2012). Emergence and nature of mathematical difficulties 
in young children with Barth syndrome. Journal of Developmental & Behavioral Pediatrics, 
33(4), 328–335. https://doi.org/10.1097/DBP.0b013e31824c4090

Raghubar, K.  P., Barnes, M.  A., Dennis, M., Cirino, P.  T., Taylor, H., & Landry, S. (2015). 
Neurocognitive predictors of mathematical processing in school-aged children with spina 
bifida and their typically developing peers: Attention, working memory, and fine motor skills. 
Neuropsychology. https://doi.org/10.1037/neu0000196

Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relation-
ship between math anxiety and math achievement in early elementary school: The role of 
problem solving strategies. Journal of Experimental Child Psychology, 141, 83–100. https://
doi.org/10.1016/j.jecp.2015.07.014

Raver, C.  C. (2013, September). Targeting self-regulation through intervention: Lessons from 
RCTs. Paper presented at the Society of Research on educational effectiveness fall conference, 
Washington, DC.

Raver, C. C., Jones, S. M., Li-Grining, C., Zhai, F., Bub, K., & Pressler, E. (2011). CRSP’s impact 
on low-income preschoolers’ preacademic skills: Self-regulation as a mediating mechanism. 
Child Development, 82(1), 362–378. https://doi.org/10.1111/j.1467-8624.2010.01561.x

Razza, R. P., & Raymond, K. (2015). Executive functions and school readiness. In S. Robson & 
S. F. Quinn (Eds.), The Routledge international handbook of young children’s thinking and 
understanding (pp. 133–149). New York: Routledge.

Reid, R., Trout, A. L., & Schartz, M. (2005). Self-regulation interventions for children with atten-
tion deficit/hyperactivity disorder. Exceptional Children, 71, 361–377.

Rueda, M.  R., Rothbart, M.  K., McCandliss, B.  D., Saccomanno, L., & Posner, M.  I. (2008). 
Training, maturation, and genetic influences on the development of executive attention. 
Proceedings of the National Academy of Sciences, 102, 14931–14936. https://doi.org/10.1073/
pnas.0506897102

D. H. Clements and J. Sarama

https://doi.org/10.1037/dev0000021
https://doi.org/10.1016/j.jecp.2012.07.004
https://doi.org/10.1016/j.compedu.2014.12.021
https://doi.org/10.1016/j.compedu.2014.12.021
https://doi.org/10.1080/21622965.2014.897903
https://doi.org/10.1080/21622965.2014.897903
https://doi.org/10.1111/j.2044-8279.2011.02039.x
https://doi.org/10.1037/a0015365
https://doi.org/10.1016/j.jecp.2016.08.010
https://doi.org/10.1007/s10802-009-9353-x
https://doi.org/10.1097/DBP.0b013e31824c4090
https://doi.org/10.1037/neu0000196
https://doi.org/10.1016/j.jecp.2015.07.014
https://doi.org/10.1016/j.jecp.2015.07.014
https://doi.org/10.1111/j.1467-8624.2010.01561.x
https://doi.org/10.1073/pnas.0506897102
https://doi.org/10.1073/pnas.0506897102


771

Saarni, C. D., Mumme, D., & Campos, J. J. (1998). Emotional development: Action, communica-
tion, and understanding. In W. Damon (Ed.), Handbook of child psychology (5th ed., pp. 237–
309). New York: Wiley.

Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G., & Klingberg, T. (2009). Training and trans-
fer effects of executive functions in preschool children. Developmental Science, 12(1), 106–
113. https://doi.org/10.1111/j.1467-7687.2008.00745.x

Toll, S. W. M., van der Ven, S. H. G., Kroesbergen, E., & Van Luit, J. E. H. (2010). Executive func-
tions as predictors of math learning disabilities. Journal of Learning Disabilities, 20(10), 1–12. 
https://doi.org/10.1177/0022219410387302

Tominey, S. L., & McClelland, M. M. (2011). Red light, purple light: Findings from a random-
ized trial using circle time games to improve behavioral self-regulation in preschool. Early 
Education and Development, 22(3), 489–519. https://doi.org/10.1080/10409289.2011.574258

van der Ven, S. H. G., Kroesbergen, E. H., Boom, J., & Leseman, P. P. M. (2012). The develop-
ment of executive functions and early mathematics: A dynamic relationship. British Journal of 
Educational Psychology, 82(1), 100–119. https://doi.org/10.1111/j.2044-8279.2011.02035.x

Verdine, B. N., Irwin, C. M., Golinkoff, R. M., & Hirsh-Pasek, K. (2014). Contributions of execu-
tive function and spatial skills to preschool mathematics achievement. Journal of Experimental 
Child Psychology, 126, 37–51. https://doi.org/10.1016/j.jecp.2014.02.012

Viterbori, P., Usai, M.  C., Traverso, L., & De Franchis, V. (2015). How preschool executive 
functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudi-
nal study. Journal of Experimental Child Psychology, 140, 38–55. https://doi.org/10.1016/j.
jecp.2015.06.014

Vitiello, V. E., Greenfield, D. B., Munis, P., & George, J. L. (2011). Cognitive flexibility, approaches 
to learning, and academic school readiness in head start preschool children. Early Education 
and Development, 22(3), 388–410. https://doi.org/10.1080/10409289.2011.538366

Wanless, S. B., McClelland, M. M., Tominey, S. L., & Acock, A. C. (2011). The influence of demo-
graphic risk factors on children’s behavioral regulation in prekindergarten and kindergarten. 
Early Education and Development, 22(3), 461–488. https://doi.org/10.1080/10409289.2011.
536132

Watts, T., Duncan, G. J., Chen, M., Claessens, A., Davis-Kean, P. E., Duckworth, K., et al. (2015). 
Self-concepts, school placements, executive function, and fractions knowledge as mediators 
of links between early and later school achievement. Child Development, 86(6), 1892–1907. 
https://doi.org/10.1111/cdev.12416

Weiland, C., Barata, M. C., & Yoshikawa, H. (2014). The co-occurring development of executive 
function skills and receptive vocabulary in preschool- aged children: A look at the direction of 
the developmental pathways. Infant and Child Development, 23, 4–21. https://doi.org/10.1002/
icd.1829

Weiland, C., Ulvestad, K., Sachs, J., & Yoshikawa, H. (2013). Associations between classroom 
quality and children's vocabulary and executive function skills in an urban public prekindergar-
ten program. Early Childhood Research Quarterly, 28(2), 199–209. https://doi.org/10.1016/j.
ecresq.2012.12.002

Weiland, C., & Yoshikawa, H. (2013). Impacts of a prekindergarten program on children’s mathe-
matics, language, literacy, executive function, and emotional skills. Child Development, 84(6), 
2112–2130. https://doi.org/10.1111/cdev.12099

Welsh, J. A., Nix, R. L., Blair, C. B., Bierman, K. L., & Nelson, K. E. (2010). The development of 
cognitive skills and gains in academic school readiness for children from low-income families. 
Journal of Educational Psychology, 102(1), 43–53. https://doi.org/10.1037/a0016738

Zelazo, P. D., Müller, U., Frye, D., Marcovitch, S., Argitis, G., Boseovski, J., et al. (2003). The devel-
opment of executive function in early childhood. Monogr Soc Res Child Dev, 68(3), i-151.

43 Executive Function and Early Mathematical Learning Difficulties

https://doi.org/10.1111/j.1467-7687.2008.00745.x
https://doi.org/10.1177/0022219410387302
https://doi.org/10.1080/10409289.2011.574258
https://doi.org/10.1111/j.2044-8279.2011.02035.x
https://doi.org/10.1016/j.jecp.2014.02.012
https://doi.org/10.1016/j.jecp.2015.06.014
https://doi.org/10.1016/j.jecp.2015.06.014
https://doi.org/10.1080/10409289.2011.538366
https://doi.org/10.1080/10409289.2011.536132
https://doi.org/10.1080/10409289.2011.536132
https://doi.org/10.1111/cdev.12416
https://doi.org/10.1002/icd.1829
https://doi.org/10.1002/icd.1829
https://doi.org/10.1016/j.ecresq.2012.12.002
https://doi.org/10.1016/j.ecresq.2012.12.002
https://doi.org/10.1111/cdev.12099
https://doi.org/10.1037/a0016738


773© Springer International Publishing AG, part of Springer Nature 2019 
A. Fritz et al. (eds.), International Handbook of Mathematical Learning 
Difficulties, https://doi.org/10.1007/978-3-319-97148-3_44

Chapter 44
Children’s Mathematical Learning 
Difficulties: Some Contributory Factors 
and Interventions

Ann Dowker

Difficulty with arithmetic is a common problem (Butterworth, Sashank, & 
Laurillard, 2011). For example, about 22% of the adult population in the UK have 
severe numeracy difficulties that have a serious practical and social impact on their 
daily lives, whereas only about 5% have similar levels of difficulty in literacy 
assessed by the same criteria (Bynner & Parsons, 1997; Parsons & Bynner, 2005).

This chapter will first discuss some of the factors that contribute to arithmetical 
difficulties. There are genetic and other brain-based developmental factors that 
contribute to mathematical difficulties, which are discussed elsewhere in this book. 
This chapter will focus on some environmental and motivational factors. It will then 
proceed to discuss some interventions that have been used for mathematical 
difficulties, especially at primary school level.

 National and Cultural Factors: What Do We Learn 
from International Comparisons?

International comparisons, such as those of TIMSS (Mullis, Martin, Foy, & Hooper, 
2016; Mullis, Martin, & Loveless, 2016) and PISA (OECD, 2013), report 
considerably better performance in mathematics by children in some countries than 
in others. In particular children from countries in the Far East, such as Japan, Korea, 
Singapore and China, tend to perform better in arithmetic than do children in most 
parts of Europe and America.

It is important to be cautious in interpreting the results of such international com-
parisons (Jerrim, 2011; Sturman, 2015). For example, there may be issues with 
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sampling. Subtle differences in the ways in which pupils or schools are selected for 
testing may significantly affect the results. For example, the implications of selecting 
a class of pupils of a particular age may differ according to whether promotion by 
age is automatic or is dependent on school achievement and on whether the schools 
divide pupils into ability groups by streaming or setting. Moreover, differences are 
typically studied at a whole-country level and may fail to take into account 
differences between regions or school types within a country. For example, in the 
TIMSS 2011 study, Massachusetts obtained mathematics scores similar to those in 
the highest-achieving countries, while Alabama obtained mathematics scores below 
the international median. China usually comes close to the top in international 
comparisons; but it must be remembered that this is an extremely large and diverse 
country and that it can be difficult to be sure that the sampling is representative. 
Children in the larger, more readily accessible cities are more likely to be sampled 
than those in remote rural schools. For example, the PISA 2012 study included only 
schools in Shanghai and Hong Kong (OECD, 2014). There is a lot of evidence that 
rural Chinese children are relatively economically and educationally disadvantaged 
compared to urban children and their omission from most international comparisons 
may lead to somewhat misleading results.

Nevertheless, despite such cautions, there are some fairly consistent findings of 
relatively high performance by the Pacific Rim countries and by Finland (Mullis, 
Martin, & Loveless, 2016). Educators, researchers and policymakers have made 
several attempts to examine the reasons.

 Might International Differences in Teaching Methods Affect 
Performance?

For example, people have attempted to investigate whether there are particular 
teaching methods or school characteristics in higher-achieving countries that might 
be transferable to other countries and lead to improvement.

There has, for instance, been considerable emphasis recently on the ‘mastery’ 
approaches of East Asian countries, resulting in some attempts to introduce methods 
based on this approach into schools in the UK and the USA (see discussion of 
whole-class interventions at the beginning of this chapter). One difficulty in doing 
so is deciding which of the numerous aspects of the ‘mastery’ approaches are 
particularly important. For example, such approaches involve (1) breaking down 
different parts of the curriculum into units and (2) clearly defining the goals, and the 
aim is to ensure that all pupils have mastered each unit before going on to another 
one. While the approach is sometimes misinterpreted as involving whole-class 
teaching without any adaptations to weaker pupils, in fact teachers are expected to 
look at the children’s work, and to intervene immediately with individuals’ 
misconceptions before moving on. Thus, at least according to the ideal, the same 
person combines, within a short space of time, the role of class teacher and deliverer 
of interventions. This of course places high demands on the teacher.
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Finland, another high-achieving country, differs from the Pacific Rim countries 
in some key ways. Whereas children in the Pacific Rim countries start school quite 
early and experience repeated high-stake testing, Finnish children do not begin 
formal instruction until 7 and experience little high-stake testing.

One thing that Finland and the Pacific Rim countries appear to have in common 
is the high status of the teaching profession, with high levels of selection for 
education courses, extended courses, and opportunities for continuous professional 
development. It may be that this is at least as important as any details of the 
curriculum.

 Socio-economic Differences

Parental social class is an important predictor of children’s academic performance in all 
subjects, including mathematics (Perry & Francis, 2010). British adults with severe 
persisting numeracy difficulties are far more likely than those without such difficulties 
to have come from ‘working-class’ backgrounds and to have been poor (Bynner & 
Parsons, 1997, 2006). In countries with greater social inequalities, such as Brazil, 
social class effects on academic performance are even greater (Nunes, Schliemann, & 
Carraher, 1993). For example, Davie, Butler, and Goldstein (1972) found that even at 
the age of 4, there was a year’s difference in British children’s performance on intel-
lectual tasks, including numeracy tasks, between working- class children living in a 
deprived area and middle-class children living in a comfortable area.

There are many possible ways in which social class could influence academic 
performance, including mathematical performance. Better-off parents can afford 
more books and other academic materials for their children. On average, they may 
have more time to talk to and interact with their children (though this is not always 
the case). The children are likely to attend schools with better resources. Moreover, 
better-off parents have usually had more formal education themselves and are 
therefore likely to be more able to help their children to learn academic subjects. 
Also, the culture of the school is likely to be less alien to a child from a family with 
a high level of formal education than one from a family with lower formal education 
(Biddle, 2001; Brooker, 2002).

Evidence suggests that early influences of social class are much greater on verbal 
than nonverbal aspects of mathematics. For instance, Jordan, Huttenlocher, and 
Levine (1992, 1994) found no social class differences in pre-schoolers’ ability to do 
nonverbal addition and subtraction problems; but middle-class children were better 
than working-class children at verbal arithmetic. Presumably, middle-class children 
have more experience than working-class children with conventional mathematical 
language, which gives them an advantage in verbal arithmetic, but not necessarily in 
nonverbal arithmetic.

There are several preschool intervention programs for children at risk, usu-
ally children living in poverty. They appear to be commonest in the USA and 
include, for example, the mathematical components of the Head Start Program 
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(Arnold, Fisher, Doctoroff, & Dobbs, 2002), the Pre-K Mathematics curriculum 
(Klein, Starkey, Clements, Sarama, & Iyer, 2008), the Big Math for Little Kids pro-
gram of Ginsburg and his colleagues (Greenes, Ginsburg, & Balfanz, 2004) and the 
Building Blocks program of Clements and Sarama (2011).

Ramani and Siegler (2008, 2011) proposed that SES differences in early numer-
acy may reflect differing prior experience with informal numerical activities, such 
as numerical board games. They found that the numerical magnitude knowledge of 
pre-schoolers from low-income families lagged behind that of peers from better- off 
backgrounds. But playing a simple numerical board game for four 15-min sessions 
eliminated the differences in numerical estimation proficiency. Playing games that 
substituted colours for numbers did not have this effect. These findings have been 
replicated with groups of children in the UK (Whyte & Bull, 2008) and Sweden 
(Elofsson, Gustafson, Samuelsson, & Traff, 2016).

 The Role of Attitudes and Emotions

Mathematical development and performance depend not only on our learning and 
intellectual abilities, and the teaching that we have received, but also on emotions 
and attitudes. There is a wide spectrum of attitudes that people have with regard to 
mathematics, ranging from the extremely positive to the extremely negative. 
Unfortunately, the latter are all too common, and while they sometimes involve 
mere dislike or boredom with mathematics, many people suffer from severe anxiety, 
even fear, with regard to mathematics (Ashcraft, 2002; Maloney & Beilock, 2012).

Mathematics anxiety has been defined as ‘a feeling of tension and anxiety that 
interferes with the manipulation of numbers and the solving of mathematical prob-
lems in[…]ordinary life and academic situations’ (Richardson & Suinn, 1972). 
People who fear mathematics are seriously restricted in their choice of occupation 
(Brown, Brown, & Bibby, 2008; Chipman, Krantz, & Silver, 1992). They may expe-
rience difficulty and anxiety in managing their finances, and, if the fear is severe, 
even in such activities as reading train and bus timetables.

Estimates as to the frequency of mathematics anxiety are varied and depend both 
on the ways in which mathematics anxiety is defined and assessed and on the nature 
of the sample. Given that people with extreme mathematics anxiety are probably 
less likely to attend university, university student samples may be biased toward 
comparatively low levels of such anxiety: nevertheless, mathematics anxiety is 
common even in such samples. Richardson and Suinn (1972) estimated that 11% of 
university students show high enough levels of mathematics anxiety to be in need of 
counselling. Johnston-Wilder, Brindley, and Dent (2014) found a higher figure in a 
group of apprentices, with about 30% showing high mathematics anxiety and a 
further 18% affected to a lesser degree. Ashcraft and Moore (2009) estimated that 
17% of the population have high levels of mathematics anxiety.

Mathematics anxiety is an important problem, not only because it is an unpleas-
ant and stressful emotion but because many studies in different countries show that 
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attitudes to mathematics are correlated with actual mathematical performance and 
in particular that mathematics anxiety is negatively correlated with performance 
(Baloğlu & Koçak, 2006; Dulaney et al., 2017; Hembree, 1990; Ho et al., 2000; 
Ma & Kishor, 1997; Miller & Bichsel, 2004). What is less clear is the direction of 
causation. On the one hand, mathematics anxiety may cause poorer performance 
by reducing motivation and leading to reduced practice, or to active avoidance 
(Chinn, 2009), or by overloading working memory (Ashcraft, 2002). On the other 
hand, mathematical difficulties may lead to mathematics anxiety, by causing expe-
riences of failure, confusion and embarrassment associated with mathematics.

Maloney and Beilock (2012) proposed that mathematics anxiety is likely to be 
due both to pre-existing difficulties in mathematical cognition and to social 
factors, e.g. exposure to teachers who themselves suffer from mathematics 
anxiety. They suggest that children with initial mathematical difficulties are also 
likely to be more vulnerable to the negative social influences and that this may 
create a vicious circle.

Most studies of attitudes of mathematics anxiety have dealt with the problem of 
negative attitudes. But positive attitudes such as enjoyment of mathematics and self- 
confidence in mathematics are also important topics to study, and cannot be reduced 
to the simple absence of anxiety. For example, Villavicencio and Bernardo (2016) 
found that positive emotions toward mathematics predicted achievement in a 
Filipino adolescent group, even after controlling for anxiety. It is possible that 
positive attitudes to mathematics could act as a protective factor in pupils with risk 
factors for low mathematical attainment.

The significance of attitudes to mathematics makes it important to find ways of 
intervening to improve attitudes and in particular to treat or prevent mathematics 
anxiety. Treatments include desensitization and cognitive behavior therapy and 
related treatments that are used for many forms of anxiety (e.g. Hembree, 1990). 
Beilock and colleagues have found that ‘writing out’ one’s anxieties can reduce 
anxiety and improve performance, both in mathematics anxiety and other forms of 
academic performance anxiety (Park, Ramirez, & Beilock, 2014; Ramirez & 
Beilock, 2011). Such treatments are of course only feasible with those who are old 
enough to have reasonable facility with writing.

There is evidence that interventions that improve mathematical performance 
may also improve attitudes and reduce anxiety. Levitt and Hutton (1983) found 
that training in basic arithmetical skills and in relevant study skills such as note 
taking can reduce mathematics anxiety. Supekar, Iuculano, Chen, and Menon 
(2015) used an intensive 8-week programme to improve the mathematical skills 
of children in Grade 3 with high and low mathematics anxiety. The program was 
based on MathWise (Fuchs et al., 2008, 2013) and included both games and more 
formal activities involving practice with addition and subtraction, training in effi-
cient counting strategies for arithmetic and exposure to concepts such as the com-
mutativity of addition and that adding zero to a number does not change it. 
Children in general improved in mathematical problem-solving, and those who 
started with high mathematics anxiety showed a significant reduction in mathe-
matics anxiety on a questionnaire measure. Moreover, fMRI scanning showed 
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that before training, children with high mathematics anxiety showed brain activation 
differences from those with low mathematics anxiety, and in particular in the 
higher amygdala; but after the training these group differences disappeared.

 Interventions for Mathematical Difficulties

As indicated in the above paragraph, interventions can be effective in ameliorating 
mathematical difficulties and possibly improve attitudes as well. How can we inter-
vene best?

There have been some intervention programs for children with mathematical dif-
ficulties since at least the first half of the twentieth century, especially in the USA 
(Brownell, 1929; Tilton, 1947; Williams & Whitaker, 1937). However, there are 
relatively few numeracy interventions available until recently; and mostly such 
interventions have not been used on a large scale.

However, in the twenty-first century, there has been increasing interest in devel-
oping interventions for children with numeracy difficulties (Butterworth et  al., 
2011; Chodura, Kuhn, & Holling, 2015; Clements & Sarama, 2011; Cohen Kadosh, 
Dowker, Heine, Kaufmann, & Kucian, 2013; Dowker, 2017; Dowker & Sigley, 
2010; Gersten et al., 2009; Kucian et al., 2011; Rasanen, Salminen, Wilson, Aunio, 
& Dehaene, 2009). Only a few of these interventions will be discussed in detail 
here: for a more comprehensive account, see Dowker (2017).

Interventions in numeracy (as well as literacy) have sometimes been classified 
into three categories of varying degrees of intensiveness termed ‘waves’ in the UK 
and ‘tiers’ in the USA. Wave 1 involves whole-class teaching designed to be suit-
able for children of a variety of attainment levels. Wave 2 involves lighter-touch, 
less- intensive interventions in small groups (or sometimes limited-time one-to-one 
interventions) with children who are experiencing mild or moderate difficulties in 
the subject. Wave 3 involves more intensive, usually individualized interventions for 
children with more significant problems.

 Whole-Class Approaches

While there has been interest in developing and improving mathematics curricula 
and educational techniques for quite a long time, there has been increasing recent 
interest in investigating the possible role of certain new whole-class programs in 
improving overall performance and reducing the incidence of numeracy difficul-
ties. One programs which is attracting current interest from this point of view, 
especially in the UK, is Mathematics Mastery, a program inspired by some aspects 
of Singapore mathematics education. This is supported by NCETM (https://www.
ncetm.org.uk). Compared to traditional curricula, fewer topics are covered in more 
depth, and greater emphasis is placed on problem-solving and on encouraging 
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mathematical thinking. A current evaluation by the Education Endowment 
Foundation has so far indicated that the use of the program in Year 1 results in an 
average increased gain in mathematics age of 2 months in the first year, and the 
use of the program in Year 7 results in an average increased gain in mathematics 
age of 1 month. Further investigation is desirable to see whether these gains are 
maintained or extended over time.

Adapting classroom instruction to take account of individual needs may also 
involve allowing for independent individualized or small-group work within a class 
(El-Naggar, 1996). This may involve progressing through a textbook at one’s own 
pace, the use of individualized worksheets and/or the individualized use of educa-
tional computer software.

Such approaches are potentially more flexible and have more potential for taking 
account of the componential nature of arithmetical ability, than giving all children 
the same instruction, or streaming or setting. Unlike streaming and setting, which 
have usually been found to have negative effects on low attainers’ performance, Lou 
et al. (1996) indicated that within-class grouping had a positive effect on the perfor-
mance of low achievers, but only if it was accompanied by provision of appropriate 
materials and activities. The potential disadvantages of such approaches include the 
risks that even within one class, some pupils may be labelled as ‘low attainers’ and 
live down to expectations as well as that work will become so individualized that 
pupils will not benefit from mutual discussion and exploration of ideas.

 Light-Touch Individualized and Small-Group Interventions

There are clearly many children who have significant need of more targeted inter-
vention, but do not need extremely intensive intervention. Relatively light- touch 
interventions are needed for such individuals. Such interventions are usually deliv-
ered by teachers or teaching assistants within the school. They are often delivered in 
small groups, or sometimes individually but on a relatively infrequent basis.

For example, in the UK, Askew, Bibby, and Brown (2001) developed a small- 
group intervention technique that involved the use of derived fact strategies. 
Teachers worked with small groups (four per group) of 7- to 8-year-old children, 
who had performed below average in school achievement at age 7. The children 
underwent intervention once a week for 20 weeks. These children improved signifi-
cantly more than the controls, both in accuracy and in their use of known and derived 
facts rather than needing to resort to counting strategies.

In an American study, Bryant, Bryant, Gersten, Scammacca, and Chavez (2008) 
delivered 15-min small-group interventions 3–4  days a week for 18  weeks. The 
interventions dealt with counting, quantity representation, basic facts and place 
value concepts. The 26 pupils in the intervention did not differ significantly from 
controls on a standardized test at the end of the intervention period. However, inter-
vention programs lasting longer than 15  min at a time and/or continuing over a 
longer period of time have given positive results. Bryant et al. (2008) used similar 
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interventions to the above, but lasting 20 min at a time, 4 days a week, for 23 weeks. 
The 42 children in this study did perform significantly better than controls on a 
standardized test.

Thus, relatively small-group interventions can have a significant impact on the 
progress of children with mathematical difficulties. The ways in which such inter-
ventions are delivered seem to affect the level and nature of their effectiveness.

There are also programs which, though administered individually, involve rela-
tively small amounts of time and may often be delivered by teaching assistants 
rather than specialist teachers.

An example is Catch Up® Numeracy, which was developed through a collabora-
tion between myself and Catch Up®, a not-for-profit charity (Dowker, 2017; Dowker 
& Sigley, 2010; Holmes & Dowker, 2013). The main target pupils have been pupils 
aged from 6 to 11 years, who have moderate difficulties with mathematics. It has 
recently been extended for use with 11 to 14 year olds. It consists of two 15-min 
sessions per week for approximately 30 weeks.

Catch Up Numeracy focuses on assessing and targeting specific strengths and 
weaknesses. The intervention begins by assessing the children on the ten compo-
nents of numeracy. Each child is assessed individually by a trained teacher or more 
usually a teaching assistant. This assessment is used to construct a ‘Catch Up 
Numeracy’ learner profile, which determines the entry level for each of the ten 
Catch Up Numeracy components. Children are provided with mathematical games 
and activities targeted to their specific levels in specific activities.

The ten components include (1) counting orally; (2) counting objects; (3) 
reading and writing numbers; (4) comparing, adding and subtracting tens and units; 
(5) ordinal numbers; (6) word problems; (7) translation between different formats 
(numerals, number words and sets of objects); (8) derived fact strategies (the use of 
known facts, combined with arithmetical principles such as commutativity, to derive 
new facts; e.g. if 8 + 6 = 14, then 6 + 8 must also be 14); (9) estimation of quantities 
and of answers to arithmetic problems; and (10) remembered number facts.

Studies where children were pretested and post-tested on the Hodder Basic 
Number Screening Test (Gillham & Hesse, 2012) have shown that children make 
about twice as much progress as would be expected from the passage of time alone 
and that they make significantly more progress than business-as-usual controls 
(Dowker, 2017; Holmes & Dowker, 2013). A randomized controlled study is 
currently underway to investigate whether the gains are significantly greater than 
those of children receiving equivalent-time mathematics intervention.

 Highly Intensive Interventions

There are some children whose difficulties are so severe and/or resistant to interven-
tion that light-touch interventions will not prove sufficient. Much more intensive 
interventions, perhaps involving daily individualized sessions with a teacher highly 
trained in intervention techniques, may be necessary. A well-known example of 
such an intensive intervention is Mathematics Recovery. The Mathematics Recovery 

A. Dowker



781

program was designed in Australia by Wright and his colleagues (Wright & Ellemor-
Collins, 2018; Wright, Martland, & Stafford, 2006). In this program, teachers pro-
vide intensive individualized intervention to low- attaining 6- and 7-year-olds. 
Children in the program undergo 30 min of individualized instruction per day over 
a period of 12–14 weeks.

The choice of topics within the program is based on the Learning Framework in 
Number, originally devised by Steffe (1992). This divides the learning of arithmetic 
into five broad stages. These stages are (1) emergent (some simple counting, but few 
numerical skills), (2) perceptual (can count objects and sometimes add small sets of 
objects that are present), (3) figurative (can count well and use ‘counting all’ strate-
gies to add), (4) counting on (can add by ‘counting on from the larger number’ and 
subtract by counting down, can read numerals up to 100 but have little understand-
ing of place value) and (5) facile (know some number facts, are able to use some 
derived fact strategies, can multiply and divide by strategies based on repeated addi-
tion, may have difficulty with carrying and borrowing). Children are assessed, 
before and after intervention, in a number of key topics. They undergo interventions 
based on their initial performance in each of the key topics. The key topics that are 
selected vary with the child’s overall stage. For example, the key topics at the emer-
gent stage are (i) number word sequences from 1 to 20, (ii) numerals from 1 to 10, 
(iii) counting visible items (objects), (iv) spatial patterns (e.g. counting and recog-
nizing dots arranged in domino patterns and in random arrays), (v) finger patterns 
(recognizing and demonstrating quantities up to 5 shown by number of fingers) and 
(vi) temporal patterns (counting sounds or movements that take place in a sequence). 
The key topics at the next perceptual stage are (i) number word sequences from 1 to 
30, (ii) numerals from 1 to 20, (iii) figurative counting (counting on and counting 
back, where some objects are visible but others are screened), (iv) spatial patterns 
(more sophisticated use of domino patterns; grouping sets of dots into ‘lots of 2’, 
‘lots of 4’, etc.), (v) finger patterns (recognizing, demonstrating and manipulating 
patterns up to 10 shown by numbers of fingers) and (vi) equal groups and sharing 
(identifying equal groups and partitioning sets into equal groups). The key topics at 
later stages place greater emphasis on arithmetic and less on counting. Despite the 
overall division into stages, the program acknowledges and adapts to the fact that 
some children can be at a later stage for some topics than for others.

Smith, Cobb, Farran, Cordray, and Munter (2013) found significant improvement 
in both standardized tests and researcher-derived tests in a randomized field trial of 
first-grade pupils assigned to Mathematics Recovery versus a waiting list control 
group. Effect sizes ranged from 0.21 to 0.28 for standardized tests and were higher for 
the researcher-derived tests. Future studies should assess the longer-term impact.

 Numbers Count

In order to set up an intensive intervention for children with serious numeracy dif-
ficulties in the UK, and to test its effectiveness, Every Child Counts was set up as a 
partnership initiative between the Every Child a Chance charity (a coalition of 
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business partners and charitable trusts) and government. The aim was to enable the 
lowest-attaining children to make greater progress toward expected levels of 
attainment in mathematics, catching up with their peers and performing at least at 
average levels on school assessment tests, wherever possible, by the end of the 
second year of primary school. The original intention was to provide intensive 
support in mathematics to 30,000 Year 2 children annually, though this has been 
significantly reduced due to the financial crisis of 2008 and subsequent government 
spending cuts.

Dunn, Matthews, and Dowrick (2010) developed the Numbers Count program, 
which draws on aspects of three existing interventions: Multi-Sensory Mathematics 
(developed in Leeds using Numicon materials), Numeracy Recovery (developed in 
Hackney) and Mathematics Recovery (Wright et al., 2006). This program involved 
careful assessment of individual children’s strengths and weaknesses, followed by 
intervention targeted to addressing specific weaknesses, and emphasizes the devel-
opment of number concepts through multisensory teaching. It included a wide vari-
ety of components of arithmetic but places particular emphasis on methods of 
counting and number representation. Children received a half an hour of individual-
ized or sometimes very small-group (two or three children to a teacher) intervention 
per day. It was delivered by teachers who have received Masters level training. In 
the initial stages of the project, 2621 Year 2 children, across 27 English local author-
ities, took part in Numbers Count. They received an average of 40 half- hour indi-
vidualized Numbers Count lessons in a term, delivered by teachers who had received 
Masters level training. The participating children were given the Sandwell Test, a 
standardized arithmetic test, before and after entering the program, and were 
retested 3 months and 6 months later.

Torgerson, Wiggins, Torgerson et al. (2011) carried out an independent evalua-
tion of the program. About 12 children within each of 44 schools were randomly 
allocated to either an intervention group or a waiting-list control group. Children in 
the intervention group received an average of 40 half-hour individualized Numbers 
Count lessons in a term, delivered by teachers who had received Masters level train-
ing. The participating children were given the Sandwell Test, a standardized arith-
metic test, as a pretest and were post-tested on the Sandwell Test after 3 months and 
6 months and also the Progress in Maths 6 (PIM 6) test after 3 months. Findings 
showed that the intervention group performed significantly better than the controls 
on the PIM 6 test (effect size 0.33).

The changes in the Sandwell scores were greater. Before entering the program, 
the children’s Number Age was on average 11 months below their Chronological 
Age. On average, they gained 14 months in Number Age in one term, a ratio gain of 
over 4 (months gained in Mathematical Age divided by mean duration of interven-
tion in months), and were scoring at chronological age level by the time they exited 
the program. However, it must be noted that, while the PiM scores were marked by 
people blind to the children’s group assignment, the Sandwell scores were not, so 
that there could have been unconscious bias with regard to the latter. As always, the 
question arises of whether the gains will be maintained over the long term. A long- 
term evaluation is currently being carried out to investigate whether the effects of 
the intervention persist to the end of primary school and into secondary school.
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 What Makes Interventions Effective?

As can be seen, programs vary considerably, both according to the theories and 
interests of the researchers and according to the target group, e.g. age, nature and 
extent of mathematical difficulties, etc. However, there are several features that 
effective programs share. These include effective assessment of pupils’ initial per-
formance level, including, in the case of pupils with mathematical difficulties or low 
attainment, diagnosis of individual strengths and weaknesses. They also involve 
taking a developmental approach and applying knowledge of how performance and 
knowledge typically develop in the age group being studied. They also involve care-
ful planning, taking availability of resources into account, and appropriate use of 
school staff: the best-designed program will not work if teaching staff are unavail-
able, excessively overburdened or not adequately trained to deliver the program. 
Another key feature of an effective program is its ability to motivate pupils, and to 
prevent or counteract the association of mathematics with boredom, or worse, fear 
and anxiety. The use of games, for example, is a recurring feature of promising 
programs, especially with preschool and primary school children.

Primary school age is where interventions have been most focussed. There are 
several reasons for this. Mathematical difficulties become noticeable by this stage, 
whereas they are harder to detect at an earlier stage. Moreover, primary and early 
secondary pupils are the ones who are most universally doing mathematics at 
school. Pre-schoolers are by definition not attending formal school and until recently 
were unlikely to be in an educational setting at all. Until relatively recently secondary 
pupils who were struggling with mathematics could partially or completely abandon 
the subject at an early stage. But all primary pupils are spending a significant amount 
of time on mathematics.

Moreover, it is desirable to intervene at the primary school stage in case of dif-
ficulties with numeracy, in order to prevent these problems from having a negative 
impact on pupils reaching later stages in the curriculum or leading to their developing 
serious mathematics anxiety.

It is noteworthy that nearly half of the British adult working population are per-
forming only at primary school level in mathematics (BIS, 2011). While part of this 
is undoubtedly because many pupils struggle with mathematical concepts taught in 
secondary school, it is also likely that pupils are failing to progress because they 
have not fully come to grips with primary school material. This makes interventions 
at the primary school level important: ranging from whole-school interventions to 
improve overall performance to highly individualized interventions for pupils who 
are seriously struggling.

There is still much work to be done in developing and evaluating programs. 
Ideally, there needs to be long-term follow-up of programs, to see whether the 
programs have an impact on pupils’ long-term mathematical performance and on 
other outcomes. There should also be more comparisons between different pro-
grams, with a particular focus on investigating whether different programs are 
more effective with different groups of pupils. Furthermore, there should be more 
study of whether the size and nature of the group, in which programs are delivered, 
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affects effectiveness: e.g. whether and under what circumstances individualized 
interventions are more effective than group interventions, or small- group than 
large-group interventions.
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Chapter 45
Beyond the “Third Method” 
for the Assessment of Developmental 
Dyscalculia: Implications for Research 
and Practice

Vivian Reigosa-Crespo

Three approaches have been established related to identification of learning 
disabilities, including those associated to the domain of mathematics: (1) ability- 
achievement discrepancy (Mastropieri & Scruggs, 2002), (2) response to interven-
tion (RTI) (Fuchs & Fuchs, 2006), and (3) cognitive patterns of strengths and 
weaknesses (PSW) (Panel, 2014). In some way, the main ideas stated by the authors 
in this section were based on these approaches, and a solid consensus concerning to 
limitations of the discrepancy method can be noticed.

The most important criticism about the discrepancy model is concerning the poor 
sensitivity of the model to developmental differences in cognition and achievement, 
the overidentification of children coming from diverse environments, the promotion 
of the “wait-to-fail” model because early identification is unlikely, the poor deci-
sion-making based on measurement problems, and the difficulty for distinction 
between children with specific learning disabilities (SLDs) and low achievers; also 
it is unclear which IQ score should be used to determine “ability” for discrepancy 
calculation.

On the other hand, although most authors recognize the role of RTI for prevent-
ing learning problems and promoting early intervention services, there is scarce 
evidence supporting the use of RTI alone in identifying all children with SLD and 
in addressing their intervention needs. Moreover, there are numerous reasons for 
which children are not responsive to intervention beyond the SLD. Other practical 
problems with the RTI approach are related to a lack of agreement about using stan-
dard protocols or problem-solving strategies and on a measurement model for defin-
ing responsiveness. Additionally, RTI research has largely focused on word reading 
at the early elementary grades, with methods across grades and content areas not 
empirically established. Lynn Fuchs and Douglas Fuchs attempt to solve those 
practical issues in their chapter as part of this section.
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However, other issues still need further empirical evidence. Consequently, there 
is no agreement concerning the teacher training standards and supervision methods, 
and the RTI approach does not have effective algorithms for differential diagnosis 
of SLD and other disorders.

In an attempt to sort out the limitations of those approaches, a group of 58 experts 
wrote a white paper regarding SLD identification and intervention. Based on survey 
response and empirical evidence, they arrived at five important conclusions:

“(1) Maintain the SLD definition and strengthen statutory requirements in SLD identifica-
tion procedures; (2) neither ability-achievement discrepancy analyses nor failure to respond 
to intervention (RTI) alone is sufficient for SLD identification; (3) to meet SLD statutory 
and regulatory requirements, a “third method” approach that identifies a pattern of psycho-
logical processing strengths and deficits, and achievement deficits consistent with this pat-
tern of processing deficits, makes the most empirical and clinical sense; (4) an empirically 
validated RTI model could be used to prevent learning problems in children, but compre-
hensive evaluations should occur whenever necessary for SLD identification purposes, and 
children with SLD need individualized interventions based on specific learning needs, not 
merely more intense interventions designed for children in general education; and (5) 
assessment of cognitive and neuropsychological processes should be used not only for iden-
tification, but for intervention purposes as well, and these assessment-intervention relation-
ships need further empirical investigation.” (Panel, 2014) p. 62.

Although diverse models of PSW exist, they follow these general principles: (i) 
the full-scale IQ is irrelevant except for intellectual disability diagnoses; (ii) chil-
dren classified as having a SLD have a pattern in which most academic skills and 
cognitive abilities are within the average range. However, they have isolated weak-
nesses in academic and cognitive functioning, (iii) each model demands that we 
“match” deficits in specific cognitive processes to the specific area of academic 
concern without testing children with numerous measures in an attempt to find a 
deficit, and (iv) most cognitive abilities that do not relate to the area of academic 
concern are average or above.

According to Zirkel (2013), the posture declared in a previous version of the 
white paper published in 2010 is legally flawed in terms of its reliance on the “pat-
tern of strengths and weaknesses” provision, its failure to consider state special 
education laws, and its overemphasis on the processing component. As a result, the 
position is justifiable only as advocating revisions, rather than in finding support, in 
the law¨ (Zirkel, 2013, p.93). This critique was not thoroughly addressed in the last 
version of the white paper.

In spite of this limitation, the nature of the five conclusions stated in the referred 
white paper reveals the importance of a clear definition about specific math disabil-
ity or dyscalculia in order to differentiate from low achievement in math. This issue 
is relevant because dyscalculia is qualitatively and functionally different from low 
achievement only (Mazzocco, 2007). In consequence, low achievement alone is not 
a suitable diagnostic indicator for dyscalculia. This conclusion does not imply that 
only children with dyscalculia should receive intervention for their learning difficul-
ties or that those with low achievement should not receive instructional support. 
Rather, it argues that assuming the differentiation of dyscalculia from low achieve-
ment allow those with low achievement to receive special education services, which 
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has occurred in the past with poor implementation of discrepancy approaches for 
SLD identification, is not appropriate (Panel, 2014). On the contrary, evidence from 
research suggests that children with low achievement would likely benefit from an 
RTI approach, where greater intensity of instruction should likely lead to response 
for a significant percentage of struggling students (Stoiber & Gettinger, 2016). 
Actually, this approach depends on curriculum-based definitions of typical arith-
metical development. It focussed on each child’s conceptual gaps in understanding 
and giving individual support with activities designed to eliminate each gap. 
However, nonresponsive children subsequently identified with a pattern of cognitive 
strengths and weaknesses that underlie dyscalculia need individualized instruction 
to meet their academic requirements (Panel, 2014).

Evidence provided by genetic, brain, and cognitive research strongly supports 
that dyscalculia is a neurocognitive developmental disorder which exhibits high 
rates of co-occurrence with other SLD as dyslexia (Gross-Tsur, Manor, & Shalev, 
1996) and attention-deficit/hyperactivity disorder (Monuteaux, Faraone, Herzig, 
Navsaria, & Biederman, 2005). Many studies have sought to explain dyscalculia 
and its co-occurrence in terms of domain-general cognitive capacities such as those 
related to general intelligence, memory, language, and space (Geary & Hoard, 
2005).

However, much research has been motivated by the postulation of core cognitive 
deficits that can give rise to the observed behavior. Core deficits themselves can 
have many causes and variable behavioral manifestations. Children with dyscalcu-
lia show a core deficit in processing numerosities, which is revealed in slower and 
less accurate enumeration of small sets of objects and in comparing the numerosi-
ties of sets of objects or the magnitude of digits (B. Butterworth & Kovas, 2013). 
However, good language abilities appear to be needed for the typical development 
of counting, calculation, and arithmetical principles (Dolan, 2007). It is not yet 
known whether this impairment interacts with other cognitive impairments to create 
identifiable symptom pictures or subtypes of dyscalculia; and it does not exclude the 
possibility that there are other causes of learning difficulties in mathematics, even 
selective learning difficulties (B. Butterworth & Reigosa-Crespo, 2007). Empirical 
evidence that neurocognitive processes affect math achievement suggests that the 
assessment of these processes is critical not only for dyscalculia or low achievement 
identification and service delivery but for intervention purposes as well.

From the author’s perspective, in the case of dyscalculia, the inclusion of the 
concept of the core neurocognitive deficit may address two additional points of 
criticisms concerning the PSW approach. The first criticism is related to poor stabil-
ity of the profiles of cognitive ability. In 2012, Reeve and colleagues published the 
results of a 6-year longitudinal study (all primary grades), and they found that dot 
enumeration and number comparison ability measures of core number competence 
were broadly stable across the study (Reeve, Reynolds, Humberstone, & Butterworth, 
2012). They also demonstrated that the neurocognitive profiles based on core 
numerical abilities were not related to general cognitive abilities but were related to 
computation abilities. Several reports based on longitudinal studies support this 
conclusion (Halberda, Mazzocco, & Feigenson, 2008; Reigosa-Crespo et al., 2013).
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Some authors argued, as second limitation of the PSW approach, that cognitive 
profiles do not provide information about appropriate interventions because of the 
literature showing that association among different aspects of cognitive ability and 
academic achievement is inconsistent (Fletcher, Denton, & Francis, 2005). However, 
supportive evidence for a relationship between core numerical capacities and math 
competence has been revealed in studies of typical children and those with known 
mathematical disabilities (Reigosa-Crespo et al., 2012). Those authors also argued 
that there is little evidence that instruction addressing strengths and weaknesses in 
cognitive skills is related to intervention outcomes (Fletcher et al., 2005). Moreover, 
two recent meta-analyses on specific cognitive skills training have indicated that it 
does not appear to result in improved academic achievement for most students 
(Kearns & Fuchs, 2013).

Numerous attempts have been made to design educational interventions to foster 
the development of core numerical processing. In the majority, the results have 
showed improvement using nonsymbolic (Booth & Siegler, 2008; Hyde, Khanum, 
& Spelke, 2014) and symbolic quantities (Obersteiner, Reiss, & Ufer, 2013; Siegler 
& Ramani, 2008) with transfer to improvements in math competence. Nonetheless, 
further research is needed on the consequences of intervention based on core neuro-
cognitive deficits in children with dyscalculia.

The inclusion of the concept of the core neurocognitive deficit in the PSW approach 
has several practical implications. The diagnosis of dyscalculia can consist of simple 
tests of the basic capacities to estimate and compare numerosities; for example, a 
screener for DD based on these principles is widely used in the UK (B. Butterworth, 
2003) and forms the basis of the Minimat test that was used to carry out a very- large- 
scale cohort study of dyscalculia in Cuba (Reigosa-Crespo et al., 2012). In the assess-
ment of individual cognitive capacities, set enumeration and comparison can 
supplement performance on curriculum-based standardized tests of arithmetic to dif-
ferentiate dyscalculia from other causes of low math achievement (Landerl, Bevan, & 
Butterworth, 2004).

On the other hand, dyscalculia and other neurocognitive disorders are rarely 
identified until relatively late in childhood because specialized assessments are dif-
ficult to access and teachers and parents are often poorly informed about them 
(Goswami, 2008). Moreover, because of the high rates of co-occurrence, it is likely 
that an unassessed SLD will be treated as the consequence of the assessed SLD. This 
may occur when one condition is more noticeable than the other or when one SLD 
has been studied more than another (B. Butterworth & Kovas, 2013).

Implications for intervention are clear. If the basic capacities for understanding 
numerosities are weak, these should form the focus of a training strategy rather than 
learning number bonds and other arithmetical facts by rote (B. Butterworth, Varma, 
& Laurillard, 2011). If it turns out that there are subtypes of DD due to interaction 
with other cognitive deficits or due to domain-specific information processing 
impairments yet to be identified, new and appropriate interventions will need to be 
devised. Moreover, neuroscientific research suggests that rather than address iso-
lated curricular gaps, remediation should build the foundational number concepts 
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first. It offers a precise cognitive target for assessment and intervention that is 
largely independent of the learners’ social and educational contexts.

According to several authors, for solving these challenges, further research into 
the atypical developmental trajectories of neurocognitive processes leading to 
dyscalculia are needed (B. Butterworth & Kovas, 2013). It is also important to study 
the comorbidities among SLDs, as well as the causes and effects of comorbidities 
and their educational consequences. This knowledge also helps with individualizing 
education for all learners. Additionally, and determined by the first, educators, 
school psychologists, and clinicians need to be trained to understand dyscalculia, to 
differentiate dyscalculia from low math achievement, and, also, to design specific 
learning pathways for each child who struggles with math.

For concluding this chapter, an implementation based on this approach will be 
presented briefly. The educational neuroscience lab in the Cuban Centre for 
Neuroscience (CCN) developed several tools that may serve as scaffolding for 
implementing a school-based program focused on neurocognitive development 
(henceforth, SBND program). These tools are questionnaires for the identification 
of signs of core neurocognitive deficits associated with poor achievement on read-
ing and mathematics and also test for profiling an individual’s neurocognitive status. 
This profile may facilitate interventions focusing on individual differences into the 
classroom. A SBND program has five main features.

A Closed Cycle Approach: Red Flags → Neurocognitive Profile → Intervention → 
Monitoring A closed cycle approach means that a SBND program involves (i) the 
identification of signs of atypical neurocognitive development in the learners, (ii) 
profiling of individual differences relative to strength and weakness in neurocogni-
tive capacities related to reading and mathematics, (iii) personalized intervention in 
the classroom based on neurocognitive profiles, and (iv) monitoring the student’s 
progress by “reuse” of the tools for detection and profiling.

An Ecological Approach: The School Is the Best Place The SBND program is 
designed to run in schools and to avoid clinical practices mainly focusing on diag-
nosis and treatment of disorders. Indiscriminate use of these practices can lead to 
stigmatization and segregation of those with special needs. Under the SBND pro-
gram, teachers who receive training in science of learning and ICT can use the 
screening tools in mobile devices like smartphones or tablets for identifying signs 
of warning concerning the neurocognitice development of individual students (“red 
flags”). Based on these early signs and also on the information resulting from indi-
vidual neurocognitive profiles, teachers can elaborate multiple strategies for attend-
ing to individual differences in the classroom. This approach supports an 
“ecological” perspective since SBND programs benefit from the natural conditions 
of the school environment and everyday teaching-learning interactions. At the same 
time, these everyday educational processes and outcomes may be positively 
impacted as consequence of these programs.

Taking Advantage of ICT Facilities As is known, several global organizations are 
promoting the integration of ICT into curriculum, teaching, learning, and assess-
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ment as a main goal for education until 2030 (UNESCO-IBE, 2016). In line with 
this endeavor, the SBND programs take advantage of current ICT availability 
(Santos et al., 2015). Tools for detecting “red flags” are based on mobile solutions, 
whereas tools for profiling neurocognitive development are computerized tests that 
facilitate precision and accuracy in the assessment. Both have been developed as 
client-server applications. The teacher training in educational neuroscience is 
designed as an e-learning environment (Fig. 45.1). The intervention includes strate-
gies for attending to individual differences in the classroom and, also, neurocogni-
tive training using theoretically based video games.

Teaching the Teachers A SBND program may drive teacher training and profes-
sional development in two ways. On the one hand, teachers gain knowledge about 
the neurobiology of learning, the neurocognitive development of learners and its 
relationship with literacy and numeracy, and also how this knowledge can impact on 
educational practices. On the other hand, teachers acquire skills to use ICT as part 
of this educational process.

Inclusive Education and Then Inclusive Intervention Identifying “red flags” in neu-
rocognitive development may be a powerful way to produce early preschool-based 
and school-based neurocognitive interventions. However, educators must under-
stand the relationship between the brain, cognition, and learning in order to manage 
individual differences in neurocognitive development in educational settings. The 
most effective strategies could be those in which individual differences are seen as 
opportunities rather than problems that need to be addressed. In this sense, differ-
ences can provide opportunities to experiment with strategies that involve all learn-
ers in meaningful activities. Cooperative learning is one of them, for example.

At present, a SBND program is carried out under the direction of the Educational 
Ministry of Ecuador in collaboration with the educational neuroscience lab of the 
CCN. This study has recruited 20,030 children as well as 1598 teachers and other 

Fig. 45.1 Tools of the school-based programs for improving neurocognitive development are 
based on ICT facilities
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educational practitioners. The main goal is to evaluate and validate the principles of 
a SBND program. At present, the study is in progress, but actions related with train-
ing teachers and detection of “red flags” have been concluded. Figure 45.2 shows 
the SBND program’s phases (A), the training courses for teachers (B), the tools 
used in each phase of the SBND program (C), and the relationship between “red 
flags” identified by teachers and the neurocognitive profiles (D). In this case, notice 
that more “red flags” indicate a more atypical profile.

 Challenges for Educational Policy and Practice

Researchers, practitioners, policy-makers, and teachers should take in mind that 
several conditions are relevant for a successful SBND program:

Barriers to translation. There is a lack of an integrated knowledge base that limits 
the effectiveness of disseminating findings from the laboratory into the classroom. 
A common platform and a common language become necessary for helping to iden-
tify and to address misunderstandings as they arise and to develop concepts and 
messages that are both scientifically valid and educationally informative (Howard-
Jones et al., 2016). A critical component of this endeavor is that tangible financial 
resources must materialize for progress to be made, from the local level all the way 
up to the governments. Notice that, as a worldwide practice, the government educa-
tion budget spent on research is significantly smaller compared, for example, with 
the government health budget spent on research.

Fig. 45.2 Implementation of a school-based program focused on neurocognitive development in 
Ecuador
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The teaching profession. The majority of in-service teachers have no background 
knowledge about science of learning, and pre-service teachers do not receive infor-
mation about that. Removing the barriers to translation is a necessary condition for 
effectively teaching teachers about the brain, cognition, and learning. In line with 
this, a thoughtful way for training teachers is to create courses in partnership 
between teachers and researchers on science of learning (Pickering & Howard-
Jones, 2007).

On the other hand, introducing science of learning into initial teacher education 
requires faculty cooperation across department and college lines (Dubinsky, 2010). 
In this sense, effective mechanisms should be established in order to diminish 
administrative barriers relating to the development of tuition-sharing arrangements, 
calculating faculty time assignments, etc. and, also, for coordinating the participa-
tion of the faculties which have different sets of pressures and priorities. At the level 
of individual faculties, communication and cooperation among people with exper-
tise in each area should be required. For example, concepts such as synapsis, neural 
plasticity, sensitive periods, memory recovery, and cognitive process must be 
explained by researchers to educators; and concepts such as curriculum, assessment, 
and learning trajectories must be explained by educators to researchers. A final chal-
lenge for introducing science of learning content into initial teacher education is that 
university-level teacher educators need to be convinced that doing so will result in 
preparing better classroom teachers. Finally, policy-makers need to keep in mind 
that, introducing science of learning concepts as a background for initial teacher 
education, new entry requirements and new qualifications for future teachers have to 
be taken into consideration.
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Chapter 46
Challenges and Future Perspectives

Pekka Räsänen, Vitor Geraldi Haase, and Annemarie Fritz

This book started with a note about the situation in our schools: globally, six out of 
ten children and adolescents are not able to read or handle mathematics with profi-
ciency by the time they are of age to complete primary education. That makes over 
600 million children and teenagers (56%) whom we fail to teach the basic skills 
required for an independent adult life (UNESCO Institute for Statistics 2017). This 
number exceeds with a multitude of those considered to have learning disabilities in 
mathematics. Definitely, the first and most urgent question in mathematics educa-
tion globally is how to improve the overall quality of education and how to offer 
proper learning opportunities for all.

Studies from different countries using different criteria have estimated that the 
prevalence of persistent difficulties in learning mathematics is about 5–7% (Zhang 
et al., 2018; Landerl, Chap. 2, this volume). That is approximately the same number 
of teenagers as there is in the highest-performing countries below the lowest level 
of performance in the international comparison studies like the Programme for 
International Student Assessment (PISA) (see Haase and Krinzinger, Chap. 20, this 
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volume). Therefore, even if all countries could raise the quality of mathematics 
education to the level of the top Nordic or Asian countries and were able to offer 
educational opportunities for all, still more than 70 million school-aged children 
and adolescents would show extensive difficulties in learning basic mathematical 
skills. This number is similar to the total population of France, or that of countries 
like Argentina, Chile, Uruguay, and Paraguay put together. We are talking about a 
large challenge to work on for education and research.

Judging from the chapters presented  in the section “Mathematics learning and 
its difficulties around the world” and from the considerations above, the most press-
ing problems are related to environmental (i.e., policy) questions. How can we pro-
vide good mathematics education for all? The answer to this question is more 
political than scientific, except for those 1–2 children in every classroom who have 
learning disabilities, i.e., developmental dyscalculia, and who continue to struggle 
with learning basic numeracy despite the best available education.

 We Need Research from Genes to Behavior to Build Bridges 
Between Them

In the search for a solution for math education of individuals with inherent difficul-
ties, attention has been turned to neuropsychology and cognitive neurosciences. A 
new field of research—educational neuroscience—has emerged (Della Salla & 
Anderson, 2012; Mareschal, Butterworth, & Tolmie, 2013). The most enthusiastic 
supporters of this new field of research have believed that educational neuroscience 
will subsidize the education of individuals with developmental dyscalculia. It is also 
hoped that educational neuroscience will contribute insights into the education of 
the majority of children who, despite not experiencing more severe impairments, 
still find learning mathematics difficult or overly demanding.

Therefore, we need to discuss the burgeoning field of cognitive neuroscience. 
However, a word of caution is necessary. Understanding the neurocognitive under-
pinnings of a behavior such as math learning is a complex enterprise. A way to 
reduce complexity is thinking in terms of levels of analysis, as proposed by Frith 
(1992). She distinguished four levels of analysis: etiological (environmental and 
genetic interactions); neural (neuromodulation, patterns of brain connectivity and 
activation); cognitive (cognitive processes and architectures); and behavioral (rela-
tions with environmental contingencies). It is important to understand that there is 
no qualitative hierarchy between these levels of description. Understanding the neu-
ral level is nothing deeper than understanding observable behavior. A detailed anal-
ysis and understanding of both is needed before we can understand their relations.

Bridges across these levels are still fragile and the waters underneath are turbu-
lent (Ansari & Coch, 2006). Researchers are working hard to build and strengthen 
these bridges. The concept of the endophenotype is a possible way to build these 
bridges (see Haase and Carvalho, Chaps. 22 and 23, this volume). Endophenotypes 
are intermediate phenotypes that may help to simplify the analysis and to establish 
links between the etiological and behavioral levels.
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Molecular genetic research discloses multiplexed relations between the etiologi-
cal and the phenotypical levels (see Carvalho and Haase, Chaps. 22 and 23, this 
volume). The hope of the endophenotype research program is to reduce this com-
plexity by characterizing the intermediate steps. These intermediate steps may be 
characterized at the neural level as patterns of expression of neuromodulators or 
patterns of task-related brain activation. At the cognitive level, the goal is to identify 
the cognitive mechanisms underlying typical and atypical math learning. The goals 
of the research program in contemporary numerical cognition may be described as 
uncovering the endophenotypes underlying math learning (Henik & Fias, 2018). If 
it is still risky to cross these bridges, it is worth trying—or, at least, the levels of 
analyses should consolidate or be made compatible.

 Educational Neuroscience: Where Are We?

Technological advances in recent decades, such as various functional neuroimaging 
and molecular genetic investigation techniques, have raised enormous interest in 
psychology and pedagogy. It is increasingly possible to investigate the biological 
foundations of psychological processes at relatively low cost. It makes less and less 
sense to investigate psychological phenomena from a purely functional or cognitive 
perspective, disregarding biological evidence. It seems that, finally, psychology is 
fulfilling the Darwinian ideal and is being integrated into biology. As stated by 
Dehaene (2007, p. 527):

An ultimate goal of psychology is to provide lawful explanations of mental mechanisms in 
terms of a small set of rules, preferably framed in the language of mathematics, which 
capture the regularities present in human and animal behavior. Furthermore, those psycho-
logical laws should not remain stated solely at a descriptive level (although obtaining valid 
descriptive rules of behavior is usually an indispensable step on that road). Rather, they 
should be ultimately grounded in a neurobiological level of explanation, through a series of 
additional bridging laws linking the molecular, synaptic, cellular, and circuit levels with 
psychological representation and computations.

It is clear that neuroscience alone cannot solve the puzzle of learning. Neuroscience 
needs a detailed analysis of behavior, otherwise it is useless: “behavioral work pro-
vides understanding, whereas neural interventions test causality” (Krakauer, 
Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). Likewise, cognitive skills 
that we describe with concepts like spatial skills (see Resnick et al., Chap. 26, this 
volume), working memory (see Passolungi and Costa, Chap. 25, this volume) or 
executive functioning (see Sarama and Clements, Chap. 43, this volume) all con-
tribute strongly to mathematics learning and learning disabilities, not forgetting the 
emotional and motivational aspects in learning (see Baten et al., Chap. 28, this vol-
ume; Haase et  al., Chap. 29, this volume). However, we are still far from fully 
understanding the mechanisms and structures of these concepts we continuously 
use in psychology and cognitive sciences. The reductive ideal of a neural model can 
only be as detailed as the concepts we use to describe the functions in it.

There is also a risk of overexplanation in educational neurosciences. This habit 
is common among neuroscientists and among teachers, who gladly take ideas from 

46 Challenges and Future Perspectives



802

neuroscience as guidelines for educational practices. Many of those complexity-
simplifying ideas, often called neuromyths, are produced by non-neuroscientists, 
but they are well-marketed as such. Typically, they are only loosely grounded in 
neuroscience, building incorrect and ineffective ideas of learning and teaching 
(Howard- Jones, 2014). Unfortunately, teachers who are interested in learning more 
about the brain tend to believe more of these false simplifications than teachers who 
are not interested in it (Dekker, Lee, Howard-Jones, & Jolles, 2012; Gleichgerrcht, 
Lira Luttges, Salvarezza, & Campos, 2015). What is most unfortunate is that these 
misconceptions seem hard to change (Im, Cho, Dubinsky, & Varma, 2018). 
Therefore, researchers need to be careful in their interpretations, as well as working 
to correcting the oversimplifications of these complex issues.

Another source of overexplanation are neuroscientific discoveries themselves. 
We have had a habit of explaining a cross-sectional group-level difference in brain 
activation patterns between typical and learning disabled as a cause, not a conse-
quence, of more complex development (see similar discussion on dyslexia research, 
e.g., Ramus & Szenkovits, 2008). Luckily, now there are more and more interven-
tions and longitudinal studies bringing insights into the causal mechanisms of the 
learning process itself. We also easily make oversimplifications from the brain to 
education, resulting in recommendations without empirical grounds (Alferink & 
Farmer-Dougan, 2010). Therefore—always—a warning must be added when we 
make interpretations about mechanisms between different levels of explanations 
(genetic, neural, cognitive, behavioral) and especially when we aim to make practi-
cal suggestions from cognitive neuroscientific studies for practices in the classroom 
(see Ansari, Chap. 7, this volume).

Will this building of knowledge on the neurocognitive and neurogenetic founda-
tions of psychological processes provide an evidence-base for promoting all sorts of 
learnings required to function effectively in the current and future world? In the 
long run, the answer seems to be definitely positive, but this is just a hunch. There 
still is no imaging machine that allows us to predict the future. Caution dictates that 
we should focus on the current state of knowledge and its implications.

At the outset, it is important to recognize that neuroscientific advances have 
remained largely restricted to examining the validity of hypotheses and models pre-
viously proposed in psychology (Bowers, 2016). Neuropsychology and functional 
neuroimaging are powerful tools to settle disputes between rival cognitive models 
of some psychological processes. In showing, for example, that two cognitive pro-
cesses are implemented by distinct neural systems, cognitive neuroscience helps to 
overcome the intrinsic limitations of purely psychological methods, supporting the 
ontological reality of psychological constructs (e.g., Bechara, Damasio, Tranel, & 
Anderson, 1998). New structural–functional correlations have also been discovered 
(e.g., Koenigs et al., 2007). So far, no neuroscientific breakthrough has occurred 
with radical epistemological or pedagogical implications.

Other examples relate to interventions for remediating learning difficulties. 
Functional and structural neuroimaging studies have consistently shown that 
 interventions modify patterns of connectivity among regions implicated in specific 
learning impairments (Michels, O’Gorman, & Kucian, 2017). This finding stresses the 
important role of synaptic plasticity in learning and in learning impairments, provid-
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ing a solid basis for interventions. However, success criteria are still formulated in 
behavioral terms.

Considerable interest has also been elicited by noninvasive biologically based 
therapies such as transcranial microcurrent stimulation or neurofeedback (Cortese 
et al., 2016; Kadosh, Dowker, Heine, Kaufmann, & Kucan, 2013; Wang & Sourina, 
2013). Research on biological therapies is still incipient but growing. It is to be 
expected that in the near future, a breakthrough may occur. Perhaps, on a longer 
time horizon, neurochips or genetic therapies will be available that overcome the 
limitations and variability of human learning potential.

In the following subsection, we comment on two important advances of neuro-
cognitive and neurogenetic research on mathematics learning with potential impli-
cations for pedagogy: the modeling of arithmetic learning and the role of acquiring 
arithmetic fact knowledge.

 What Is Learning Arithmetic from a Neuroscientific 
Perspective?

Difficulty in learning arithmetic skills is one of the central behavioral features of 
developmental dyscalculia. Very often it is used as the main criterion in research and 
diagnostics. However, arithmetic and written language are biologically secondary 
cognitive abilities (Geary, 2007). These abilities are relatively recently acquired and 
not universally present cultural artifacts. The relatively short time span since the 
invention of arithmetic and written language was probably not sufficient to evolve 
specific genetic mechanisms for intuitively learning these abilities. There also does 
not seem to be an intrinsic motivational system selected to acquire these abilities. 
Learning to read and write words and numbers is an arduous process consuming 
3–4 years of hard work from a child and his or her teachers (Dehaene, 2009; Moura 
et al., 2015).

Research has proposed models based on the concept of exaptation, such as the cul-
tural recycling (Dehaene & Cohen, 2007) and redeployment (M. L. Anderson, 2010) 
models, that explain the difficulties inherent in the processes of learning to read and 
write words and numbers, as well as doing math at the neural and computational levels. 
Acquisition of numerical symbols, for example, requires the establishment of synaptic 
connections between neural systems evolved for different adaptative symptoms, i.e., it 
constitutes a form of exaptation. Symbolic numerals seem to acquire their quantitative 
meaning through de novo establishment of synaptic connections between ancient, bio-
logical primary neurocognitive systems devoted to approximate number magnitude 
representation (the intraparietal sulcus) and neural systems implementing complex lin-
guistic forms (the left perisylvian language areas) and visual forms (the inferolateral 
occipitotemporal transition) (Dehaene & Cohen, 2007).

According to one model, severe and persistent math learning difficulties could 
originate from representational inaccuracy of numerical magnitude in the intraparietal 
sulcus and/or difficulties in establishing synaptic connections among areas originally 
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evolved with different finalities (Noël & Rousselle, 2011). Studies of developmental 
dyscalculia lag behind, but considerable genetic evidence supports the exaptation 
hypothesis of developmental dyslexia (Kere, 2014; Paracchini, Diaz, & Stein, 2016; 
see also Carvalho and Haase 2018, Chap. 22). The best-replicated genes associated 
with developmental dyslexia impair processes of neuronal cell migration and the 
establishment and maintenance of synaptic connectivity. This suggests that specific 
learning impairments could be considered to be disconnection disorders (Mitchell, 
2011); that is, specific learning impairments could be caused by variability in the abil-
ity to establish new synaptic connections under epigenetic control. The same holds for 
genetic syndromes such as fragile X, Turner, velocardiofacial, and Williams syn-
dromes, in which severe math learning difficulties are an important phenotypical trait 
(Haase & Carvalho, 2018; Carvalho & Haase, chaps. 22 and 23). The physiopathol-
ogy of most syndromes consists of impairments in the synaptic plasticity mechanisms 
required for learning (Ismail, Fatemi, & Johnston, 2017; Johnston, 2004).

The pedagogical implications of the exaptation models are clear. Learning to 
read and write symbolic numerals, as well as using these symbols in exact calcula-
tion, heavily relies on experience-dependent synaptic plasticity (Hebb, 1949). The 
lack of intuitive cognitive mechanisms or intrinsic motivation promoting the acqui-
sition of these abilities and the experience-dependent nature of the process indicate 
the need for considerable engagement and training on the part of pupils and teach-
ers, not only to understand but also to automatize procedures and facts. We next turn 
our focus to the acquisition of arithmetic facts—an important foundational ability 
for the development of more complex arithmetic skills.

Difficulty in automatically retrieving arithmetic facts is the cardinal symptom of 
developmental dyscalculia (Butterworth, Sashank, & Laurillard, 2011). Evidence 
suggests the numerical/arithmetic system is both hierarchically and compositionally 
organized (Dowker, 2015). Rehearsal of arithmetic facts is a foundational ability for 
future acquisitions such as multidigit calculation and word problem solving 
(Raghubar et al., 2009; Verschaffel, Depaepe, & van Dooren, 2015). At the same 
time, some rare cases of developmental dyscalculia present very specific impair-
ments in arithmetic facts (De Visscher & Noël, 2013; Temple, 1991).

The process of acquiring arithmetic facts has been experimentally modeled in 
young adults learning multiplication facts across several sessions (Zamarian, 
Ischebeck, & Delazer, 2009). At the beginning of the process, functional magnetic 
resonance imaging (fMRI) records higher activation levels in the prefrontal regions 
associated with controlled processing. As the individual acquires proficiency in the 
task, the activation focus moves to the posterior regions, especially the left angular 
gyrus (see also Grabner et al., 2009).

Another study has compared the effects of two learning strategies (Delazer et al., 
2005). Learning by problem solving was more efficient and activated the medial 
areas of the parietal lobes (probably related to visuospatial imagery) in comparison 
with learning by drill, which mainly activated the left perisylvian language areas. 
Although less efficient, the learning-by-drill strategy seems to activate different 
neural systems compared to learning by problem solving. The two strategies could 
thus play a complementary role in the acquisition and rehearsal of arithmetic facts.
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Neuroimaging methods have also been used to investigate the acquisition of 
arithmetic facts by children across distinct ages and stages of the learning process. 
In general, the results have corroborated the progression from controlled processing 
in the prefrontal areas to automatic processing in the posterior cortical areas (Rivera, 
Reiss, Eckert, & Menon, 2005). However, studies with children have called atten-
tion to an important difference in comparison with research with adults. Research 
with children in different phases of the acquisition of arithmetic facts indicates that 
during this process a temporary pattern of hippocampal activation is observed (Cho 
et al., 2012; Qin et al., 2014). This finding contrasts with adult studies, in which no 
hippocampal activation has been detected (De Smedt, 2016; Menon, 2015). 
Hippocampal activation during arithmetic fact learning fits well with the role this 
structure plays in the consolidation of information in long-term memory. The transi-
tory nature of hippocampal activation in children and its absence in adults suggest 
there may be a kind of developmental window opportunity of hippocampal mem-
ory-related functions important for the acquisition of arithmetic facts.

Results from cognitive neuroscience are, once again, crystal clear: acquisition of 
arithmetic facts is not only a foundational ability for further math developments; it 
is an experience-dependent complex process mediated by distinct neural systems at 
the cost of considerable effort.

However modest, the results of neuroscientific investigations such as the exap-
tation models and the acquisition of arithmetic facts may be difficult to integrate 
into current pedagogical theory and practice (e.g., Brazil, 2016; Marope, Griffin, 
& Gallagher, 2017). On the one hand, the epistemological point of departure of 
neuroscience is clearly a “positivistic” one, as illustrated by Dehaene’s (2007) 
quote. Neuroscientists seem to be interested in “mathematizing” and “biologiz-
ing” psychological processes. Numerical cognitive research has focused mainly 
on the representations and processes underlying specific math abilities such as 
magnitude representation, counting, transcoding or calculation. Neuroscientific 
results suggest math proficiency depends not only on conceptual understanding 
and ingenuity on the part of the kids, but also on the gradual building of factual 
and procedural knowledge that requires a considerable degree of training and 
automatization.

On the other hand, math pedagogy has moved away from the traditional drill and 
practice to a constructivist approach (Klein, 2003). Understanding, reasoning, and 
creativity are valued over calculation fluency. Pedagogical goals are not formulated 
anymore in terms of the acquisition of skills, but as contextualized competencies 
that should prepare pupils to effectively function as critical citizens, displaying 
more sophisticated, flexible, adaptive, and critical forms of quantitative reasoning 
(Brazil, 2016; Marope et al., 2017). Additionally, the epistemology of pedagogy is 
largely hermeneutic–qualitative. More than just a science in strict terms, pedagogy 
is an art engaged with ethical and not only instrumental goals.

It seems then that we have a long way to go before math pedagogy and neurosci-
ence can cooperate more effectively. We have reviewed neuroscientific results that 
challenge pedagogy in several forms: Is it possible to reach the goal of adaptive 
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expertise presumably required for the world of the future without a considerable 
degree of routine expertise? Is it possible to operationalize current competence 
goals regarding compatibility with the investigation of their neurocognitive under-
pinnings? At the same time, neuroeducational research requires massive doses of 
humility on the part of neuroscientists, and an openness of mind to understand and 
learn the complexity of the tasks, goals, and ethics underlying pedagogical efforts to 
prepare future citizens. Fortunately, both neuroscientists and pedagogues are 
increasingly interested in this dialogue. We hope this book helps these two fields to 
approach each other.

 Focus on Early Development

There is no doubt that we are born with some level of quantitative understanding. 
We share the same ability to estimate relative differences between quantities as has 
been found in numerous studies with different animal species. Numerical compe-
tencies have been reported from both social and nonsocial animals, from fish to our 
closest relatives, chimpanzees (e.g., ants: Reznikova & Ryabko, 2011; bears: Vonk 
& Beran, 2012; fish: Agrillo, Piffer, & Bisazza, 2011). The chimpanzee has been 
shown even to be able to learn to match quantities to human-invented numerical 
symbols in laboratory conditions (Biro & Matsuzawa, 2001).

However, the symbolic system of numbers and mathematics has been one of the 
most important discoveries made by human beings. Whether this discovery is an 
invention of the human mind or a discovery of the existing laws of the universe is an 
essential philosophical discussion but is out of the scope of this book (regarding this 
discussion, see Butterworth, Gallistel, & Vallortigara, 2018). In all cases, mathemat-
ics is an innovation that allows us to communicate about exact amounts with each 
other, to share, to calculate, to measure, and to build bridges that do not collapse (for 
a historical view, see, for example, Menninger, 2013).

Learning even the basics of this cultural tool takes a long time. For example, just 
creating an understanding that the word “six” always refers to a specific number of 
things, and that the word “seven” comes after that in the counting sequence and 
means one more, typically takes from 4 to 7 years from birth, even though children 
as young as 18 months old already show signs of picking up the correct order of the 
number sequence (Ip, Imuta, & Slaughter, 2018). The variance in the age of learning 
this skill is large, partly because of individual differences but also to a large extent 
because of differences in learning environments.

The mother’s (and father’s) activity in numerical interactions (Casey et al., 2018; 
Sorariutta & Silvén, 2018) and/or access to mathematically aware high-quality early 
education (Ulferts, Anders, Leseman, & Melhuish, 2016) have been continuously 
shown to be the strongest predictors for successful learning of the number symbol 
system and arithmetic skills.
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In the UK, Melhuish et al. (2008) used a large sample to study the unique pre-
dicting power of different factors for mathematical skills at the age of 10 years. 
Several variables showed a significant impact (d > 0.30): the mother’s education, 
home learning environment, school effectiveness, socioeconomic status, and income 
of the family. Importantly, the quality of early education measured more than 5 years 
earlier still contributed significantly to the skills even after controlling for the effects 
of all other variables.

The mother’s education has been consistently shown to have one of the largest 
effect sizes to later school success. Multiple things are connected to this maternal 
and home effect. There are biological (genetic, nutrition) and especially social fac-
tors that contribute to this: informal learning (see Lehtinen et al., Chap. 3, this vol-
ume) and learning opportunities, math talk, and other linguistic input at home, 
without forgetting the parents’ interest, support and encouragement at preschool, 
and school work (see, for example, Boonk, Gijselaers, Ritzen, & Brand-Gruwel, 
2018). Many studies have shown that the socioeconomic effects are mostly medi-
ated by the home environment (Duncan & Brooks-Gunn, 2000), and the key factor 
within the effects of the mother’s education seems to be sensitive parenting (Collins, 
Maccoby, Steinberg, Hetherington, & Bornstein, 2000).

In addition to the home environment, a growing body of research in recent 
years—in particular from neuroscience, sociology, and psychology—has proved 
that early childhood education and care (ECEC) provides a crucial foundation for 
future learning by providing children with basic functions of learning, communica-
tion, and cognitive and emotional skills, on which learning in schools can build 
(OECD, 2018).

Implementation of early education in the education system has been adopted in 
the educational policies of most countries. Given the potential benefits, there is 
growing awareness of the role ECEC can play in compensating for the adverse 
effects of childhood poverty and disadvantages with long-lasting effects, both in 
developed countries (Lehrl, Kluczniok, Rossbach, & Anders, 2017) and in develop-
ing countries (Rao, 2014). Children from the poorest families seem to benefit most 
from high-quality early education (Christian, Morrison, & Bryant, 1998), especially 
when it is combined with holistic support for the children and their family in terms 
of nutritional, health, social, and psychological services. Interestingly, Chor (2018) 
showed a multigenerational effect of participation in early education. When mothers 
had been in high-quality early education, this supportive effect carried over to 
school success in mathematics in the next generation.

However, it has to be said clearly: merely offering early education and giving 
children access to it is not a guarantee of the positive effects ECEC can produce. 
The beneficial effects of ECEC—in this instance, on mathematics learning—depend 
on the quality of the education and care provided.

The policies of ECEC should stand on many legs, as described in the following 
sections.

Development of Scientifically Based Content Acknowledging the importance of 
early education and our knowledge about the basic prerequisites, the educational 
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content has to be chosen carefully. Possible predictors of mathematics attainment 
are an important issue of scientific research. It has already been focused on for sev-
eral decades, resulting in a wide range of evidence-based empirical findings. Math 
training (support) in early education for children at preschool age should follow this 
substantial knowledge and be structured on the basis of these findings. At the same 
time, the developmental circumstances and prerequisites of the children have to be 
taken into account.

Development of Organizational Conditions In order to be effective, preschool 
intervention has to be institutionalized and binding to make it accessible for all 
children. Suitable institutions are kindergartens and schools, though country- 
specific conditions and structures have to be taken into account. In some countries, 
kindergarten attendance is not compulsory or early education cannot be imple-
mented in kindergartens. Establishing early education in school, however, requires 
structural changes in the school system.

Development of Personnel Conditions The success of early education strongly 
depends on personnel resources—that is to say, the qualifications of teachers who 
carry out early education. As a result, implementing early education goes hand in 
hand with considering qualification structures of early education teachers. It is not 
sufficient to provide children with mathematical games, relying on autonomous 
acquisition of concepts in the course of playing (Chien et  al., 2010; Clements, 
Fuson, & Sarama, 2017). The understanding of mathematical concepts depends on 
the instructions and on the provision of different examples. Thus, without profound 
qualifications, successes in supporting preschool-aged children through early edu-
cation cannot be expected.

Globally, we are far from having equal access for all children to attend quality 
early education, and even in cases of access to ECEC, not all early education pro-
grams consider mathematics an important topic. The majority of early education 
teachers are not skilled in teaching mathematics (OECD, 2018). There is an urgent 
need for improving both the access and the quality of pedagogies for early age. And 
when we talk about pedagogies for early age, academically oriented programs 
within early education are not as effective as holistic approaches that take into 
account support for the whole family (Britto et al., 2017; Richter et al., 2017).

Mathematical skills at preschool age have been shown to be the strongest single 
predictor of later success at school (Duncan et al., 2007). Evidence suggests that 
severe difficulties in math learning are associated with cognitive and basic numeri-
cal processing impairments and that these impairments may be toned down when 
properly recognized at an early age (Siegler & Braithwaite, 2017). But there is still 
a lot to be done at school. It all starts from early recognition of learning difficulties. 
There, the research has not provided good guidelines for classroom  teachers and 
policy makers with its varying criteria and definitions of mathematical learning dif-
ficulties (MLD) from one study to another.
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 Lack of Tools for Screening and Monitoring Learning

The demands for early recognition and for modifying teaching according to indi-
vidual students’ current conceptual knowledge, learning capabilities, and learning 
pace require a close connection of diagnostics and pedagogical action (cf. Heinzel 
& Prengel, 2012; Müller, Ehlert, & Fritz, 2017). In that respect, pedagogical and 
psychological diagnostics is a continuing process of generating hypotheses about 
current knowledge, which are then transformed into pedagogical action. Then again 
this is monitored and evaluated in order to be able to conduct further modifications 
if necessary. This cyclic process has been the guiding line of discussions for several 
decades.

Diagnostics and didactics, whether in lessons or in additional interventions, are 
closely connected and intertwined in this respect. They are to be carried out as a 
mutual process, composed of different parts: capturing data about learning pre-
requisites ↔ planning and conducting remedial support aligned to the students’ 
needs ↔ monitoring and evaluation of support according to the targets set (Müller 
et al., 2017).

With this approach, diagnostic processes gain a different significance, which 
goes hand in hand with the need to establish new procedures, actions, and methods 
in pedagogy and instruction. Apart from approaches that allow comparison of indi-
vidual attainment with that of the age reference group or the achievement of learn-
ing objectives (summative assessment), approaches to optimize teaching and 
learning processes (formative assessment) are needed. Methods of formative 
assessment of attainment can be arranged on a continuum of informal to formal 
steps (Bell & Cowie, 2001). Every interaction between students and teachers tak-
ing place inside the classroom can serve as informal information. This includes all 
sorts of assessment of performance, as well as observations during lessons, pro-
vided that the obtained information is utilized for optimizing teaching practice 
(McMillan, 2000).

The emergence of e-learning materials and e-books for schools has opened up 
the possibility of new methods of assessment. E-learning offers the possibility to 
quantify in databases all interactions of the child with the learning materials, 
quickly producing masses of data about the student’s performances. Two overlap-
ping groups of researchers have been interested in the analysis of this data: those 
interested in educational data mining and those interested in learning analytics 
(Baker & Inventado, 2014). Even though it is still in its infancy, learning analytics 
gives researchers and teachers new tools to monitor the progress of children, and it 
increases the probability of recognizing those who are at risk of dropping out from 
learning (Kurvinen et  al., 2015; Minaei-Bidgoli, Kashy, Kortemeyer, & Punch, 
2003). Unlike classical (summative) diagnostics, which usually only displays a 
state of knowledge at a selected point in time, the continual capturing of students’ 
learning process depicts development of competence over a span of time. In order 
to do this, suitable tests of constant difficulty that assess the level of the very same 
competence at multiple times are necessary (cf. Klauer, 2014; Strathmann & 
Klauer, 2010).
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Improvement can be quantified with regard to different reference systems: A 
preferred reference system is the curricular reference system (however, see below 
about the problems with mathematics syllabi), oriented toward the attainment of 
learning objectives. The students’ learning progress is determined with regard to the 
curriculum (Leuders, 2014; Ufer, Reiss, & Heinze, 2009). However, the curriculum 
focuses on different mathematical ideas during the course of a school year. Thus, the 
assessment has to be parallelized for this frame of time. Comparable assessments 
require sticking to a certain subarea of mathematical competence (e.g., numbers and 
operations), which has to be assessed repeatedly, using different tasks. The chal-
lenge lies in aligning and matching the difficulty of the tests during the course of a 
school year or even over several years to achieve comparability (Strathmann & 
Klauer, 2010).

The construction of curricular tests making continuing assessment of students’ 
learning process possible has proved to be challenging with regard to content and 
empirical assessment. Special obstacles arise due to the particular requirements and 
conditions of assessing changes. There are strict requirements concerning the test 
instruments, as well as the measurement theory in question. As the classical testing 
theory does not allow any reliable assessments in this context, there have been calls 
to abandon it (Klauer, 2014).

Recently, competence or developmentally oriented assessments based on the proba-
bilistic testing theory have been preferred (Fritz, Ehlert, & Leutner, 2018). Development-
oriented reference systems follow developmental concepts of capturing a learning 
domain step by step. Usually these are based on empirical evidence and theoretically 
modeled (based on a model of the development of the knowledge in question) captur-
ing the entire complexity of the learning domain. Therewith, the developmental level 
and the further learning progress of a student can be depicted systematically. This new 
focus goes along with a change of perspective. It is no longer about checking which 
content to teach (method of input control) but about assessing what students’ capabili-
ties are at the end of each grade (method of output control).

The meaning of the competence or development-oriented reference standards 
becomes even plainer when deriving interventional actions from diagnostic results. 
Namely, if the following learning progress is to be predicted prescriptively by refer-
ring to a diagnosed current state, then the test—as well as the attainment to be pre-
dicted—has to relate to a common competence, supported by empirical evidence 
about their development. In other words, the testing procedure has to be based on a 
theory or model that represents the development of the according knowledge 
domain. A theoretical explanation of diagnostic action is strongly demanded 
(Hellmich, 2007; Müller et al., 2017).

Numerous empirical studies have provided proof that continuing capture of stu-
dents’ learning process and gains in knowledge positively affects their educational 
development (for an overview, see Stecker, Fuchs, & Fuchs, 2005). If teachers 
acknowledge diagnostics as the basis for their actions instead of using them for 
giving marks, and if they make use of diagnostics to provide their students with 
productive feedback on their learning progress, then formative assessments will 
foster students’ learning success (Hattie & Timperley, 2007; Shute, 2008).
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To rely solely on continually capturing students’ learning process will not be 
sufficient for learning success, though. The adaptation of lessons and teaching to the 
documented learning progress has a crucial impact on learning success as well 
(Stecker et al., 2005), instead of just following the curricula and syllabus.

 Monitoring-Based Framework for Interventions in Schools

The learning objectives formulated in curricula and syllabi provide a framework for 
the content that has to be learned during the course of a school year. The standard is 
defined by a social reference. But having to stick to these normative guidelines, 
instruction is addressed to the entire learning group expected to attain these learning 
objectives, even though we know that is not appropriate for every single child in the 
classroom. In fact, there is a match between the syllabus and skill level only for a 
small proportion of students (Hellmich, 2007).

Besides questioning the adequacy of learning objectives for all students, the rati-
fication of the UN Convention on the Rights of Persons with Disabilities in 2009 
brought up a further increase in the heterogeneity of a classroom. Hence, if teaching 
is aimed at enabling all students to make progress, the learning objectives stated in 
the curricula cannot apply to all students in a same way. Low-achieving students or 
students with learning difficulties need educational standards that focus on teaching 
sustainable basic knowledge that provides students with a fundamental basis for 
further acquisition of knowledge in various contexts (school, occupation). Such an 
individual reference standard focuses on the individual’s learning progress. It thus 
prevents a lack of coherence between previous knowledge and current teaching. In 
some countries, the discourse about normative guidelines and empirical findings 
about low-achieving students’ capabilities has led to a submission of minimum 
standards. This was meant to relieve teachers from getting all students to meet the 
curricular learning obstacles and, furthermore, to provide teachers with a guideline 
when developing expectations for low-achieving students (Klieme et al., 2003).

We do not see the minimum standards as a solution. The minimum standards 
easily become the highest requirements for some children, especially for children 
from a disadvantaged or immigrant background. When the aim is to get every child 
to develop to their highest potential with a strong feeling of competence at their own 
skill level, the standards for those who will not meet the curricular aims need to be 
individualized. This calls for more trained professionals in special needs education 
for schools, who can work together with teachers to build possibilities for more 
individualized standards. These professionals should have strong background 
knowledge of cognitive and psychological development and disabilities. There is 
plenty of research on teachers’ attitudes to and effects of inclusion, what we lack is 
research about effective management and organizational models in inclusive 
schools. The discussion about inclusion has also raised questions about teaching 
that is appropriate and adaptive for all children. This means aligning teaching to 
students’ individual prerequisites and levels of learning capabilities. Referring to an 
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individual reference standard, students’ acquisition of knowledge consequently has 
to be fostered on an individual level.

The US response-to-intervention (RTI) approach offers a possible guideline for 
realizing these targets. The research that led to adopting the RTI approach was the 
discovery that learning difficulties, especially in the case of dyslexia, were often 
connected to inadequate teaching and instruction methods rather than individual 
deficits (Vellutino, Scanlon, & Reid Lyon, 2000). The critique was especially tar-
geted to the discrepancy criteria (i.e., the difference between IQ and reading skill). 
One of the key findings was that general intelligence did not play a significant role 
in learning technical reading. In the case of dyscalculia—persistent difficulties in 
learning the basic number skill—similar views have been presented that the core 
deficit in dyscalculia might not be related to general skills (Ehlert, Schroeders, & 
Fritz, 2012; Landerl, Bevan, & Butterworth, 2004; Reeve, Reynolds, Humberstone, 
& Butterworth, 2012), even though mathematical reasoning is known to correlate 
strongly with general reasoning skills.

According to the PISA studies, in Organization for Economic Co-operation and 
Development (OECD) countries there are four times more children who fail in 
acquiring the basic skills than the studies on dyscalculia would predict. In develop-
ing countries that figure is often more than tenfold. This indicates that the majority 
of the children who fail in learning mathematics do not meet the criteria for learning 
disabilities. Therefore, there are both diagnostic and practical reasons to adopt the 
preventive philosophy of RTI as a guideline for schools and classrooms. Every child 
who fails to learn should have a right to additional support without delay, and if he 
or she does not respond to this, then special educational and or remedial support is 
needed. As a legal statement, this kind of approach would force policy makers and 
school directors to revise educational practices in schools. In some countries these 
approaches have already been put into action (see, for example, https://www.euro-
pean-agency.org/country-information/finland/legislation-and-policy).

The RTI approach intends to apply a multilevel diagnostic and interventional 
process; the central characteristics of this approach are early identification, preven-
tion, and a closely following intervention in the case of learning difficulties. This 
approach can be depicted as a data-based multilevel remedial support system for 
students (Reschley & Bergstrom, 2009). As a whole, constant diagnostics and 
closely following support interlock, thereby offering different solutions to situations 
in pedagogical practice.

In the USA and in scientific research, different modifications of the RTI approach 
exist. Typically, three levels of support can be distinguished, bringing about struc-
tural changes in schools (see Fuchs and Fuchs, Chap. 39, this volume).

• Level I: High-quality lessons based on empirical evidence. A continuing learning 
progress evaluation (monitoring) serves the purpose of identifying problematic 
developments in educational progress.

• Level II: Those children who do not make enough progress receive additional 
support, taking place in small groups three to five times a week. Progress is 
monitored.
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• Level III: If the second level of support does not suffice either, further diagnosis 
is carried out in order to check whether there is a need for support in develop-
mental areas that have not been targeted yet, making optimized and even more 
efficient support possible.

 The Challenges of the Response-to-Intervention Approach

The approach of considering difficulties in math learning not as a deficit of the child 
but as a problem of the school system, which is not offering the appropriate teaching 
and training methods (see Fuchs & Fuchs, Chap. 39, this volume), is undoubtedly a 
big step forward, but it involves the risk of overlooking the individual needs of spe-
cific children. Difficulties in dealing with arithmetic are caused by domain-general 
cognitive and noncognitive factors and domain-specific factors that underlie the 
development of mathematical abilities. For remediation, it is important to under-
stand the impact of the different factors in order to arrange appropriate support.

Whatever type of mathematical learning difficulties children are suffering from, 
on the behavioral level the main problems are a lack of conceptual understanding 
and development of factual knowledge. Due to their problems, they have acquired 
insufficient basic knowledge, on which no further knowledge can build. But even as 
far as their procedural knowledge is concerned, they often stick to simple strategies, 
preferably using counting strategies (see Gaidoschik, Chap. 6, this volume). This 
strategy overloads the working memory and impedes the acquisition of more effi-
cient arithmetic strategies.

Beyond that, mathematical learning difficulties are highly heterogeneous and are 
often associated with comorbid disorders such as developmental dyslexia or atten-
tion deficit hyperactivity disorder (ADHD) (see Krinzinger, Chap. 24, this volume). 
And as language and mathematics are linked together very closely, in a time when 
multilingual classrooms have become the norm rather than the exception, the lin-
guistic competence of the children has to be taken into account (see Prediger et al., 
Chap. 27, this volume). Likewise, several studies pinpoint the importance of cogni-
tive variables in the development of mathematical disabilities (see section titled 
“Approaches to recognition and intervention,” this volume; Szucs, Devine, Soltesz, 
Nobes, & Gabriel, 2013; Zhang et al., 2018). This small and only rough listing of 
factors affecting numerical learning sheds light on what we expect from teachers 
and what knowledge is needed to individually tailor remedial support.

Another critique of the RTI model that has been presented is that it requires all 
children to go through the different levels before they are offered individualized 
support. Many of these “hard-to-remediate” children could be recognized already at 
the first level and be offered the support they need without repeated failure to 
respond. However, there is still a lot to do in developing tools for early recognition. 
How can we reliably recognize those children with dyscalculia for whom the best 
solution would be a very individualized approach from the beginning of the school 
or even much earlier? Even though there have been many attempts to build reliable 
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indicators and assessment batteries to recognize these children as early as possible 
(e.g., Gersten, Jordan, & Flojo, 2005; Reeve et al., 2012), we are still far from a 
consensus about what are the most reliable core markers of persistent dyscalculia. 
Secondly, we lack cross-cultural validation of the reliability of these measures. How 
greatly do the markers of dyscalculia depend on differences in educational cultures? 
We assume the answer is less than we would expect, but that requires empirical 
confirmation.

One important way to support early recognition is to improve the general level of 
mathematics education. This question typically implies a need for more resources—
more investment in education. Here, we raise two issues that do not necessarily 
imply a need for more recourses: firstly, the teacher who is already there in the 
classroom and applies different pedagogies, and how he or she is equipped to 
respond to the requirements to adopt new teaching methods; secondly, we focus on 
the syllabus, i.e., the question of what is taught in mathematics in classrooms, and 
when. The RTI model works or fails on these two key elements of education.

 Professional Development for Teachers

This paradigm shift from classroom learning for all children to more individual 
learning progress means a challenge for teachers in many ways. It demands that 
they be proficient in math-specific content knowledge and its structure. The more 
profound and elaborate the content knowledge of the teachers, the more appropriate 
and understandable their instructions, leading to an enhanced level of teaching stan-
dard (Ball & Bass, 2000). Beyond that they need knowledge about methods to 
instruct children effectively (math-specific pedagogical knowledge). As teaching is 
a complex activity with an enormous number of variables, it cannot be expected to 
identify a few core practices or methods that help improve students’ performance in 
every grade, school form, and country.

The main factors that apply to all high-performing countries are high levels of 
professional education for teachers, high status of the teaching profession, and 
expanded opportunities for continuous professional development. Technology has 
come to help in offering masses of teachers an inexpensive, globally accessible 
means of professional development (see Räsänen et al., Chap. 8). Universities and 
researchers should take this as an opportunity to provide open lectures for the 
masses, and not only open lectures but also structured learning and teaching materi-
als that can be applied in classrooms. They should build open lectures and MOOCs 
for the masses in different languages, and as well, structured learning and teaching 
materials that can be applied in classrooms.

Children with mathematical learning disabilities need more practice and time 
to reach the same level of proficiency as that of typically performing children. 
The learning time (time on task, time for exercises) has been proved to be one of the 
most significant variables in learning; a fair relationship of time allocated and time 
needed, meeting the needs of the students, has a large impact on students’ perfor-
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mance (Artelt et al., 2003; Carroll, 1989; Marzano, 2003; OECD, 2018). However, 
just adding time for mathematics learning is not enough. A recent meta-analysis on 
learning time clearly showed that what works for reading does not work for math 
(Kidron & Lindsay, 2014). Added learning time had only small effects on math 
learning and only when using direct instruction by a qualified teacher, and this effect 
was not even significant in groups of children at risk of failure in learning.

In general, the existing meta-analyses on the efficiency of teaching and remedial 
instruction for children with learning difficulties show that instructed learning pro-
cesses, including well-structured explanations and exercises, adapted to the learn-
ers’ previous knowledge, outperform socioconstructivist or experimental 
approaches. These approaches, in contrast, tend to overload the working memory 
and do not help the child to build up cumulative knowledge (Grünke, 2006; Hattie, 
2009; Kroesbergen & van Luit, 2003).

Therefore, we urgently need a broad range of evidence-based intervention pro-
grams. Although we are looking at a wealth of evidence-based programs, there are 
some bottlenecks. These relate primarily to older students; most of the trainings 
focus on students in elementary school. But more important are programs that are 
easy to implement in schools (Fuchs, Fuchs, & Compton, 2012) without extensive 
further professional training needed for teachers. Programs carried out in schools by 
teachers usually have only small effect sizes (if any) compared to the effects in 
experimental control studies (Müller & Fritz, 2017; Philipp & Souvignier, 2016). 
Philipp and Souvignier (2016) are talking about a research to practice gap, meaning 
there is a lack of scientific research about the conditions of how to implement evi-
dence-based training in schools by ordinary teachers without specific training on the 
program used so that it would increase the students’ performance in at least the 
majority of the classes conducted by the majority of teachers. The ecological valid-
ity of the training programs should be a guideline for future research on 
interventions.

 The Scaffold of Teaching Math Content at School

The RTI/intervention model relies heavily on the curriculum and syllabus. However, 
when we talk about learning difficulties, we rarely pay attention to the syllabus of 
mathematics education itself. How do the curricula contribute to better or worse 
performance of children and youth?

What students should learn and teachers should teach in the mathematics class-
room is settled in national curricula. National curricula always represent policy 
statements. They give a detailed description of students’ learning objectives for 
each grade separately. National curricula are therefore to be understood as  normative 
guidelines for teaching. The curriculum and syllabus provide the framework for the 
content of the schoolbooks used, for the evaluations done, for what children have 
mastered, and to define who has not reached the level of the standards. Many coun-
tries use national assessments to evaluate pupils’ attainment in curricular content.
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Each country has had its own processes and comparisons with other countries 
while they have built and reformed their curricula. Typically, there have been slow 
modifications done in time for teachers and schoolbook creators to adjust to the 
changes. Therefore, even though mathematics is typically considered a hierarchi-
cally learned subject by nature, for historical reasons the ages at which children are 
taught and expected to master different types of content vary a lot. Some curricula 
are very ambitious in their aims, while some curricula follow a philosophy of “less 
is more” (Sahlberg, 2011), proceeding slowly and giving children more time to 
learn the basics. We illustrate these differences with two examples. In Table 46.1 we 
present examples from three different continents of how the timing of presenting 
new arithmetic content in the sample countries is organized.

Clearly, the ambitiousness of the curriculum and syllabus does not automatically 
lead to higher average performance nor to a higher percentage of top-performing 
adolescents. Too-high demands at a very early age increase the risk of early failure 
and dropout from future learning. Naturally, the curricula and syllabus of mathemat-
ics are only one variable in the equation, and therefore between-countries compari-
sons may not be the best way to compare educational systems or to start to reform 
them. Differences in geography; the numbers of students and schools; the training 
of teachers; educational cultures; the student makeup (in terms of language, culture, 
and socioeconomic profile); and how the school system is structured, resourced, and 
managed all have significant impacts on the results.

But if the aim is to reduce the number of children with poor performance, then 
what is taught—and especially when and in which phase new content is presented—
are key variables. This should be the guiding question of the future planning of 
curricula and syllabi: Is there a match between the wishes of the educational policy 
making and the actual performance levels of the children and the reality in the class-
rooms? Therefore, there is a need for a philosophical analysis of mathematics cur-
ricula and syllabi, and how well the normative (how things should be) and empirical 
(how things actually are) dimensions do match. Definitely, more empirical studies 
on the aims of mathematics education and the results (i.e., the performance levels of 
children) are needed and, especially, studies on how these are connected to levels of 
poor performance and difficulties in learning mathematics. There is a need for dia-
logue between researchers and policy makers about the reality in classrooms and 
about what the slow steps for better education in each country should be. Slowness 
in reforms is important because teachers, even more than students, need time to 
learn the new know-how.

As a second example, we present in more detail the defined expectations of learn-
ing outcomes after the second grade in two different countries with very different 
performance levels, namely Germany and South Africa. In the chapter by Kotzé and 
van der Berg in Chap. 5 of this volume, eight Latin American and sub-Saharan coun-
tries were compared to each other. It became evident that “South Africa has the high-
est proportion of students who are functioning at below-acceptable levels of numeracy 
(Pre-numeracy and Emergent Numeracy). Kenya and Tanzania both have a much 
higher proportion of students living in poverty, but also have a much higher proportion 
of these students performing at acceptable (Basic Numeracy) to above- average levels 
(Beginning Numeracy, Competent Numeracy and Mathematically Skilled)” (p. 12). 
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These findings contradict the monocausal assumption that poor achievement of 
students is solely due to economic conditions in the respective country.

 Construction of Curricula in a Tension Between the Two Poles 
of Individual Prerequisites and Normative Guidelines

Hardly any other subject is based on a system of knowledge organized as hierarchi-
cally as that of mathematics (Stern, 2003, 2005). This system of knowledge has to 
be taught precisely and systematically, paying special attention to its cumulative 
structure.

If the system of mathematical knowledge is organized in the curriculum in a 
sensible way, if the learning objectives are coherent, and if the students can take 
enough time to practice, then, step by step, students can gain more and more exper-
tise. They show their increasing competence by successfully applying their knowl-
edge to tasks they could not carry out before or by solving tasks with more effective 
strategies. This newly acquired expertise in turn forms the basis for the acquisition 
of further expertise or knowledge in that area.

If, however, knowledge is not acquired systematically and thus cannot be inter-
connected in a meaningful way with already existing knowledge, there is no basis 
for further expertise. A lack of knowledge, especially fragmentary basic knowledge, 
impedes any further acquisition. Students who start school with poor previous 
knowledge and/or do not acquire viable basic knowledge during the first years of 
school face a widening gap between their abilities and those of their peers or the 
learning objectives of their grade. The same applies to higher grades if new knowl-
edge cannot be connected properly. This results in attainment differences equivalent 
to 3  years or more compared to the current grade’s objectives (Spaull & Kotze, 
2015). Moreover, the knowledge is fragmentary and not sufficiently expandable.

It is therefore quite evident that the learner’s previous knowledge, successively 
acquired through learning processes, becomes more and more important for math 
academic achievement throughout the course of the school career, becoming even 
more significant than intelligence (Ausubel, 1968; Sternberg, 2005). Therefore, 
knowledge of a content area is the most important prerequisite for future learning in 
the same knowledge domain (Hattie, 2009).

Based on this conclusion, curricula have to be evaluated in terms of composition 
and structure. It is important to check whether they support systematic, cumulative 
acquisition of knowledge and allow enough time to practice and develop a stable 
basis of knowledge. If, however, curricula are too complex and lack a cumulative 
structure, if they neither provide possibilities to connect new knowledge to existing 
knowledge nor allow for taking the time necessary for the new knowledge to sink 
in, curricula in themselves might present learning obstacles, preventing students 
from gaining mathematical expertise and competence.

The curricula of the two countries illustrated in Table 46.2 not only are compara-
tively demanding but also lack a cumulative structure and thus go against the funda-
mental principle of new mathematical learning content having to be based on 
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previous knowledge. Furthermore, these curricula rely on previous knowledge that 
most of the students in these countries do not possess.

In conclusion, the concept of curricula, presenting policy statements and norma-
tive guidelines for teaching, is of great importance and thus has to be reflected on 
the basis of scientific insights and data. In order to facilitate cumulative learning, 
the curricula should be prepared according to the hierarchically constructed knowl-
edge system and ensure that children are allowed as much time as they need to 
understand the content.

Table 46.2 Comparison of expectations at the end of the “Schuleingangsphase” (the school 
entrance phase) in Germany and learning objectives at the end of grade 2  in the South African 
curriculum for the subject of mathematics, in the field of numbers and operations

Germany South Africa

Numbers up to 100 Numbers up to 200
Counting forward and backward in steps
Simple multiplication (tables up to 10) 
up to 100

Counting forward and backward in steps of 1s, 10s, 
5s, 2s, 3s, and 4s from any multiple of that number up 
to 200
Multiplication of numbers 1 to 10 by 2, 5, 3, and 4 to 
a total of 50

Describing, comparing, and ordering 
numbers up to 100

Describing, comparing, and ordering objects up to 99

Structuring numbers up to 100 according 
to the place value system

Recognizing the place value of two-digit numbers up 
to 99

Switching between different levels of 
abstraction (enactive, iconic, symbolic, 
and verbal)

Using drawings or concrete apparatus to solve 
problems

Doubling and halving Doubling and halving
Unitary fractions

Describing own solution to problems 
verbally and in written form

Explaining own solution to problems

Addition (to 100), subtraction (to 100), 
multiplication (to n2, n ≤ 10), and 
division in context
Using arithmetic laws, characteristics of 
operations, and calculation strategies

Addition (to 99), subtraction (from 99), 
multiplication (to 50), and grouping and sharing 
leading to division (up to 50) (including remainders) 
in context
Using calculation strategies

Using units for money (Euros and cents) Recognizing and identifying coins and banknotes
Solving money problems involving totals and change

Using appropriate technical terms (plus, 
minus, times, divided by)

Using appropriate symbols (+, −, ×, ÷, =)

Rapidly mentally calculating up to 100 Rapidly mentally recalling addition and subtraction 
facts up to 20
Rapidly mentally adding or subtracting multiples of 
10 from 0 to 100
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 Reforming Math Education in the Twenty-First Century

Mathematics education has always been in crisis. As long as there has been public 
schooling for the masses, the discussion about policies in mathematics education has 
been a constant demand for reform. The results of these reforms have been less than 
flattering. Davison and Mitchell (2008) state that “The history of education reform in 
the twentieth century documents one failure followed by another.” They even ask if 
these reform policies have been poorly designed or designed by individuals and 
organizations with little working knowledge of what really goes on in schools.

What is clear is that the polarization of the discussion about the aims of mathe-
matics education is partly caused by different views of mathematics itself. While 
one end sees mathematics as a strongly abstract axiomatic system, the other end 
sees it as a socially developed construct for practical needs. We can see the effects 
of these philosophical extremes easily in reforms like “New Math” in the USA in 
the 1960s and the similar Bourbaki school-based reforms in European countries. In 
both of them, the aim was to improve children’s learning via mathematizing math-
ematics education. It may come as a surprise to some, but neither of them had any 
research behind them to support the reforms (Schoenfeld, 2004). The counterattack 
of the “back to basics” schooling in the USA was also fast, as was the disappearance 
of the “set theory–based” mathematics education in many European countries. 
Again, they disappeared before the researchers had time to study their effectiveness 
and whether there were elements that should be saved. If we think about how long 
it takes for an average and skillful teacher to learn new ways to think about mathe-
matics, to develop pedagogical models based on that, and especially to implement 
all that as effective teaching practices in a classroom of children with heterogeneous 
skills, we can easily see that the question Davidson and Michell raised about under-
standing the nature of teaching work in the classroom is extremely valid when we 
consider the time needed for effective reform and the time needed for research to 
confirm effectiveness. Schooling should not be an experiment, but experiments are 
needed to develop schooling.

Now, when technology and automatization are changing work life and the world 
rapidly, the question of educational reforms is even more topical. In the internet era, 
the access to information and also the amount of information production has sky-
rocketed. Therefore, knowledge and the ways of knowing something has dramati-
cally changed. Education and school have to change with these societal changes. 
Partly for these reasons, for example, the United Nations Educational, Scientific, 
and Cultural Organization (UNESCO) International Bureau of Education (IBE- 
UNESCO) has been an active advocate of competence-based curricula—curricula 
about the competencies needed in the twenty-first century. A competence-based 
curriculum is a model that emphasizes. Most of the recent new reforms of the cur-
ricula from the least-developed countries to the wealthiest societies have adopted 
these ideas in their curriculum frameworks.
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Marope et al. (2017) describe how the role of the learner is expected to change in 
the curriculum (see Table 46.3). They contrast the learner-led competence-based 
approach to teacher-led educational practices that are still often found in countries 
with low levels of teacher education.

Even though everyone can basically put their signature on these high principles 
of good educational practices, again the lessons learned from the previous reforms 
should be taken with seriousness. The analyses of the PISA data and other studies 
show that direct teacher-led instruction has its benefits and it is especially beneficial 
for children with lower performance levels. We cannot just throw that evidence 
away when developing new pedagogies. In particular, children with mathematical 
learning difficulties may benefit more if we also implement the best practices of 
teacher-led transmission in future schools.

The UNESCO report on the global paradigm shift in education states “A real 
threat to instituting and sustaining pedagogical approaches that support competence- 
based curricula is that in many countries, especially developing countries, teaching 

Table 46.3 Role of learners in competence-based curricula

Teacher-led transmission Learner-led enquiry

From passive recipients of an accepted body of 
knowledge

To developing increasing responsibility for 
their own learning

From memorization and regurgitation To active enquiry, interrogation, and 
management of a variety of competing 
information sources

From compliance without engagement To co-construction and enthusiastic 
engagement in framing enquiries and outcomes

From answering teacher’ questions To framing and exploring learners’ own 
questions

From competing against one another To collaborating with one another and with the 
teacher

From compartmentalized learning in single 
subjects

To integrated, multidisciplinary connections 
across subjects

From more remote and formal teacher–learner 
relationships

To trust and rapport between teachers and 
learners and among learners

From “silo-based” subject learning that lacks 
connection with the learner background and 
context

To relevant learning, drawing on prior 
knowledge and the cultural context to clarify 
and refine conceptual understanding

From shallow, surface learning (and extrinsic 
motivation) reliant on teacher talk and 
demonstration to pass exams

To deep learning and intrinsic motivation:
• Investigating a range of perspectives/ways 

of looking at issues/problems
• Subjecting information and processes to 

critical interrogation
• Examining alternatives and seeking creative 

solutions
• Justifying conclusions/decisions/choices 

based on evidence/evaluation

From Marope et al. (2017)

46 Challenges and Future Perspectives



822

is not yet professionalized” (p. 33). What kind of competence- based educational 
models best suit children with mathematical learning difficulties and children with 
other learning disabilities? How can these basically positive ideas of student-cen-
tered learning be turned into practice in classrooms, with sensible support for those 
with cognitive disabilities? Without research guiding this development in educa-
tional practices, there is again a big risk that ideological wishes will overcome 
reality, as has happened in many attempts to reform schools. Every reform should 
start from one question: How will the most vulnerable in the classroom benefit 
from this? The answer to that question can only be found via the methods of 
research. The authors in this book have written about the topics in which they are 
respected experts. Their message is that more research is needed, and we couldn’t 
agree more, research that translates from labs to classrooms.
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